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• Several other size/space tradeoffs for various proof systems [R17,BN20,R18]
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Supercritical Tradeoff
When one parameter is restricted, the other is pushed beyond worst-case. 

This work: The first supercritical tradeoff between size and depth. For 


• Resolution — Focus on for today


• -DNF Resolution


• Cutting Planes
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Always a depth  proof — but may have size n 2n
2n

Depth

Many strong proof systems can be balanced: depth can be assumed to be 
logarithmic in size.

— Resolution cannot
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There is a CNF  on  variables such that 


- There is a polynomial size -proof of 


- Any subexponential-size -proof of  must have poly  depth

F n
P F

P F (n) > n

poly(n)

For any Resolution, Res(k), Cutting PlanesP ∈ { }



There is a CNF  on  variables such that 


- There is a weakly exponential size -proof of 


- Any subexponential-size -proof of  has weakly exponential depth

F n
P F

P F

exp(nδ)

For any Resolution, Res(k), Cutting PlanesP ∈ { }
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Π 𝗌𝗂𝗓𝖾(Π) ≤ exp(o(n1−ε/c))
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This Work
Fix any , let  be real-valued parameter that will control our tradeoffε > 0 c ≥ 1

Caveat:  has  many clauses — we’ll come back to this!F nO(c)
A tradeoff between runtime and parallelizability for CDCL
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Our Lifting 
Does the opposite! — Lifts depth lower bounds on a strong proof system to 
(much stronger) depth lower bounds on weak proof system


•  is Resolution


•  is size-bounded Resolution
P
Q

Proof Idea:  
Find a gadget  such that 

1. The number of variables  of  will be much smaller than 

2. Any small-size Resolution proof of  will require the same depth as proving 

g
n F ∘ g N

F ∘ g F
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 Composing will reduce the total number of variables to → n ≪ N

Our gadget will be the XOR function

 … With a twist! F(𝖷𝖮𝖱( ⃗x 1), …, 𝖷𝖮𝖱( ⃗x N))

The variable sets  will no longer be disjoint!⃗x 1, …, ⃗x N

… In fact, we will compose with the Nisan-Wigderson generator!
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(New) Proof of Depth Condensation 
Depth Condensation Theorem: 
Let  be -expanding,  any unsatisfiable formula.  
If  is a resolution proof of  with  then 
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Our proof uses a characterization of resolution depth by Prover-Adversary games
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 Set  arbitrarily — Since  is expanding, setting  doesn’t determine any  → xi G∖ρ xi zj

Restore Expansion: Set the variables in  consistent with  

 By Closure Lemma,  is queried at most  times.

𝖢𝗅(ρ) A
→ A 2w

Each round uses  queries to   we can continue for  rounds!O(w) A ⟹ Ω(d/w)

Adversary strategy for -bounded game on  simulates  as follows:w F ∘ 𝖷𝖮𝖱G A

Upshot: any width  proof of  requires depth  w F ∘ 𝖷𝖮𝖱G Ω(d/w)

Invariant:  is expandingG∖ρ



What about supercritical size/depth tradeoffs for other models of computation?

Open Problems



What about supercritical size/depth tradeoffs for other models of computation?

Open Problems
There are functions which have poly-size monotone circuits but require depth 

      [deRMN+20]
→

Ω(n/logO(1) n)



What about supercritical size/depth tradeoffs for other models of computation?

. Can this be extended to supercritical? Q

Open Problems
There are functions which have poly-size monotone circuits but require depth 

      [deRMN+20]
→

Ω(n/logO(1) n)



What about supercritical size/depth tradeoffs for other models of computation?

. Can this be extended to supercritical? Q
Interpolation: Our tradeoff actually holds for a proof system which is equivalent to 
monotone circuits

Open Problems
There are functions which have poly-size monotone circuits but require depth 

      [deRMN+20]
→

Ω(n/logO(1) n)



What about supercritical size/depth tradeoffs for other models of computation?

. Can this be extended to supercritical? Q
Interpolation: Our tradeoff actually holds for a proof system which is equivalent to 
monotone circuits — Any proof of  is equivalent to a monotone circuit with the 
same topology computing an associated function 

F
fF

Open Problems
There are functions which have poly-size monotone circuits but require depth 

      [deRMN+20]
→

Ω(n/logO(1) n)



What about supercritical size/depth tradeoffs for other models of computation?

. Can this be extended to supercritical? Q
Interpolation: Our tradeoff actually holds for a proof system which is equivalent to 
monotone circuits — Any proof of  is equivalent to a monotone circuit with the 
same topology computing an associated function 

F
fF

Open Problems
There are functions which have poly-size monotone circuits but require depth 

      [deRMN+20]
→

Ω(n/logO(1) n)

 However, the number of variables of  is equal to the number of clauses of  → fF F



What about supercritical size/depth tradeoffs for other models of computation?

. Can this be extended to supercritical? Q
Interpolation: Our tradeoff actually holds for a proof system which is equivalent to 
monotone circuits — Any proof of  is equivalent to a monotone circuit with the 
same topology computing an associated function 

F
fF

Open Problems
There are functions which have poly-size monotone circuits but require depth 

      [deRMN+20]
→

Ω(n/logO(1) n)

 However, the number of variables of  is equal to the number of clauses of  
 Our tradeoffs do not imply supercritical tradeoffs for monotone circuits

→ fF F
⟹



What about supercritical size/depth tradeoffs for other models of computation?

. Can this be extended to supercritical? Q
Interpolation: Our tradeoff actually holds for a proof system which is equivalent to 
monotone circuits — Any proof of  is equivalent to a monotone circuit with the 
same topology computing an associated function 

F
fF

Open Problems
There are functions which have poly-size monotone circuits but require depth 

      [deRMN+20]
→

Ω(n/logO(1) n)

 However, the number of variables of  is equal to the number of clauses of  
 Our tradeoffs do not imply supercritical tradeoffs for monotone circuits

→ fF F
⟹
Conjecture: There exist  on  clauses such that any (quasi)polynomial size 
Resolution proof requires depth 

F m
Ω(mn4)



What about supercritical size/depth tradeoffs for other models of computation?

. Can this be extended to supercritical? Q
Interpolation: Our tradeoff actually holds for a proof system which is equivalent to 
monotone circuits — Any proof of  is equivalent to a monotone circuit with the 
same topology computing an associated function 

F
fF

Open Problems
There are functions which have poly-size monotone circuits but require depth 

      [deRMN+20]
→

Ω(n/logO(1) n)

 However, the number of variables of  is equal to the number of clauses of  
 Our tradeoffs do not imply supercritical tradeoffs for monotone circuits

→ fF F
⟹
Conjecture: There exist  on  clauses such that any (quasi)polynomial size 
Resolution proof requires depth 

F m
Ω(mn4) Implies supercritical tradeoff→



Conjecture: There exist  on  clauses such that any (quasi)polynomial size 
Resolution proof requires depth 

F m
Ω(mn4)

One approach… 
Can the Ben-Sasson Wigderson size-width relation be balanced? 

Open Problems



Conjecture: There exist  on  clauses such that any (quasi)polynomial size 
Resolution proof requires depth 

F m
Ω(mn4)

One approach… 

Problem: Prove or disprove that for any -CNF  on  clauses 

a size  Resolution proof  a depth  and width  proof

k F m
s ⟹ O(m) k + O( n log s)

Can the Ben-Sasson Wigderson size-width relation be balanced? 

Open Problems



Conjecture: There exist  on  clauses such that any (quasi)polynomial size 
Resolution proof requires depth 

F m
Ω(mn4)

One approach… 

Problem: Prove or disprove that for any -CNF  on  clauses 

a size  Resolution proof  a depth  and width  proof

k F m
s ⟹ O(m) k + O( n log s)

Can the Ben-Sasson Wigderson size-width relation be balanced? 

Positive resolution: counter example to conjecture & surprising depth upper bound

Win-win situation

Open Problems



Conjecture: There exist  on  clauses such that any (quasi)polynomial size 
Resolution proof requires depth 

F m
Ω(mn4)

One approach… 

Problem: Prove or disprove that for any -CNF  on  clauses 

a size  Resolution proof  a depth  and width  proof

k F m
s ⟹ O(m) k + O( n log s)

Can the Ben-Sasson Wigderson size-width relation be balanced? 

Positive resolution: counter example to conjecture & surprising depth upper bound

Negative resolution: (conditional) size/depth tradeoff for monotone circuits

Win-win situation

Open Problems



Conjecture: There exist  on  clauses such that any (quasi)polynomial size 
Resolution proof requires depth 
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One approach… 

Problem: Prove or disprove that for any -CNF  on  clauses 

a size  Resolution proof  a depth  and width  proof

k F m
s ⟹ O(m) k + O( n log s)

Can the Ben-Sasson Wigderson size-width relation be balanced? 

Positive resolution: counter example to conjecture & surprising depth upper bound

Negative resolution: (conditional) size/depth tradeoff for monotone circuits

Win-win situation

. Supercritical size/depth tradeoffs for non-monotone circuits?  Q

Open Problems


