Extremely Deep Proofs

Noah Fleming, Toniann Pitassi and Robert Robere UCSD
Columbia University IAS
McGill University

A New Kind of Tradeoff

Recently, several works exhibited an extremely strong type of tradeoff

A New Kind of Tradeoff

Recently, several works exhibited an extremely strong type of tradeoff

Supercritical Tradeoff

When one parameter is restricted, the other is pushed beyond worst-case.

A New Kind of Tradeoff

Recently, several works exhibited an extremely strong type of tradeoff

Supercritical Tradeoff

When one parameter is restricted, the other is pushed beyond worst-case.

Observed primarily in proof complexity

A New Kind of Tradeoff

Recently, several works exhibited an extremely strong type of tradeoff

Supercritical Tradeoff

When one parameter is restricted, the other is pushed beyond worst-case.

Observed primarily in proof complexity

- First by [BBI16] - supercritical size/space tradeoff for Resolution

A New Kind of Tradeoff

Recently, several works exhibited an extremely strong type of tradeoff

Supercritical Tradeoff

When one parameter is restricted, the other is pushed beyond worst-case.

Observed primarily in proof complexity

- First by [BBI16] - supercritical size/space tradeoff for Resolution
- [Razborov16] proved a particularly strong tradeoff for tree-Resolution - there is an unsatisfiable CNF F such that any low width proof requires doubly exponential size

A New Kind of Tradeoff

Recently, several works exhibited an extremely strong type of tradeoff

Supercritical Tradeoff

When one parameter is restricted, the other is pushed beyond worst-case.

Observed primarily in proof complexity

- First by [BBI16] - supercritical size/space tradeoff for Resolution
- [Razborov16] proved a particularly strong tradeoff for tree-Resolution - there is an unsatisfiable CNF F such that any low width proof requires doubly exponential size
- Several other size/space tradeoffs for various proof systems [R17,BN20,R18]

This Work

Supercritical Tradeoff

When one parameter is restricted, the other is pushed beyond worst-case.

This work: The first supercritical tradeoff between size and depth.

This Work

Supercritical Tradeoff

When one parameter is restricted, the other is pushed beyond worst-case.

This work: The first supercritical tradeoff between size and depth. For

- Resolution
- k-DNF Resolution
- Cutting Planes

This Work

Supercritical Tradeoff

When one parameter is restricted, the other is pushed beyond worst-case.

This work: The first supercritical tradeoff between size and depth. For

- Resolution - Focus on for today
- k-DNF Resolution
- Cutting Planes

Depth

Depth

depth(Π): longest root-to-leaf path

Depth

depth(Π): longest root-to-leaf path

Like circuit depth, captures a notion of "parallelism" of a proof

Depth

depth (Π) : longest root-to-leaf path
Like circuit depth, captures a notion of "parallelism" of a proof
Resolution captures CDCL

Depth

depth(Π): longest root-to-leaf path

Like circuit depth, captures a notion of "parallelism" of a proof
Resolution captures CDCL
\rightarrow Size lower bounds runtime
\rightarrow Depth lower bounds parallelizability

Depth

depth(Π): longest root-to-leaf path

Like circuit depth, captures a notion of "parallelism" of a proof

Resolution captures CDCL

\rightarrow Size lower bounds runtime
\rightarrow Depth lower bounds parallelizability

Always a depth n proof

Depth

depth(Π): longest root-to-leaf path

Like circuit depth, captures a notion of "parallelism" of a proof

Resolution captures CDCL

\rightarrow Size lower bounds runtime
\rightarrow Depth lower bounds parallelizability
Always a depth n proof - but may have size 2^{n}

2^{n}

Depth

depth(Π): longest root-to-leaf path

Like circuit depth, captures a notion of "parallelism" of a proof

Resolution captures CDCL

\rightarrow Size lower bounds runtime
\rightarrow Depth lower bounds parallelizability
Always a depth n proof - but may have size 2^{n}

oof

Many strong proof systems can be balanced: depth can be assumed to be logarithmic in size.

Depth

depth(Π): longest root-to-leaf path

Like circuit depth, captures a notion of "parallelism" of a proof

Resolution captures CDCL

\rightarrow Size lower bounds runtime
\rightarrow Depth lower bounds parallelizability
Always a depth n proof - but may have size 2^{n}
Many strong proof systems can be balanced: depth can be assumed to be logarithmic in size.

- Resolution cannot

This Work

For any $P \in\{$ Resolution, Res(k), Cutting Planes $\}$
There is a CNF F on n variables such that

- There is a polynomial size P-proof of F
- Any subexponential-size P-proof of F must have poly $(n)>n$ depth

This Work

For any $P \in\{$ Resolution, Res(k), Cutting Planes $\}$
There is a CNF F on n variables such that

- There is a weakly exponential size P-proof of F
- Any subexponential-size P-proof of F has weakly exponential depth

This Work

Fix any $\varepsilon>0$, let $c \geq 1$ be real-valued parameter that will control our tradeoff
Main Theorem (Res): There is a CNF F on n variables s.t.

This Work

Fix any $\varepsilon>0$, let $c \geq 1$ be real-valued parameter that will control our tradeoff
Main Theorem (Res): There is a CNF F on n variables s.t.

1. There is a Resolution-proof of size $n^{c} \cdot 2^{O(c)}$

This Work

Fix any $\varepsilon>0$, let $c \geq 1$ be real-valued parameter that will control our tradeoff
Main Theorem (Res): There is a CNF F on n variables s.t.

1. There is a Resolution-proof of size $n^{c} \cdot 2^{O(c)}$
2. If Π is a Resolution-proof with $\operatorname{size}(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ then

$$
\operatorname{depth}(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)
$$

This Work

Fix any $\varepsilon>0$, let $c \geq 1$ be real-valued parameter that will control our tradeoff
Main Theorem (Res): There is a CNF F on n variables s.t.

1. There is a Resolution-proof of size $n^{c} \cdot 2^{O(c)}$
2. If Π is a Resolution-proof with $\operatorname{size}(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ then

$$
\operatorname{depth}(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)
$$

A tradeoff between runtime and parallelizability for CDCL

This Work

Fix any $\varepsilon>0$, let $c \geq 1$ be real-valued parameter that will control our tradeoff
Main Theorem (Res): There is a CNF F on n variables s.t.

1. There is a Resolution-proof of size $n^{c} \cdot 2^{O(c)}$
2. If Π is a Resolution-proof with $\operatorname{size}(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ then

$$
\operatorname{depth}(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)
$$

A tradeoff between runtime and parallelizability for CDCL

* Caveat: F has $n^{O(c)}$ many clauses - we'll come back to this!

Proof Technique

Hardness Condensation

1. Find CNF formula F on N variables such that
(a) F has small size proofs
(b) F requires deep proofs

Proof Technique

Hardness Condensation

1. Find CNF formula F on N variables such that (e.g. pebbling formulas)
(a) F has small size proofs $-N$
(b) F requires deep proofs $-\Omega(N / \log N)$

Proof Technique

Hardness Condensation

1. Find CNF formula F on N variables such that (e.g. pebbling formulas)
(a) F has small size proofs $-N$
(b) F requires deep proofs $-\Omega(N / \log N)$
2. Compress the number of variables of F to $n \ll N$ while maintaining that (a) and
(b) hold for any small size proof

Proof Technique

Hardness Condensation

1. Find CNF formula F on N variables such that (e.g. pebbling formulas)
(a) F has small size proofs $-N$
(b) F requires deep proofs $-\Omega(N / \log N)$
2. Compress the number of variables of F to $n \ll N$ while maintaining that (a) and
(b) hold for any small size proof

Upshot: New F requires depth $\Omega(N / \log N)$ but has only n variables!
\rightarrow If $n=o(N / \log N)$ we get supercritical depth lower bounds for small proofs!

Proof Technique

Hardness Condensation

1. Find CNF formula F on N variables such that (e.g. pebbling formulas)
(a) F has small size proofs $-N$
(b) F requires deep proofs $-\Omega(N / \log N)$
2. Compress the number of variables of F to $n \ll N$ while maintaining that (a) and
(b) hold for any small size proof

Upshot: New F requires depth $\Omega(N / \log N)$ but has only n variables!
\rightarrow If $n=o(N / \log N)$ we get supercritical depth lower bounds for small proofs!

How do we do compression?

Proof Technique

Hardness Condensation

1. Find CNF formula F on N variables such that (e.g. pebbling formulas)
(a) F has small size proofs $-N$
(b) F requires deep proofs $-\Omega(N / \log N)$
2. Compress the number of variables of F to $n \ll N$ while maintaining that (a) and
(b) hold for any small size proof

Upshot: New F requires depth $\Omega(N / \log N)$ but has only n variables!
\rightarrow If $n=o(N / \log N)$ we get supercritical depth lower bounds for small proofs!

How do we do compression? Lifting!

Lifting (Composition)

Composition is one of our most powerful tools for proving lower bounds

Lifting (Composition)

Composition is one of our most powerful tools for proving lower bounds

- Let $F\left(z_{1}, \ldots, z_{N}\right)=C_{1} \wedge \ldots \wedge C_{m}$ be a CNF

Lifting (Composition)

Composition is one of our most powerful tools for proving lower bounds

- Let $F\left(z_{1}, \ldots, z_{N}\right)=C_{1} \wedge \ldots \wedge C_{m}$ be a CNF
- Let $g:\{0,1\}^{t} \rightarrow\{0,1\}$ be a function

Lifting (Composition)

Composition is one of our most powerful tools for proving lower bounds

- Let $F\left(z_{1}, \ldots, z_{N}\right)=C_{1} \wedge \ldots \wedge C_{m}$ be a CNF
- Let $g:\{0,1\}^{t} \rightarrow\{0,1\}$ be a function

Lifting (Composition)

Composition is one of our most powerful tools for proving lower bounds

- Let $F\left(z_{1}, \ldots, z_{N}\right)=C_{1} \wedge \ldots \wedge C_{m}$ be a CNF
- Let $g:\{0,1\}^{t} \rightarrow\{0,1\}$ be a function

The composed function is $F \circ g:=F\left(g\left(\vec{x}_{1}\right), \ldots, g\left(\vec{x}_{N}\right)\right)$

Lifting (Composition)

Composition is one of our most powerful tools for proving lower bounds

- Let $F\left(z_{1}, \ldots, z_{N}\right)=C_{1} \wedge \ldots \wedge C_{m}$ be a CNF
- Let $g:\{0,1\}^{t} \rightarrow\{0,1\}$ be a function

The composed function is $F \circ g:=F\left(g\left(\vec{x}_{1}\right), \ldots, g\left(\vec{x}_{N}\right)\right)$
Typically $\vec{x}_{1}, \ldots, \vec{x}_{N}$ are disjoint sets of variables

Lifting (Composition)

Composition is one of our most powerful tools for proving lower bounds

- Let $F\left(z_{1}, \ldots, z_{N}\right)=C_{1} \wedge \ldots \wedge C_{m}$ be a CNF
- Let $g:\{0,1\}^{t} \rightarrow\{0,1\}$ be a function

The composed function is $F \circ g:=F\left(g\left(\vec{x}_{1}\right), \ldots, g\left(\vec{x}_{N}\right)\right)$
Typically $\vec{x}_{1}, \ldots, \vec{x}_{N}$ are disjoint sets of variables

Let P, Q be two proof systems
A lifting theorem relates the complexity of

- P-proofs of F
- Q-proofs of $F \circ g$

Lifting (Composition)

Simple Example: $g=\mathrm{XOR}_{2}$ then $F \circ \mathrm{XOR}_{2}:=F\left(x_{1} \oplus x_{1}^{\prime}, \ldots, x_{N} \oplus x_{N}^{\prime}\right)$

Lifting (Composition)

Simple Example: $g=\mathrm{XOR}_{2}$ then $F \circ \mathrm{XOR}_{2}:=F\left(x_{1} \oplus x_{1}^{\prime}, \ldots, x_{N} \oplus x_{N}^{\prime}\right)$
Width-to-Size Lifting Theorem: Let F be any unsatisfiable formula. If Π is a resolution proof of $F \circ \mathrm{XOR}_{2}$ then

$$
\operatorname{size}(\Pi) \geq 2^{\Omega\left(\text { width }_{\text {Res }}(F)\right)}
$$

Lifting (Composition)

Simple Example: $g=\mathrm{XOR}_{2}$ then $F \circ \mathrm{XOR}_{2}:=F\left(x_{1} \oplus x_{1}^{\prime}, \ldots, x_{N} \oplus x_{N}^{\prime}\right)$
Width-to-Size Lifting Theorem: Let F be any unsatisfiable formula. If Π is a resolution proof of $F \circ \mathrm{XOR}_{2}$ then

$$
\operatorname{size}(\Pi) \geq 2^{\Omega\left(\text { width }_{\text {Res }}(F)\right)}
$$

A width lower bound on F implies a size lower bound on $F \circ \mathrm{XOR}_{2}$!

Lifting (Composition)

Simple Example: $g=\mathrm{XOR}_{2}$ then $F \circ \mathrm{XOR}_{2}:=F\left(x_{1} \oplus x_{1}^{\prime}, \ldots, x_{N} \oplus x_{N}^{\prime}\right)$
Width-to-Size Lifting Theorem: Let F be any unsatisfiable formula. If Π is a resolution proof of $F \circ \mathrm{XOR}_{2}$ then

$$
\begin{aligned}
\operatorname{size}(\Pi) & \geq 2^{\Omega\left(\text { width }_{\text {Res }}(F)\right)} \\
\operatorname{depth}(\Pi) & \geq \operatorname{depth}_{\text {Res }}(F)
\end{aligned}
$$

Lifting (Composition)

Simple Example: $g=\mathrm{XOR}_{2}$ then $F \circ \mathrm{XOR}_{2}:=F\left(x_{1} \oplus x_{1}^{\prime}, \ldots, x_{N} \oplus x_{N}^{\prime}\right)$
Width-to-Size Lifting Theorem: Let F be any unsatisfiable formula. If Π is a resolution proof of $F \circ \mathrm{XOR}_{2}$ then

$$
\begin{aligned}
\operatorname{size}(\Pi) & \geq 2^{\Omega\left(\text { width }_{\text {Res }}(F)\right)} \\
\operatorname{depth}(\Pi) & \geq \operatorname{depth}_{\text {Res }}(F)
\end{aligned}
$$

- $P=$ Resolution (width), $Q=$ Resolution (size)

Lifting (Composition)

Simple Example: $g=\mathrm{XOR}_{2}$ then $F \circ \mathrm{XOR}_{2}:=F\left(x_{1} \oplus x_{1}^{\prime}, \ldots, x_{N} \oplus x_{N}^{\prime}\right)$
Width-to-Size Lifting Theorem: Let F be any unsatisfiable formula. If Π is a resolution proof of $F \circ \mathrm{XOR}_{2}$ then

$$
\begin{aligned}
\operatorname{size}(\Pi) & \geq 2^{\Omega\left(\operatorname{width}_{\text {Res }}(F)\right)} \\
\operatorname{depth}(\Pi) & \geq \operatorname{depth}_{\text {Res }}(F)
\end{aligned}
$$

- $P=$ Resolution (width), $Q=$ Resolution (size)

If F has a proof of size s and width $w \Longrightarrow F \circ \mathrm{XOR}_{2}$ has a proof of size $O\left(s 2^{w}\right)$

Lifting (Composition)

Simple Example: $g=\mathrm{XOR}_{2}$ then $F \circ \mathrm{XOR}_{2}:=F\left(x_{1} \oplus x_{1}^{\prime}, \ldots, x_{N} \oplus x_{N}^{\prime}\right)$
Width-to-Size Lifting Theorem: Let F be any unsatisfiable formula. If Π is a resolution proof of $F \circ \mathrm{XOR}_{2}$ then

$$
\begin{aligned}
\operatorname{size}(\Pi) & \geq 2^{\Omega\left(\text { width }_{\text {Res }}(F)\right)} \\
\operatorname{depth}(\Pi) & \geq \operatorname{depth}_{\text {Res }}(F)
\end{aligned}
$$

- $P=$ Resolution (width), $Q=$ Resolution (size)

If F has a proof of size s and width $w \Longrightarrow F \circ \mathrm{XOR}_{2}$ has a proof of size $O\left(s 2^{w}\right)$
\rightarrow Locally simulate the XOR in every step of the proof of F

Lifting (Composition)

Simple Example: $g=\mathrm{XOR}_{2}$ then $F \circ \mathrm{XOR}_{2}:=F\left(x_{1} \oplus x_{1}^{\prime}, \ldots, x_{N} \oplus x_{N}^{\prime}\right)$
Width-to-Size Lifting Theorem: Let F be any unsatisfiable formula. If Π is a resolution proof of $F \circ \mathrm{XOR}_{2}$ then

$$
\begin{aligned}
\operatorname{size}(\Pi) & \geq 2^{\Omega\left(\text { width }_{\text {Res }}(F)\right)} \\
\operatorname{depth}(\Pi) & \geq \operatorname{depth}_{\text {Res }}(F)
\end{aligned}
$$

- $P=$ Resolution (width), $Q=$ Resolution (size)

If F has a proof of size s and width $w \Longrightarrow F \circ \mathrm{XOR}_{2}$ has a proof of size $O\left(s 2^{w}\right)$
\rightarrow Locally simulate the XOR in every step of the proof of F
\Longrightarrow Naive simulation is essentially the best! (A theme of lifting theorems)

Lifting (Composition)

Typically in a Lifting Theorem...

$\rightarrow P$ is a weak proof system
$\rightarrow Q$ is a strong proof system
A lifting theorem shows that the most efficient Q-proof of $F \circ g$ is to simulate the most efficient P-proof of F (with extra overhead to handle g)

Lifting (Composition)

Typically in a Lifting Theorem...

$\rightarrow P$ is a weak proof system
$\rightarrow Q$ is a strong proof system
A lifting theorem shows that the most efficient Q-proof of $F \circ g$ is to simulate the most efficient P-proof of F (with extra overhead to handle g)
i.e., it "lifts" lower bounds on weak proof systems to strong proof systems

Our Lifting

Does the opposite!

Our Lifting

Does the opposite! - Lifts depth lower bounds on a strong proof system to (much stronger) depth lower bounds on weak proof system

Our Lifting

Does the opposite! - Lifts depth lower bounds on a strong proof system to (much stronger) depth lower bounds on weak proof system

- P is Resolution
- Q is size-bounded Resolution

Our Lifting

Does the opposite! - Lifts depth lower bounds on a strong proof system to (much stronger) depth lower bounds on weak proof system

- P is Resolution
- Q is size-bounded Resolution

Proof Idea:

Find a gadget g such that

Our Lifting

Does the opposite! - Lifts depth lower bounds on a strong proof system to (much stronger) depth lower bounds on weak proof system

- P is Resolution
- Q is size-bounded Resolution

Proof Idea:

Find a gadget g such that

1. The number of variables n of $F \circ g$ will be much smaller than N

Our Lifting

Does the opposite! - Lifts depth lower bounds on a strong proof system to (much stronger) depth lower bounds on weak proof system

- P is Resolution
- Q is size-bounded Resolution

Proof Idea:

Find a gadget g such that

1. The number of variables n of $F \circ g$ will be much smaller than N
2. Any small-size Resolution proof of $F \circ g$ will require the same depth as proving F

The Gadget

Our gadget will be the XOR function $F\left(\operatorname{XOR}\left(\vec{x}_{1}\right), \ldots, \operatorname{XOR}\left(\vec{x}_{N}\right)\right)$

The Gadget

Our gadget will be the XOR function
$F\left(\operatorname{XOR}\left(\vec{x}_{1}\right), \ldots, \operatorname{XOR}\left(\vec{x}_{N}\right)\right) \ldots$ With a twist!
The variable sets $\vec{x}_{1}, \ldots, \vec{x}_{N}$ will no longer be disjoint!

The Gadget

Our gadget will be the XOR function
$F\left(\operatorname{XOR}\left(\vec{x}_{1}\right), \ldots, \operatorname{XOR}\left(\vec{x}_{N}\right)\right) \ldots$ With a twist!
The variable sets $\vec{x}_{1}, \ldots, \vec{x}_{N}$ will no longer be disjoint!
\rightarrow Composing will reduce the total number of variables to $n \ll N$

The Gadget

Our gadget will be the XOR function
$F\left(\operatorname{XOR}\left(\vec{x}_{1}\right), \ldots, \operatorname{XOR}\left(\vec{x}_{N}\right)\right) \ldots$ With a twist!
The variable sets $\vec{x}_{1}, \ldots, \vec{x}_{N}$ will no longer be disjoint!
\rightarrow Composing will reduce the total number of variables to $n \ll N$
... In fact, we will compose with the Nisan-Wigderson generator!

The Gadget

Let G be an $N \times n$ bipartite graph

The Gadget

Let G be an $N \times n$ bipartite graph

The Gadget

Let G be an $N \times n$ bipartite graph

The Gadget

Let G be an $N \times n$ bipartite graph $F \circ \mathrm{XOR}_{G}$ replaces $z_{i} \mapsto \bigoplus x_{j}$ $x_{j} \in \mathrm{~N}\left(z_{i}\right)$

The Gadget

Let G be an $N \times n$ bipartite graph $F \circ \mathrm{XOR}_{G}$ replaces $z_{i} \mapsto \bigoplus x_{j}$ $x_{j} \in \mathrm{~N}\left(z_{i}\right)$

The Gadget

Let G be an $N \times n$ bipartite graph $F \circ \mathrm{XOR}_{G}$ replaces $z_{i} \mapsto \bigoplus_{x_{j} \in \mathrm{~N}\left(z_{i}\right)} x_{j}$

$$
\text { E.g. } \quad\left(\left(z_{1} \vee \neg z_{2}\right) \wedge z_{5}\right) \circ \mathrm{XOR}_{G}
$$

The Gadget

Let G be an $N \times n$ bipartite graph $F \circ \mathrm{XOR}_{G}$ replaces $z_{i} \mapsto \bigoplus_{x_{j} \in \mathrm{~N}\left(z_{i}\right)} x_{j}$

$$
\begin{aligned}
& \text { E.g. } \quad\left(\left(z_{1} \vee \neg z_{2}\right) \wedge z_{5}\right) \circ \mathrm{XOR}_{G} \\
& \quad\left(\left(x_{1} \oplus x_{3}\right) \vee \neg\left(x_{1} \oplus x_{2}\right)\right) \wedge x_{1}
\end{aligned}
$$

The Gadget

Let G be an $N \times n$ bipartite graph $F \circ \mathrm{XOR}_{G}$ replaces $z_{i} \mapsto \bigoplus x_{j}$ $x_{j} \in \mathrm{~N}\left(z_{i}\right)$

Idea: If the edges of G are sufficiently "spread out"

The Gadget

Let G be an $N \times n$ bipartite graph $F \circ \mathrm{XOR}_{G}$ replaces $z_{i} \mapsto \bigoplus x_{j}$ $x_{j} \in \mathrm{~N}\left(z_{i}\right)$
Idea: If the edges of G are sufficiently "spread out"
\rightarrow learning the value of one XOR won't reveal much information about any other XOR

The Gadget

Let G be an $N \times n$ bipartite graph $F \circ \mathrm{XOR}_{G}$ replaces $z_{i} \mapsto \bigoplus x_{j}$ $x_{j} \in \mathrm{~N}\left(z_{i}\right)$
Idea: If the edges of G are sufficiently "spread out" \rightarrow learning the value of one XOR won't reveal much information about any other XOR
\rightarrow The best Resolution proof of $F \circ \mathrm{XOR}_{G}$ should essentially be to simulate the best proof of F

The Gadget

Let G be an $N \times n$ bipartite graph $F \circ \mathrm{XOR}_{G}$ replaces $z_{i} \mapsto \bigoplus x_{j}$ $x_{j} \in \mathrm{~N}\left(z_{i}\right)$

Idea: If G is sufficiently expanding:
\rightarrow learning the value of one XOR won't reveal much information about any other XOR
\rightarrow The best Resolution proof of $F \circ \mathrm{XOR}_{G}$ should essentially be to simulate the best proof of F

The Gadget

Let G be an $N \times n$ bipartite graph $F \circ \mathrm{XOR}_{G}$ replaces $z_{i} \mapsto \bigoplus x_{j}$ $x_{j} \in \mathrm{~N}\left(z_{i}\right)$

Idea: If G is sufficiently expanding:
\rightarrow learning the value of one XOR won't reveal much information about any other XOR
\rightarrow The best Resolution proof of $F \circ \mathrm{XOR}_{G}$ should essentially be to simulate the best proof of F
r-Expanding: For any set $U \subseteq[N]$ with $|U| \leq r$ the number of unique neighbours is at least $2|U|$

The Gadget

Let G be an $N \times n$ bipartite graph $F \circ \mathrm{XOR}_{G}$ replaces $z_{i} \mapsto \bigoplus x_{j}$ $x_{j} \in \mathrm{~N}\left(z_{i}\right)$

Idea: If G is sufficiently expanding:
\rightarrow learning the value of one XOR won't reveal much information about any other XOR
\rightarrow The best Resolution proof of $F \circ \mathrm{XOR}_{G}$ should essentially be to simulate the best proof of F

Number of x-variables that occur in exactly one XOR in U
r-Expanding: For any set $U \subseteq[N]$ with $|U| \leq r$ the number of unique neighbours is at least $2|U|$

The Gadget

Let G be an $N \times n$ bipartite graph $F \circ \mathrm{XOR}_{G}$ replaces $z_{i} \mapsto \bigoplus x_{j}$ $x_{j} \in \mathrm{~N}\left(z_{i}\right)$

Idea: If G is sufficiently expanding:
\rightarrow learning the value of one XOR won't reveal much information about any other XOR
\rightarrow The best Resolution proof of $F \circ \mathrm{XOR}_{G}$ should essentially be to simulate the best proof of F

Number of x-variables that occur in exactly one XOR in U
r-Expanding: For any set $U \subseteq[N]$ with $|U| \leq r$ the number of unique neighbours is at least $2|U|$

The Gadget

Let G be an $N \times n$ bipartite graph $F \circ \mathrm{XOR}_{G}$ replaces $z_{i} \mapsto \bigoplus x_{j}$ $x_{j} \in \mathrm{~N}\left(z_{i}\right)$

Idea: If G is sufficiently expanding:
\rightarrow learning the value of one XOR won't reveal much information about any other XOR
\rightarrow The best Resolution proof of $F \circ \mathrm{XOR}_{G}$ should essentially be to simulate the best proof of F

Number of x-variables that occur in exactly one XOR in U
r-Expanding: For any set $U \subseteq[N]$ with $|U| \leq r$ the number of unique neighbours is at least $2|U|$

The Gadget

Let G be an $N \times n$ bipartite graph $F \circ \mathrm{XOR}_{G}$ replaces $z_{i} \mapsto \bigoplus x_{j}$ $x_{j} \in \mathrm{~N}\left(z_{i}\right)$

Idea: If G is sufficiently expanding:
\rightarrow learning the value of one XOR won't reveal much information about any other XOR
\rightarrow The best Resolution proof of $F \circ \mathrm{XOR}_{G}$ should essentially be to simulate the best proof of F

Number of x-variables that occur in exactly one XOR in U
r-Expanding: For any set $U \subseteq[N]$ with $|U| \leq r$ the number of unique neighbours is at least $2|U|$
\rightarrow Our gadget g will be XOR_{G} for expanding G

Depth Condensation

Main workhorse behind our tradeoff:
Depth Condensation Theorem: ([Razborov16] stated for tree-resolution)
Let G be r-expanding, F any unsatisfiable formula.
If Π is a Resolution proof of $F \circ \mathrm{XOR}_{G}$ with width $(\Pi) \leq r / 4$ then

$$
\operatorname{depth}(\Pi) \text { width }(\Pi)=\Omega\left(\operatorname{depth}_{\operatorname{Res}}(F)\right)
$$

Depth Condensation

Main workhorse behind our tradeoff:
Depth Condensation Theorem: ([Razborov16] stated for tree-resolution)
Let G be r-expanding, F any unsatisfiable formula.
If Π is a Resolution proof of $F \circ \mathrm{XOR}_{G}$ with width $(\Pi) \leq r / 4$ then

$$
\operatorname{depth}(\Pi) \text { width }(\Pi)=\Omega\left(\operatorname{depth}_{\operatorname{Res}}(F)\right)
$$

\rightarrow We give a simple proof

Depth Condensation

Main workhorse behind our tradeoff:
Depth Condensation Theorem: ([Razborov16] stated for tree-resolution)
Let G be r-expanding.
If Π is a Resolution proof of $P e b \circ \mathrm{XOR}_{G}$ with width $(\Pi) \leq r / 4$ then

$$
\operatorname{depth}(\Pi) \text { width }(\Pi)=\Omega(N / \log N)
$$

\rightarrow We give a simple proof
\rightarrow Take $F=P e b$

Depth Condensation

Main workhorse behind our tradeoff:
Depth Condensation Theorem: ([Razborov16] stated for tree-resolution)
Let G be r-expanding.
If Π is a Resolution proof of $P e b \circ \mathrm{XOR}_{G}$ with width $(\Pi) \leq r / 4$ then

$$
\operatorname{depth}(\Pi) \text { width }(\Pi)=\Omega(N / \log N)=\Omega\left(n^{c} / c \log n\right)
$$

\rightarrow We give a simple proof
\rightarrow Take $F=P e b$

Depth Condensation

Main workhorse behind our tradeoff:
Depth Condensation Theorem: ([Razborov16] stated for tree-resolution)
Let G be r-expanding.
If Π is a Resolution proof of $P e b \circ \mathrm{XOR}_{G}$ with width $(\Pi) \leq r / 4$ then

$$
\operatorname{depth}(\Pi) \text { width }(\Pi)=\Omega(N / \log N)=\Omega\left(n^{c} / c \log n\right)
$$

\rightarrow We give a simple proof
\rightarrow Take $F=P e b$, combine with width-to-size lifting theorem proves our tradeoff!

Depth Condensation

Main workhorse behind our tradeoff:
Depth Condensation Theorem: ([Razborov16] stated for tree-resolution)
Let G be r-expanding.
If Π is a Resolution proof of $P e b \circ \mathrm{XOR}_{G}$ with width $(\Pi) \leq r / 4$ then

$$
\operatorname{depth}(\Pi) \text { width }(\Pi)=\Omega(N / \log N)=\Omega\left(n^{c} / c \log n\right)
$$

\rightarrow We give a simple proof
\rightarrow Take $F=P e b$, combine with width-to-size lifting theorem proves our tradeoff!
Width-to-Size Lifting Theorem: If Π is a resolution proof of $F \circ \mathrm{XOR}_{2}$ then

$$
\begin{aligned}
\operatorname{size}(\Pi) & \geq 2^{\Omega\left(\text { width }_{\text {Res }}(F)\right)} \\
\operatorname{depth}(\Pi) & \geq \operatorname{depth}_{\operatorname{Res}}(F)
\end{aligned}
$$

Depth Condensation

Main workhorse behind our tradeoff:

Main Theorem (Res):

Let G be r-expanding.
If Π is a Resolution proof of $P e b \circ \mathrm{XOR}_{G} \circ \mathrm{XOR}_{2}$ with $\log \operatorname{size}(\Pi) \leq r / 4$ then

$$
\operatorname{depth}(\Pi) \log \operatorname{size}(\Pi)=\Omega(N / \log N)=\Omega\left(n^{c} / c \log n\right)
$$

\rightarrow We give a simple proof
\rightarrow Take $F=P e b$, combine with width-to-size lifting theorem proves our tradeoff!
Width-to-Size Lifting Theorem: If Π is a resolution proof of $F \circ \mathrm{XOR}_{2}$ then

$$
\begin{aligned}
\operatorname{size}(\Pi) & \geq 2^{\Omega\left(\text { width }_{\text {Res }}(F)\right)} \\
\operatorname{depth}(\Pi) & \geq \operatorname{depth}_{\operatorname{Res}}(F)
\end{aligned}
$$

Main Tradeoff (For Resolution)

Let $\varepsilon>0$, let $c \geq 1$ be real-valued parameter
Main Theorem: There is a CNF formula F on n variables such that

1. There is a P-proof of F of size $n^{c} \cdot 2^{O(c)}$
2. If Π is a P-proof of F with $\operatorname{size}(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ then

$$
\operatorname{depth}(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)
$$

Tradeoffs for other proof systems are obtained by an extra step of lifting!

Main Tradeoff (For Resolution)

Let $\varepsilon>0$, let $c \geq 1$ be real-valued parameter
Main Theorem: There is a CNF formula F on n variables such that

1. There is a P-proof of F of size $n^{c} \cdot 2^{O(c)}$
2. If Π is a P-proof of F with $\operatorname{size}(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ then

$$
\operatorname{depth}(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)
$$

Tradeoffs for other proof systems are obtained by an extra step of lifting!

- For Cutting Planes we use the lifting theorem of [GGKS18]

Main Tradeoff (For Resolution)

Let $\varepsilon>0$, let $c \geq 1$ be real-valued parameter
Main Theorem: There is a CNF formula F on n variables such that

1. There is a P-proof of F of size $n^{c} \cdot 2^{O(c)}$
2. If Π is a P-proof of F with size $(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ then

$$
\operatorname{depth}(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)
$$

Tradeoffs for other proof systems are obtained by an extra step of lifting!

- For Cutting Planes we use the lifting theorem of [GGKS18]
- For Res(k) we prove a Resolution width $\rightarrow \operatorname{Res}(\mathrm{k})$ size lifting theorem with $g=$ $X O R_{2}$, which uses the switching lemma of [SBIO4]

(New) Proof of Depth Condensation

Depth Condensation Theorem:

Let G be r-expanding, F any unsatisfiable formula.
If Π is a resolution proof of $F \circ \mathrm{XOR}_{G}$ with width $(\Pi) \leq r / 4$ then

$$
\operatorname{depth}(\Pi) \text { width }(\Pi)=\Omega\left(\operatorname{depth}_{\operatorname{Res}}(F)\right)
$$

Our proof uses a characterization of resolution depth by Prover-Adversary games

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving F

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving F
Two players Prover, Adversary share a state $\rho \in\{0,1, *\}^{n}$, initially $\rho=* n$

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving F
Two players Prover, Adversary share a state $\rho \in\{0,1, *\}^{n}$, initially $\rho=* n$

- Prover wants to construct a state ρ falsifying a clause of $F(\exists C \in F, C(\rho)=0)$

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving F
Two players Prover, Adversary share a state $\rho \in\{0,1, *\}^{n}$, initially $\rho=* n$

- Prover wants to construct a state ρ falsifying a clause of $F(\exists C \in F, C(\rho)=0)$
- Adversary wants to prolong the game

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving F
Two players Prover, Adversary share a state $\rho \in\{0,1, *\}^{n}$, initially $\rho=* n$

- Prover wants to construct a state ρ falsifying a clause of $F(\exists C \in F, C(\rho)=0)$
- Adversary wants to prolong the game

Each round:

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving F
Two players Prover, Adversary share a state $\rho \in\{0,1, *\}^{n}$, initially $\rho=* n$

- Prover wants to construct a state ρ falsifying a clause of $F(\exists C \in F, C(\rho)=0)$
- Adversary wants to prolong the game

Each round:

- Prover chooses $i \in[n]$ such that $\rho_{i}=$ *

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving F
Two players Prover, Adversary share a state $\rho \in\{0,1, *\}^{n}$, initially $\rho=* n$

- Prover wants to construct a state ρ falsifying a clause of $F(\exists C \in F, C(\rho)=0)$
- Adversary wants to prolong the game

Each round:

- Prover chooses $i \in[n]$ such that $\rho_{i}=*$
- Adversary chooses $b \in\{0,1\}$ and sets $\rho_{i}=b$

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving F
Two players Prover, Adversary share a state $\rho \in\{0,1, *\}^{n}$, initially $\rho=* n$

- Prover wants to construct a state ρ falsifying a clause of $F(\exists C \in F, C(\rho)=0)$
- Adversary wants to prolong the game

Each round:

- Prover chooses $i \in[n]$ such that $\rho_{i}=$ *
- Adversary chooses $b \in\{0,1\}$ and sets $\rho_{i}=b$

Claim: If there is a strategy for the Adversary such that the game always continues for at least d rounds, then any resolution proof of F requires depth $\geq d$

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving F
Two players Prover, Adversary share a state $\rho \in\{0,1, *\}^{n}$, initially $\rho=* n$

- Prover wants to construct a state ρ falsifying a clause of $F(\exists C \in F, C(\rho)=0)$
- Adversary wants to prolong the game

Each round:

- Prover chooses $i \in[n]$ such that $\rho_{i}=*$
- Adversary chooses $b \in\{0,1\}$ and sets $\rho_{i}=b$
w-Bounded Game: ρ remembers at most w variables every round. $(|\rho| \leq w)$

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving F
Two players Prover, Adversary share a state $\rho \in\{0,1, *\}^{n}$, initially $\rho=* n$

- Prover wants to construct a state ρ falsifying a clause of $F(\exists C \in F, C(\rho)=0)$
- Adversary wants to prolong the game

Each round:

- Prover chooses $i \in[n]$ such that $\rho_{i}=$ *
- Adversary chooses $b \in\{0,1\}$ and sets $\rho_{i}=b$
- Prover chooses $S \subseteq[n]$ and sets $\rho_{i}=*$ for all $i \in S$ (Forgetting)
w-Bounded Game: ρ remembers at most w variables every round. ($|\rho| \leq w)$

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving F
Two players Prover, Adversary share a state $\rho \in\{0,1, *\}^{n}$, initially $\rho=* n$

- Prover wants to construct a state ρ falsifying a clause of $F(\exists C \in F, C(\rho)=0)$
- Adversary wants to prolong the game

Each round:

- Prover chooses $i \in[n]$ such that $\rho_{i}=*$
- Adversary chooses $b \in\{0,1\}$ and sets $\rho_{i}=b$
- Prover chooses $S \subseteq[n]$ and sets $\rho_{i}=*$ for all $i \in S$ (Forgetting)
w-Bounded Game: ρ remembers at most w variables every round. ($|\rho| \leq w)$
Unbounded Game: No bound on $|\rho|$

Prover Adversary Games

Claim: For any F, a Resolution proof Π of F of width $\leq w$ and depth $\leq d$ implies a strategy for the Prover to win the $(w+1)$-bounded game in d rounds.

Prover Adversary Games

Claim: For any F, a Resolution proof Π of F of width $\leq w$ and depth $\leq d$ implies a strategy for the Prover to win the $(w+1)$-bounded game in d rounds.

Pf:

Prover Adversary Games

Claim: For any F, a Resolution proof Π of F of width $\leq w$ and depth $\leq d$ implies a strategy for the Prover to win the $(w+1)$-bounded game in d rounds.

Pf: Prover will walk from the root of Π to a leaf

Prover Adversary Games

Claim: For any F, a Resolution proof Π of F of width $\leq w$ and depth $\leq d$ implies a strategy for the Prover to win the $(w+1)$-bounded game in d rounds.

Pf: Prover will walk from the root of Π to a leaf Invariant: If current clause is C then $C(\rho)=0,|\rho| \leq w$

Prover Adversary Games

Claim: For any F, a Resolution proof Π of F of width $\leq w$ and depth $\leq d$ implies a strategy for the Prover to win the $(w+1)$-bounded game in d rounds.

Pf: Prover will walk from the root of Π to a leaf Invariant: If current clause is C then $C(\rho)=0,|\rho| \leq w$
\rightarrow Root case is satisfied: Λ is identically false

Prover Adversary Games

Claim: For any F, a Resolution proof Π of F of width $\leq w$ and depth $\leq d$ implies a strategy for the Prover to win the $(w+1)$-bounded game in d rounds.

Pf: Prover will walk from the root of Π to a leaf Invariant: If current clause is C then $C(\rho)=0,|\rho| \leq w$
\rightarrow Root case is satisfied: Λ is identically false Suppose current clause is $A \vee B$

Prover Adversary Games

Claim: For any F, a Resolution proof Π of F of width $\leq w$ and depth $\leq d$ implies a strategy for the Prover to win the $(w+1)$-bounded game in d rounds.

Pf: Prover will walk from the root of Π to a leaf Invariant: If current clause is C then $C(\rho)=0,|\rho| \leq w$
\rightarrow Root case is satisfied: Λ is identically false Suppose current clause is $A \vee B$

- Prover asks about x_{i}

Prover Adversary Games

Claim: For any F, a Resolution proof Π of F of width $\leq w$ and depth $\leq d$ implies a strategy for the Prover to win the $(w+1)$-bounded game in d rounds.

Pf: Prover will walk from the root of Π to a leaf Invariant: If current clause is C then $C(\rho)=0,|\rho| \leq w$ \rightarrow Root case is satisfied: Λ is identically false Suppose current clause is $A \vee B$

- Prover asks about x_{i}
- If Adversary says $x_{i}=0$ move to $A \vee x_{i}$. Forget $B \backslash A \cup x_{i}$

Prover Adversary Games

Claim: For any F, a Resolution proof Π of F of width $\leq w$ and depth $\leq d$ implies a strategy for the Prover to win the $(w+1)$-bounded game in d rounds.

Pf: Prover will walk from the root of Π to a leaf Invariant: If current clause is C then $C(\rho)=0,|\rho| \leq w$ \rightarrow Root case is satisfied: Λ is identically false Suppose current clause is $A \vee B$

- Prover asks about x_{i}
- If Adversary says $x_{i}=0$ move to $A \vee x_{i}$. Forget $B \backslash A \cup x_{i}$

- Otherwise, move to $B \vee \bar{x}_{i}$. Forget $A \backslash B$

(New) Proof of Depth Condensation

Depth Condensation Theorem:

Let G be an r-boundary expander, F any unsatisfiable formula.
If Π is a Resolution proof of $F \circ X O R_{G}$ with width $(\Pi) \leq r / 4$ then

$$
\operatorname{depth}(\Pi) \text { width }(\Pi)=\Omega\left(\operatorname{depth}_{\operatorname{Res}}(F)\right)
$$

High Level of Proof:

(New) Proof of Depth Condensation

Depth Condensation Theorem:

Let G be an r-boundary expander, F any unsatisfiable formula.
If Π is a Resolution proof of $F \circ X O R_{G}$ with width $(\Pi) \leq r / 4$ then

$$
\operatorname{depth}(\Pi) \text { width }(\Pi)=\Omega\left(\operatorname{depth}_{\operatorname{Res}}(F)\right)
$$

High Level of Proof:

If depth Res $(F) \geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

(New) Proof of Depth Condensation

Depth Condensation Theorem:

Let G be an r-boundary expander, F any unsatisfiable formula.
If Π is a Resolution proof of $F \circ X O R_{G}$ with width $(\Pi) \leq r / 4$ then

$$
\operatorname{depth}(\Pi) \text { width }(\Pi)=\Omega\left(\operatorname{depth}_{\operatorname{Res}}(F)\right)
$$

High Level of Proof:

If depth Res $(F) \geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F
\rightarrow Use A to construct an Adversary Strategy for the w-bounded game on
$F \circ X O R_{G}$ to survive $\Omega(d / w)$ rounds, for any $w \leq r / 4$.

(New) Proof of Depth Condensation

High Level of Proof:
If depth ${ }_{\text {Res }}(F) \geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ \mathrm{XOR}_{G}$:

(New) Proof of Depth Condensation

High Level of Proof:
If depth ${ }_{\text {Res }}(F) \geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ \mathrm{XOR}_{G}$:
If Prover queries x_{i} :

(New) Proof of Depth Condensation

High Level of Proof:
If depth Res $(F) \geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ \mathrm{XOR}_{G}$:
If Prover queries x_{i} :

- If there are ≥ 2 variables in $\mathrm{N}\left(z_{j}\right)$ for every $z_{j} \in \mathrm{~N}\left(x_{i}\right)$: set x_{i} arbitrarily

(New) Proof of Depth Condensation

High Level of Proof:
If depth Res $(F) \geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ \mathrm{XOR}_{G}$:
If Prover queries x_{i} :

- If there are ≥ 2 variables in $\mathrm{N}\left(z_{j}\right)$ for every $z_{j} \in \mathrm{~N}\left(x_{i}\right)$: set x_{i} arbitrarily

(New) Proof of Depth Condensation

High Level of Proof:
If depth ${ }_{\text {Res }}(F) \geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ \mathrm{XOR}_{G}$:
If Prover queries x_{i} :

- If there are ≥ 2 variables in $\mathrm{N}\left(z_{j}\right)$ for every $z_{j} \in \mathrm{~N}\left(x_{i}\right)$: set x_{i} arbitrarily

(New) Proof of Depth Condensation

High Level of Proof:

If depth Res $(F) \geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ \mathrm{XOR}_{G}$:
If Prover queries x_{i} :

- If there are ≥ 2 variables in $\mathrm{N}\left(z_{j}\right)$ for every $z_{j} \in \mathrm{~N}\left(x_{i}\right)$:
set x_{i} arbitrarily

- If x_{i} is the last variable in $\mathrm{N}\left(z_{j}\right)$ (for some z_{j}) not set in ρ :

(New) Proof of Depth Condensation

High Level of Proof:

If depth Res $(F) \geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ \mathrm{XOR}_{G}$:
If Prover queries x_{i} :

- If there are ≥ 2 variables in $\mathrm{N}\left(z_{j}\right)$ for every $z_{j} \in \mathrm{~N}\left(x_{i}\right)$:
set x_{i} arbitrarily

- If x_{i} is the last variable in $\mathrm{N}\left(z_{j}\right)$ (for some z_{j}) not set in ρ :

(New) Proof of Depth Condensation

High Level of Proof:

If depth Res $(F) \geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ \mathrm{XOR}_{G}$:
If Prover queries x_{i} :

- If there are ≥ 2 variables in $\mathrm{N}\left(z_{j}\right)$ for every $z_{j} \in \mathrm{~N}\left(x_{i}\right)$:
set x_{i} arbitrarily

- If x_{i} is the last variable in $\mathrm{N}\left(z_{j}\right)$ (for some z_{j}) not set in ρ :

(New) Proof of Depth Condensation

High Level of Proof:

If depth Res $(F) \geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ \mathrm{XOR}_{G}$:
If Prover queries x_{i} :

- If there are ≥ 2 variables in $\mathrm{N}\left(z_{j}\right)$ for every $z_{j} \in \mathrm{~N}\left(x_{i}\right)$: set x_{i} arbitrarily
- If x_{i} is the last variable in $\mathrm{N}\left(z_{j}\right)$ (for some z_{j}) not set in ρ :
- Query A for the value b of z_{j} on state $\mathrm{XOR}_{G}(\rho)$.

(New) Proof of Depth Condensation

High Level of Proof:

If depth Res $(F) \geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ \mathrm{XOR}_{G}$:

If Prover queries x_{i} :

- If there are ≥ 2 variables in $\mathrm{N}\left(z_{j}\right)$ for every $z_{j} \in \mathrm{~N}\left(x_{i}\right)$: set x_{i} arbitrarily
- If x_{i} is the last variable in $\mathrm{N}\left(z_{j}\right)$ (for some z_{j}) not set in ρ :
- Query A for the value b of z_{j} on state $\mathrm{XOR}_{G}(\rho)$.

(New) Proof of Depth Condensation

High Level of Proof:

If depth Res $(F) \geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ \mathrm{XOR}_{G}$:

If Prover queries x_{i} :

- If there are ≥ 2 variables in $\mathrm{N}\left(z_{j}\right)$ for every $z_{j} \in \mathrm{~N}\left(x_{i}\right)$: set x_{i} arbitrarily
- If x_{i} is the last variable in $\mathrm{N}\left(z_{j}\right)$ (for some z_{j}) not set in ρ :
- Query A for the value b of z_{j} on state $\mathrm{XOR}_{G}(\rho)$.

(New) Proof of Depth Condensation

High Level of Proof:

If depth Res $(F) \geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ \mathrm{XOR}_{G}$:

If Prover queries x_{i} :

- If there are ≥ 2 variables in $\mathrm{N}\left(z_{j}\right)$ for every $z_{j} \in \mathrm{~N}\left(x_{i}\right)$: set x_{i} arbitrarily
- If x_{i} is the last variable in $\mathrm{N}\left(z_{j}\right)$ (for some z_{j}) not set in ρ :
- Query A for the value b of z_{j} on state $\mathrm{XOR}_{G}(\rho)$.
- Set x_{i} so that $\oplus_{t: x_{t} \in N\left(z_{j}\right)} x_{t}=b$

(New) Proof of Depth Condensation

High Level of Proof:

If depth Res $(F) \geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ \mathrm{XOR}_{G}$:

If Prover queries x_{i} :

- If there are ≥ 2 variables in $\mathrm{N}\left(z_{j}\right)$ for every $z_{j} \in \mathrm{~N}\left(x_{i}\right)$: set x_{i} arbitrarily
- If x_{i} is the last variable in $\mathrm{N}\left(z_{j}\right)$ (for some z_{j}) not set in ρ :
- Query A for the value b of z_{j} on state $\mathrm{XOR}_{G}(\rho)$.
- Set x_{i} so that $\oplus_{t: x_{t} \in N\left(z_{j}\right)} x_{t}=b$

(New) Proof of Depth Condensation

High Level of Proof:

If depth Res $(F) \geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ \mathrm{XOR}_{G}$:
If Prover queries x_{i} :

- If there are ≥ 2 variables in $\mathrm{N}\left(z_{j}\right)$ for every $z_{j} \in \mathrm{~N}\left(x_{i}\right)$: set x_{i} arbitrarily
- If x_{i} is the last variable in $\mathrm{N}\left(z_{j}\right)$ (for some z_{j}) not set in ρ :
- Query A for the value b of z_{j} on state $\mathrm{XOR}_{G}(\rho)$.
- Set x_{i} so that $\oplus_{t: x_{t} \in N\left(z_{j}\right)} x_{t}=b$

Problem!

This forces $z_{4}=0$
What if A sets $z_{4}=1$?

Proof Overview

Problem: z-variables are correlated
\rightarrow Setting one can x-variable can force several z-variables
\rightarrow Cannot follow A in this case

Proof Overview

Problem: z-variables are correlated
\rightarrow Setting one can x-variable can force several z-variables
\rightarrow Cannot follow A in this case
Use expansion to avoid this scenario!

Proof Overview

Problem: z-variables are correlated
\rightarrow Setting one can x-variable can force several z-variables
\rightarrow Cannot follow A in this case
Use expansion to avoid this scenario!
Let $G \backslash \rho$ be induced by removing the x-variables set by ρ and z-variables determined by ρ

Proof Overview

Problem: z-variables are correlated
\rightarrow Setting one can x-variable can force several z-variables
\rightarrow Cannot follow A in this case
Use expansion to avoid this scenario!
Let $G \backslash \rho$ be induced by removing the x-variables set by ρ and z-variables determined by ρ
e.g. $\rho=[1, *, 0]$ then $G \backslash \rho$ is:

Proof Overview

Problem: z-variables are correlated
\rightarrow Setting one can x-variable can force several z-variables
\rightarrow Cannot follow A in this case
Use expansion to avoid this scenario!
Let $G \backslash \rho$ be induced by removing the x-variables set by ρ and z-variables determined by ρ
e.g. $\rho=[1, *, 0]$ then $G \backslash \rho$ is:

Proof Overview

Problem: z-variables are correlated
\rightarrow Setting one can x-variable can force several z-variables
\rightarrow Cannot follow A in this case
Use expansion to avoid this scenario!
Let $G \backslash \rho$ be induced by removing the x-variables set by ρ and z-variables determined by ρ
e.g. $\rho=[1, *, 0]$ then $G \backslash \rho$ is:

Determined

Proof Overview

Problem: z-variables are correlated
\rightarrow Setting one can x-variable can force several z-variables
\rightarrow Cannot follow A in this case
Use expansion to avoid this scenario!
Let $G \backslash \rho$ be induced by removing the x-variables set by ρ and z-variables determined by ρ
e.g. $\rho=[1, *, 0]$ then $G \backslash \rho$ is:

Determined

Proof Overview

Problem: z-variables are correlated
\rightarrow Setting one can x-variable can force several z-variables
\rightarrow Cannot follow A in this case
Use expansion to avoid this scenario!
Let $G \backslash \rho$ be induced by removing the x-variables set by ρ and z-variables determined by ρ
e.g. $\rho=[1, *, 0]$ then $G \backslash \rho$ is:

Proof Overview

Problem: z-variables are correlated
\rightarrow Setting one can x-variable can force several z-variables
\rightarrow Cannot follow A in this case
Use expansion to avoid this scenario!
Let $G \backslash \rho$ be induced by removing the x-variables set by ρ and z-variables determined by ρ
e.g. $\rho=[1, *, 0]$ then $G \backslash \rho$ is:

Invariant: $G \backslash \rho$ is expanding

Proof Overview

Problem: z-variables are correlated
\rightarrow Setting one can x-variable can force several z-variables
\rightarrow Cannot follow A in this case
Use expansion to avoid this scenario!
Let $G \backslash \rho$ be induced by removing the x-variables set by ρ and z-variables determined by ρ
e.g. $\rho=[1, *, 0]$ then $G \backslash \rho$ is:

Invariant: $G \backslash \rho$ is expanding
\rightarrow Setting any x_{i} doesn't determine any z-variable

Expansion Restoration

However... after setting an $x_{i}, G \backslash \rho$ may no longer be expanding

Expansion Restoration

However... after setting an $x_{i}, G \backslash \rho$ may no longer be expanding
\rightarrow Query additional x-variables to restore expansion!

Expansion Restoration

However... after setting an x_{i}, $G \backslash \rho$ may no longer be expanding
\rightarrow Query additional x-variables to restore expansion!
Note: Want to assign as few z-variables while doing this

- Each time we fix a z-variable we have to query A. Can only do this d times

Expansion Restoration

However... after setting an $x_{i}, G \backslash \rho$ may no longer be expanding
\rightarrow Query additional x-variables to restore expansion!
Note: Want to assign as few z-variables while doing this

- Each time we fix a z-variable we have to query A. Can only do this d times

Closure Lemma: If $G \backslash \rho$ is expanding and ρ^{\prime} is obtained by querying some x_{i}, then there exists $\mathrm{Cl}\left(\rho^{\prime}\right) \supseteq \operatorname{vars}\left(\rho^{\prime}\right)$ such that

Expansion Restoration

However... after setting an $x_{i}, G \backslash \rho$ may no longer be expanding
\rightarrow Query additional x-variables to restore expansion!
Note: Want to assign as few z-variables while doing this

- Each time we fix a z-variable we have to query A. Can only do this d times

Closure Lemma: If $G \backslash \rho$ is expanding and ρ^{\prime} is obtained by querying some x_{i}, then there exists $\mathrm{Cl}\left(\rho^{\prime}\right) \supseteq \operatorname{vars}\left(\rho^{\prime}\right)$ such that

1. $C l\left(\rho^{\prime}\right)$ fixes at most $2 w z$-variables

Expansion Restoration

However... after setting an $x_{i}, G \backslash \rho$ may no longer be expanding
\rightarrow Query additional x-variables to restore expansion!
Note: Want to assign as few z-variables while doing this

- Each time we fix a z-variable we have to query A. Can only do this d times

Closure Lemma: If $G \backslash \rho$ is expanding and ρ^{\prime} is obtained by querying some x_{i}, then there exists $\mathrm{Cl}\left(\rho^{\prime}\right) \supseteq \operatorname{vars}\left(\rho^{\prime}\right)$ such that

1. $C l\left(\rho^{\prime}\right)$ fixes at most $2 w z$-variables
2. $G \backslash \mathrm{Cl}\left(\rho^{\prime}\right)$ is expanding

Expansion Restoration

However... after setting an x_{i}, $G \backslash \rho$ may no longer be expanding
\rightarrow Query additional x-variables to restore expansion!
Note: Want to assign as few z-variables while doing this

- Each time we fix a z-variable we have to query A. Can only do this d times

Closure Lemma: If $G \backslash \rho$ is expanding and ρ^{\prime} is obtained by querying some x_{i}, then there exists $\mathrm{Cl}\left(\rho^{\prime}\right) \supseteq \operatorname{vars}\left(\rho^{\prime}\right)$ such that

1. $C l\left(\rho^{\prime}\right)$ fixes at most $2 w z$-variables
2. $G \backslash \mathrm{Cl}\left(\rho^{\prime}\right)$ is expanding
3. The variables of $\mathrm{Cl}\left(\rho^{\prime}\right) \backslash \operatorname{vars}\left(\rho^{\prime}\right)$ can be set consistently with A

Expansion Restoration

However... after setting an x_{i}, $G \backslash \rho$ may no longer be expanding
\rightarrow Query additional x-variables to restore expansion!
Note: Want to assign as few z-variables while doing this

- Each time we fix a z-variable we have to query A. Can only do this d times

Closure Lemma: If $G \backslash \rho$ is expanding and ρ^{\prime} is obtained by querying some x_{i}, then there exists $\mathrm{Cl}\left(\rho^{\prime}\right) \supseteq \operatorname{vars}\left(\rho^{\prime}\right)$ such that

1. $C l\left(\rho^{\prime}\right)$ fixes at most $2 w z$-variables
2. $G \backslash \mathrm{Cl}\left(\rho^{\prime}\right)$ is expanding
3. The variables of $\mathrm{Cl}\left(\rho^{\prime}\right) \backslash \operatorname{vars}\left(\rho^{\prime}\right)$ can be set consistently with A
\rightarrow To restore expansion, set the variables of $\mathrm{Cl}\left(\rho^{\prime}\right) \backslash \operatorname{vars}\left(\rho^{\prime}\right)$!

Adversary Strategy

If depth Res $(F) \geq d \Longrightarrow \exists$ strategy A for the Adversary to survive d rounds on F

Adversary Strategy

If depth Res $(F) \geq d \Longrightarrow \exists$ strategy A for the Adversary to survive d rounds on F Adversary strategy for w-bounded game on $F \circ \mathrm{XOR}_{G}$ simulates A as follows:

Adversary Strategy

If depth Res $(F) \geq d \Longrightarrow \exists$ strategy A for the Adversary to survive d rounds on F Adversary strategy for w-bounded game on $F \circ \mathrm{XOR}_{G}$ simulates A as follows: Invariant: $G \backslash \rho$ is expanding

Adversary Strategy

If depth Res $(F) \geq d \Longrightarrow \exists$ strategy A for the Adversary to survive d rounds on F Adversary strategy for w-bounded game on $F \circ \mathrm{XOR}_{G}$ simulates A as follows:

Invariant: $G \backslash \rho$ is expanding
Query: If Prover asks for the value of x_{i}
\rightarrow Set x_{i} arbitrarily

Adversary Strategy

If depth Res $(F) \geq d \Longrightarrow \exists$ strategy A for the Adversary to survive d rounds on F
Adversary strategy for w-bounded game on $F \circ \mathrm{XOR}_{G}$ simulates A as follows:
Invariant: $G \backslash \rho$ is expanding
Query: If Prover asks for the value of x_{i}
\rightarrow Set x_{i} arbitrarily - Since $G \backslash \rho$ is expanding, setting x_{i} doesn't determine any z_{j}

Adversary Strategy

If depth Res $(F) \geq d \Longrightarrow \exists$ strategy A for the Adversary to survive d rounds on F
Adversary strategy for w-bounded game on $F \circ \mathrm{XOR}_{G}$ simulates A as follows:
Invariant: $G \backslash \rho$ is expanding
Query: If Prover asks for the value of x_{i}
\rightarrow Set x_{i} arbitrarily - Since $G \backslash \rho$ is expanding, setting x_{i} doesn't determine any z_{j}
Restore Expansion: Set the variables in $\mathrm{Cl}(\rho)$ consistent with A

Adversary Strategy

If depth Res $(F) \geq d \Longrightarrow \exists$ strategy A for the Adversary to survive d rounds on F
Adversary strategy for w-bounded game on $F \circ \mathrm{XOR}_{G}$ simulates A as follows:
Invariant: $G \backslash \rho$ is expanding
Query: If Prover asks for the value of x_{i}
\rightarrow Set x_{i} arbitrarily - Since $G \backslash \rho$ is expanding, setting x_{i} doesn't determine any z_{j}
Restore Expansion: Set the variables in $\mathrm{Cl}(\rho)$ consistent with A
\rightarrow By Closure Lemma, A is queried at most $2 w$ times.

Adversary Strategy

If depth Res $(F) \geq d \Longrightarrow \exists$ strategy A for the Adversary to survive d rounds on F
Adversary strategy for w-bounded game on $F \circ \mathrm{XOR}_{G}$ simulates A as follows:
Invariant: $G \backslash \rho$ is expanding
Query: If Prover asks for the value of x_{i}
\rightarrow Set x_{i} arbitrarily - Since $G \backslash \rho$ is expanding, setting x_{i} doesn't determine any z_{j}
Restore Expansion: Set the variables in $\mathrm{Cl}(\rho)$ consistent with A
\rightarrow By Closure Lemma, A is queried at most $2 w$ times.
Each round uses $O(w)$ queries to $A \Longrightarrow$ we can continue for $\Omega(d / w)$ rounds!

Adversary Strategy

If depth Res $(F) \geq d \Longrightarrow \exists$ strategy A for the Adversary to survive d rounds on F
Adversary strategy for w-bounded game on $F \circ \mathrm{XOR}_{G}$ simulates A as follows:
Invariant: $G \backslash \rho$ is expanding
Query: If Prover asks for the value of x_{i}
\rightarrow Set x_{i} arbitrarily - Since $G \backslash \rho$ is expanding, setting x_{i} doesn't determine any z_{j}
Restore Expansion: Set the variables in $\mathrm{Cl}(\rho)$ consistent with A
\rightarrow By Closure Lemma, A is queried at most $2 w$ times.
Each round uses $O(w)$ queries to $A \Longrightarrow$ we can continue for $\Omega(d / w)$ rounds!
Upshot: any width w proof of $F \circ \mathrm{XOR}_{G}$ requires depth $\Omega(d / w)$

Open Problems

What about supercritical size/depth tradeoffs for other models of computation?

Open Problems

What about supercritical size/depth tradeoffs for other models of computation?
\rightarrow There are functions which have poly-size monotone circuits but require depth $\Omega\left(n / \log ^{O(1)} n\right)[\mathrm{deRMN}+20]$

Open Problems

What about supercritical size/depth tradeoffs for other models of computation?
\rightarrow There are functions which have poly-size monotone circuits but require depth $\Omega\left(n / \log ^{O(1)} n\right)$ [deRMN+20]
Q. Can this be extended to supercritical?

Open Problems

What about supercritical size/depth tradeoffs for other models of computation?
\rightarrow There are functions which have poly-size monotone circuits but require depth $\Omega\left(n / \log ^{O(1)} n\right)[\mathrm{deRMN}+20]$
Q. Can this be extended to supercritical?

Interpolation: Our tradeoff actually holds for a proof system which is equivalent to monotone circuits

Open Problems

What about supercritical size/depth tradeoffs for other models of computation?
\rightarrow There are functions which have poly-size monotone circuits but require depth $\Omega\left(n / \log ^{O(1)} n\right)[\mathrm{deRMN}+20]$
Q. Can this be extended to supercritical?

Interpolation: Our tradeoff actually holds for a proof system which is equivalent to monotone circuits - Any proof of F is equivalent to a monotone circuit with the same topology computing an associated function f_{F}

Open Problems

What about supercritical size/depth tradeoffs for other models of computation?
\rightarrow There are functions which have poly-size monotone circuits but require depth $\Omega\left(n / \log ^{O(1)} n\right)[\mathrm{deRMN}+20]$
Q. Can this be extended to supercritical?

Interpolation: Our tradeoff actually holds for a proof system which is equivalent to monotone circuits - Any proof of F is equivalent to a monotone circuit with the same topology computing an associated function f_{F}
\rightarrow However, the number of variables of f_{F} is equal to the number of clauses of F

Open Problems

What about supercritical size/depth tradeoffs for other models of computation?
\rightarrow There are functions which have poly-size monotone circuits but require depth $\Omega\left(n / \log ^{O(1)} n\right)[\mathrm{deRMN}+20]$
Q. Can this be extended to supercritical?

Interpolation: Our tradeoff actually holds for a proof system which is equivalent to monotone circuits - Any proof of F is equivalent to a monotone circuit with the same topology computing an associated function f_{F}
\rightarrow However, the number of variables of f_{F} is equal to the number of clauses of F
\Longrightarrow Our tradeoffs do not imply supercritical tradeoffs for monotone circuits

Open Problems

What about supercritical size/depth tradeoffs for other models of computation?
\rightarrow There are functions which have poly-size monotone circuits but require depth $\Omega\left(n / \log ^{O(1)} n\right)$ [deRMN+20]
Q. Can this be extended to supercritical?

Interpolation: Our tradeoff actually holds for a proof system which is equivalent to monotone circuits - Any proof of F is equivalent to a monotone circuit with the same topology computing an associated function f_{F}
\rightarrow However, the number of variables of f_{F} is equal to the number of clauses of F
\Longrightarrow Our tradeoffs do not imply supercritical tradeoffs for monotone circuits
Conjecture: There exist F on m clauses such that any (quasi)polynomial size Resolution proof requires depth $\Omega\left(m n^{4}\right)$

Open Problems

What about supercritical size/depth tradeoffs for other models of computation?
\rightarrow There are functions which have poly-size monotone circuits but require depth $\Omega\left(n / \log ^{O(1)} n\right)$ [deRMN+20]
Q. Can this be extended to supercritical?

Interpolation: Our tradeoff actually holds for a proof system which is equivalent to monotone circuits - Any proof of F is equivalent to a monotone circuit with the same topology computing an associated function f_{F}
\rightarrow However, the number of variables of f_{F} is equal to the number of clauses of F
\Longrightarrow Our tradeoffs do not imply supercritical tradeoffs for monotone circuits
Conjecture: There exist F on m clauses such that any (quasi)polynomial size Resolution proof requires depth $\Omega\left(m n^{4}\right) \rightarrow$ Implies supercritical tradeoff

Open Problems

Conjecture: There exist F on m clauses such that any (quasi)polynomial size Resolution proof requires depth $\Omega\left(m n^{4}\right)$

One approach...
Can the Ben-Sasson Wigderson size-width relation be balanced?

Open Problems

Conjecture: There exist F on m clauses such that any (quasi)polynomial size Resolution proof requires depth $\Omega\left(m n^{4}\right)$

One approach...
Can the Ben-Sasson Wigderson size-width relation be balanced?
Problem: Prove or disprove that for any k-CNF F on m clauses a size s Resolution proof \Longrightarrow a depth $O(m)$ and width $k+O(\sqrt{n \log s})$ proof

Open Problems

Conjecture: There exist F on m clauses such that any (quasi)polynomial size Resolution proof requires depth $\Omega\left(m n^{4}\right)$

One approach...
Can the Ben-Sasson Wigderson size-width relation be balanced?
Problem: Prove or disprove that for any k-CNF F on m clauses a size s Resolution proof \Longrightarrow a depth $O(m)$ and width $k+O(\sqrt{n \log s})$ proof

Win-win situation

Positive resolution: counter example to conjecture \& surprising depth upper bound

Open Problems

Conjecture: There exist F on m clauses such that any (quasi)polynomial size Resolution proof requires depth $\Omega\left(m n^{4}\right)$

One approach...
Can the Ben-Sasson Wigderson size-width relation be balanced?
Problem: Prove or disprove that for any k-CNF F on m clauses a size s Resolution proof \Longrightarrow a depth $O(m)$ and width $k+O(\sqrt{n \log s})$ proof

Win-win situation

Positive resolution: counter example to conjecture \& surprising depth upper bound Negative resolution: (conditional) size/depth tradeoff for monotone circuits

Open Problems

Conjecture: There exist F on m clauses such that any (quasi)polynomial size Resolution proof requires depth $\Omega\left(m n^{4}\right)$

One approach...
Can the Ben-Sasson Wigderson size-width relation be balanced?
Problem: Prove or disprove that for any k-CNF F on m clauses a size s Resolution proof \Longrightarrow a depth $O(m)$ and width $k+O(\sqrt{n \log s})$ proof

Win-win situation

Positive resolution: counter example to conjecture \& surprising depth upper bound
Negative resolution: (conditional) size/depth tradeoff for monotone circuits
Q. Supercritical size/depth tradeoffs for non-monotone circuits?

