CDCL vs Resolution

Marc Vinyals

DPLL

$$
y \vee z \quad y \vee \bar{z} \quad x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z} \quad \bar{x} \vee \bar{y}
$$

Algorithm 1: DPLL
while not solved do
if conflict then backtrack() else if unit then propagate() else branch()

State: partial assignment

DPLL

$$
\begin{array}{llllll}
y \vee z & y \vee \bar{z} & x \vee \bar{y} \vee z & x \vee \bar{y} \vee \bar{z} & \bar{x} \vee \bar{y}
\end{array}
$$

Algorithm 1: DPLL
 while not solved do
 if conflict then backtrack() else if unit then propagate() else branch()

State: partial assignment

Resolution

- Interpret DPLL run as resolution proof

Resolution

- Interpret DPLL run as resolution proof

$$
\frac{C \vee v \quad D \vee \bar{v}}{C \vee D}
$$

Resolution

- Interpret DPLL run as resolution proof

$$
\frac{C \vee v \quad D \vee \bar{v}}{C \vee D}
$$

- And Resolution \rightarrow DPLL?

Resolution to DPLL

Algorithm 1: DPLL while not solved do	
if conflict then backtrack() else if unit then propagate() else branch on topmost available variable	DPLL can reproduce tree-like resolution proofs with at most $\mathrm{O}(n)$ overhead \# branches in search tree \leq \# branches in proof branch length $\leq n$

Resolution to DPLL

Sometimes $\Omega(n)$ overhead is needed.

- Take complete tautology over $x_{1}, \ldots, x_{\log n}$.
- Replace two variables in every clause with $y_{i, 1}$.
- Add implications $y_{i, j} \rightarrow y_{i, j+1}$.
- Add another complete tautology over $x_{1}, \ldots, x_{\log n}$.

Resolution to DPLL

Sometimes $\Omega(n)$ overhead is needed.

- Take complete tautology over $x_{1}, \ldots, x_{\log n}$.
- Replace two variables in every clause with $y_{i, 1}$.
- Add implications $y_{i, j} \rightarrow y_{i, j+1}$.
- Add another complete tautology over $x_{1}, \ldots, x_{\log n}$.

Notation
$\mathcal{C}(S)=\left\{\bigvee_{i \in S} x_{i}^{b_{i}} \mid b \in\{0,1\}^{S}\right\}=$ all $2^{|S|}$ fullwidth clauses over variables in $\left\{x_{i} \mid i \in S\right\}$

$$
\ell=\log n
$$

Formula

$$
\begin{array}{ll}
C & \text { for } C \in \mathcal{C}([\ell]) \\
C \vee y_{i, 1} & \text { for } C \in \mathcal{C}(S), S \in\binom{[\ell]}{\ell-2}, i \in[\ell] \\
y_{i, j} \rightarrow y_{i, j+1} & \text { for } i \in[\ell], j \in[n]
\end{array}
$$

Resolution to DPLL

Sometimes $\Omega(n)$ overhead is needed.

- Take complete tautology over $x_{1}, \ldots, x_{\log n}$.
- Replace two variables in every clause with $y_{i, 1}$.
- Add implications $y_{i, j} \rightarrow y_{i, j+1}$.
- Add another complete tautology over $x_{1}, \ldots, x_{\log n}$.

Notation
$\mathcal{C}(S)=\left\{\bigvee_{i \in S} x_{i}^{b_{i}} \mid b \in\{0,1\}^{S}\right\}=$ all $2^{|S|}$ fullwidth clauses over variables in $\left\{x_{i} \mid i \in S\right\}$

$$
\ell=\log n
$$

Formula

$$
\begin{array}{ll}
C & \text { for } C \in \mathcal{C}([\ell]) \\
C \vee y_{i, 1} & \text { for } C \in \mathcal{C}(S), S \in\binom{[\ell]}{\ell-2}, i \in[\ell] \\
y_{i, j} \rightarrow y_{i, j+1} & \text { for } i \in[\ell], j \in[n]
\end{array}
$$

- Tree-like proof: branch on variables $x_{1}, \ldots, x_{\log n}$. Size $2^{\log n}=n$.

Resolution to DPLL

Sometimes $\Omega(n)$ overhead is needed.

- Take complete tautology over $x_{1}, \ldots, x_{\log n}$.
- Replace two variables in every clause with $y_{i, 1}$.
- Add implications $y_{i, j} \rightarrow y_{i, j+1}$.
- Add another complete tautology over $x_{1}, \ldots, x_{\log n}$.

Notation
$\mathcal{C}(S)=\left\{\bigvee_{i \in S} x_{i}^{b_{i}} \mid b \in\{0,1\}^{S}\right\}=$ all $2^{|S|}$ fullwidth clauses over variables in $\left\{x_{i} \mid i \in S\right\}$
$\ell=\log n$
Formula

$$
\begin{array}{ll}
C & \text { for } C \in \mathcal{C}([\ell]) \\
C \vee y_{i, 1} & \text { for } C \in \mathcal{C}(S), S \in\binom{[\ell]}{\ell-2}, i \in[\ell] \\
y_{i, j} \rightarrow y_{i, j+1} & \text { for } i \in[\ell], j \in[n]
\end{array}
$$

- Tree-like proof: branch on variables $x_{1}, \ldots, x_{\log n}$.

Size $2^{\log n}=n$.

- DPLL run: branch on variables $x_{1}, \ldots, x_{\log n-2}$, propagate all $y_{i, j}$, branch on $x_{\log n-1}, x_{\log n}$. Size $2^{\log n} \cdot n \log n \simeq n^{2}$.

DPLL

$$
\begin{array}{llllll}
y \vee z & y \vee \bar{z} & x \vee \bar{y} \vee z & x \vee \bar{y} \vee \bar{z} & \bar{x} \vee \bar{y}
\end{array}
$$

Algorithm 1: DPLL
 while not solved do
 if conflict then backtrack() else if unit then propagate() else branch()

State: partial assignment

CDCL

$$
y \vee z \quad y \vee \bar{z} \quad x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z} \quad \bar{x} \vee \bar{y}
$$

Algorithm 2: CDCL
while not solved do
if conflict then learn()
else if unit then propagate()
else
maybe forget()
maybe restart()
branch()

State: partial assignment
\& learned clauses

Resolution

- Interpret CDCL run as resolution proof

Resolution

- Interpret CDCL run as resolution proof

$$
\frac{C \vee v \quad D \vee \bar{v}}{C \vee D}
$$

CDCL vs Resolution

- CDCL implicit proofs are in resolution form
- DPLL proofs only in weaker "tree-like" resolution form
- There are formulas with polynomial resolution proofs but all tree-like proofs are exponential
- Is CDCL as powerful as general resolution?

CDCL vs Resolution

- CDCL implicit proofs are in resolution form
- DPLL proofs only in weaker "tree-like" resolution form
- There are formulas with polynomial resolution proofs but all tree-like proofs are exponential
- Is CDCL as powerful as general resolution?
- Partial results in 2000s

> [Beame, Kautz, Sabharwal '04] [Van Gelder '05]
> [Hertel, Bacchus, Pitassi, Van Gelder '08]
> [Buss, Hoffmann, Johannsen'08]

CDCL vs Resolution

- CDCL implicit proofs are in resolution form
- DPLL proofs only in weaker "tree-like" resolution form
- There are formulas with polynomial resolution proofs but all tree-like proofs are exponential
- Is CDCL as powerful as general resolution?
- Partial results in 2000 s
[Beame, Kautz, Sabharwal '04] [Van Gelder'05]
[Hertel, Bacchus, Pitassi, Van Gelder '08]
[Buss, Hoffmann, Johannsen '08]
- Yes (under natural model)
[Pipatsrisawat, Darwiche '09]
[Atserias, Fichte, Thurley '09]
[Beyersdorff, Böhm '21]

CDCL equivalent to Resolution: Results

Theorem

With non-deterministic variable decisions, CDCL can efficiently find resolution proofs

Theorem

[Atserias, Fichte, Thurley '09]
With random variable decisions, CDCL can efficiently find bounded-width resolution proofs

CDCL equivalent to Resolution: Results

Theorem
[Pipatsrisawat, Darwiche '09]
With non-deterministic variable decisions, CDCL can efficiently find reproduce resolution proofs

Theorem

[Atserias, Fichte, Thurley '09]
With random variable decisions, CDCL can efficiently find bounded-width resolution proofs

CDCL equivalent to Resolution: Simulation

- Derivation $\pi=C_{1}, \ldots, C_{t}$.
- Goal: learn every clause $C_{i} \in \pi$.

CDCL equivalent to Resolution: Simulation

- Derivation $\pi=C_{1}, \ldots, C_{t}$.
- Goal: leart absorb every clause $C_{i} \in \pi$.
- C absorbed if learning C does not enable more unit propagations.

CDCL equivalent to Resolution: Simulation

- Derivation $\pi=C_{1}, \ldots, C_{t}$.
- Goal: learn absorb every clause $C_{i} \in \pi$.
- C absorbed if learning C does not enable more unit propagations.

Example
$x \vee y \vee z \quad x \vee y \vee \bar{z}$
$x \vee y$ not absorbed:

- if $x=0$ then would propagate y, but DB does not.

CDCL equivalent to Resolution: Simulation

- Derivation $\pi=C_{1}, \ldots, C_{t}$.
- Goal: learh absorb every clause $C_{i} \in \pi$.
- C absorbed if learning C does not enable more unit propagations.

Example
$x \vee y \vee z \quad x \vee y \vee \bar{z}$
$x \vee y$ not absorbed:

- if $x=0$ then would propagate y, but DB does not.

$$
x \vee z \quad y \vee z \quad x \vee y \vee \bar{z}
$$

$x \vee y$ is absorbed:

- if $x=0$ then propagate $z=1$ and $y=1$;
- if $y=0$ then propagate $z=1$ and $x=1$.

CDCL equivalent to Resolution: Simulation

- Derivation $\pi=C_{1}, \ldots, C_{t}$.
- Goal: learh absorb every clause $C_{i} \in \pi$.
- C absorbed if learning C does not enable more unit propagations.

```
Algorithm 3: Simulation
for }\mp@subsup{C}{i}{}\in\pi\mathrm{ do
    while Ci not absorbed do
        if conflict then
        learn()
        restart()
    else if unit then propagate()
        else assign a literal in C}\mp@subsup{C}{i}{}\mathrm{ to false
```


CDCL equivalent to Resolution: Assumptions

```
for }\mp@subsup{C}{i}{}\in\pi\mathrm{ do
    while C }\mp@subsup{C}{i}{}\mathrm{ not absorbed do
        if conflict then
        learn()
        restart()
    else if unit then propagate()
    else assign a literal in C}\mp@subsup{C}{i}{}\mathrm{ to false
    restart()
```

- Optimal variable choices
- Clauses not thrown away
- Frequent restarts
- Standard learning

CDCL equivalent to Resolution: Assumptions

```
for }\mp@subsup{C}{i}{}\in\pi\mathrm{ do
    while C }\mp@subsup{C}{i}{}\mathrm{ not absorbed do
        if conflict then
        learn()
        restart()
    else if unit then propagate()
    else assign a literal in C C to false
    restart()
```

- Optimal variable choices
- Clauses not thrown away
- Frequent restarts
- Standard learning

CDCL equivalent to Resolution: Assumptions

```
for }\mp@subsup{C}{i}{}\in\pi\mathrm{ do
    while C C not absorbed do
        if conflict then
        learn()
        restart()
    else if unit then propagate()
    else assign a literal in C C to false
    restart()
```

- Optimal variable choices
- Clauses not thrown away
- Frequent restarts
- Standard learning

CDCL equivalent to Resolution: Assumptions

```
for }\mp@subsup{C}{i}{}\in\pi\mathrm{ do
    while C}\mp@subsup{C}{i}{}\mathrm{ not absorbed do
        if conflict then
        learn()
        restart()
    else if unit then propagate()
    else assign a literal in C C to false
    restart()
```

- Optimal variable choices
- Clauses not thrown away
- Frequent restarts
- Standard learning

CDCL equivalent to Resolution: Assumptions

```
for }\mp@subsup{C}{i}{}\in\pi\mathrm{ do
    while C}\mp@subsup{C}{i}{}\mathrm{ not absorbed do
        if conflict then
        learn()
        restart()
    else if unit then propagate()
    else assign a literal in C}\mp@subsup{C}{i}{}\mathrm{ to false
    restart()
```

- Optimal variable choices
- Clauses not thrown away
- Frequent restarts
- Standard learning
5hn

CDCL equivalent to Resolution: Assumptions

```
for }\mp@subsup{C}{i}{}\in\pi\mathrm{ do
    while C }\mp@subsup{C}{i}{}\mathrm{ not absorbed do
        if conflict then
        learn()
        restart()
    else if unit then propagate()
    else assign a literal in C C to false
    restart()
```

- Optimal variable choices
- Clauses not thrown away
- Frequent restarts
- Standard learning

Branching

Optimal variable choices are needed

- No deterministic algorithm simulates resolution unless FPT hierarchy collapses.
[Alekhnovich, Razborov '01]
- No deterministic algorithm simulates resolution unless $P=N P$.

Branching

Optimal variable choices are needed

- No deterministic algorithm simulates resolution unless FPT hierarchy collapses.
[Alekhnovich, Razborov '01]
- No deterministic algorithm simulates resolution unless $P=N P$.
[Atserias, Müller '19]
- CDCL with any static order exponentially worse than resolution.
[Mull, Pang, Razborov '19]
- CDCL with VSIDS and similar heuristics exponentially worse than resolution.
n

CDCL equivalent to Resolution: Assumptions

```
for }\mp@subsup{C}{i}{}\in\pi\mathrm{ do
    while C C not absorbed do
        if conflict then
        learn()
        restart()
    else if unit then propagate()
    else assign a literal in C}\mp@subsup{C}{i}{}\mathrm{ to false
    restart()
```

- Optimal variable choices
- Clauses not thrown away
- Frequent restarts
- Standard learning

Throwing Clauses Away

- With nondeterministic erasures enough to keep only $n \ll L$ clauses in memory.
[Esteban, Torán '01]
- But more are needed to simulate resolution:
- Keeping $<n$ clauses can exponentially blow-up runtime.
[Ben Sasson, Nordström '11]
- Keeping $\ll n^{k}$ clauses can superpolynomially blow-up runtime.
[Beame, Beck, Impagliazzo '12; Beck, Nordström, Tang '13]

Throwing Clauses Away

- With nondeterministic erasures enough to keep only $n \ll L$ clauses in memory.
[Esteban, Torán '01]
- But more are needed to simulate resolution:
- Keeping $<n$ clauses can exponentially blow-up runtime.
[Ben Sasson, Nordström '11]
- Keeping $\ll n^{k}$ clauses can superpolynomially blow-up runtime.
[Beame, Beck, Impagliazzo '12; Beck, Nordström, Tang '13]
- Keeping only narrow clauses can exponentially blow-up runtime.
[Thapen '16]
- What about clauses with low LBD?

CDCL equivalent to Resolution: Assumptions

```
for }\mp@subsup{C}{i}{}\in\pi\mathrm{ do
    while C C not absorbed do
        if conflict then
        learn()
        restart()
    else if unit then propagate()
    else assign a literal in C}\mp@subsup{C}{i}{}\mathrm{ to false
    restart()
```

- Optimal variable choices
- Clauses not thrown away
- Frequent restarts
- Standard learning

Frequent Restarts

- Does useful work happen between restarts?

Frequent Restarts

- Does useful work happen between restarts?
- CDCL without restarts and non-greedy UP/conflicts simulates resolution.
[Beame, Kautz, Sabharwal '04]
- CDCL without restarts and preprocessing simulates resolution.
[Hertel, Bacchus, Pitassi, Van Gelder '08]

Frequent Restarts

- Does useful work happen between restarts?
- CDCL without restarts and non-greedy UP/conflicts simulates resolution.
[Beame, Kautz, Sabharwal '04]
- CDCL without restarts and preprocessing simulates resolution.
[Hertel, Bacchus, Pitassi, Van Gelder '08]
- CDCL without restarts between regular and standard resolution.

CDCL and Regular Resolution

- Regular resolution: do not resolve a variable twice on same path.

$$
\mathrm{CDCL} \equiv \text { Res }
$$

$\stackrel{\text { No }}{\text { restarts }}$

Reg Res

CDCL and Regular Resolution

- Regular resolution: do not resolve a variable twice on same path.
- Regular resolution exponentially weaker than general. (Exist formulas with short proofs but exponentially long regular proofs)

CDCL \equiv Res
 $$
\begin{aligned} & \text { No } \\ & \text { restarts } \end{aligned}
$$

CDCL and Regular Resolution

- Regular resolution: do not resolve a variable twice on same path.

CDCL and Regular Resolution

- Regular resolution: do not resolve a variable twice on same path.

CDCL \equiv Res

- Regular resolution exponentially weaker than general.
(Exist formulas with short proofs but exponentially long regular proofs)
- Pool resolution \simeq CDCL w/o restarts. [Van Gelder'05]
- Pool res \geq Regular res \Rightarrow Formulas that separate general and regular are good candidates to separate general and pool.
- All such formulas easy for pool resolution.

$$
\begin{array}{r}
\text { [Bonet, Buss, Johannsen '12] } \\
\text { [Buss, Kołodziejczyk '14] }
\end{array}
$$

Reg Res

CDCL and Regular Resolution

- Regular resolution: do not resolve a variable twice on same path.

CDCL \equiv Res

- Regular resolution exponentially weaker than general.
(Exist formulas with short proofs but exponentially long regular proofs)
- Pool resolution \simeq CDCL w/o restarts. [Van Gelder '05]
- Pool res \geq Regular res \Rightarrow Formulas that separate general and regular are good candidates to separate general and pool.
- All such formulas easy for pool resolution.

$$
\begin{array}{r}
\text { [Bonet, Buss, Johannsen '12] } \\
\text { [Buss, Kołodziejczyk '14] }
\end{array}
$$

- Formula with CDCL proof of length L but requires $L+1$ w/o restarts?

Reg Res

CDCL equivalent to Resolution: Assumptions

```
for }\mp@subsup{C}{i}{}\in\pi\mathrm{ do
    while C C not absorbed do
        if conflict then
        learn()
        restart()
    else if unit then propagate()
    else assign a literal in C}\mp@subsup{C}{i}{}\mathrm{ to false
    restart()
```

- Optimal variable choices
- Clauses not thrown away
- Frequent restarts
- Standard learning

Learning

- Any asserting learning scheme works.
- C asserting if unit after backtracking.
- 1UIP is asserting.

Learning

- Any asserting learning scheme works.
- C asserting if unit after backtracking.
- 1UIP is asserting.
- Less overhead with decision learning scheme.
- Is decision faster than IUIP?
- How much overhead is needed?

Merge Resolution

- A resolution step is a merge if C and D share a literal.

Merge	Not a merge
$x \vee y \vee z \quad x \vee y \vee \bar{z}$	
$x \vee y$	$\frac{x \vee z \quad y \vee \bar{z}}{x \vee y}$

- Merge resolution: at least one premise either axiom or merge.

Merge Resolution

- A resolution step is a merge if C and D share a literal.

Merge	Not a merge
$x \vee y \vee z \quad x \vee y \vee \bar{z}$	
$x \vee y$	$\frac{x \vee z \quad y \vee \bar{z}}{x \vee y}$

- Merge resolution: at least one premise either axiom or merge.
- Merge resolution 2.0: only reuse merges.
- 1UIP produces merge resolution proofs.
- Merge resolution can simulate standard resolution with $O(n)$ overhead.
- And $\Omega(n)$ overhead sometimes needed.
[Fleming, Ganesh, Kolokolova, Li, V]

Take Home

- CDCL equivalent to Resolution
- But only under assumptions, not all reasonable

Take Home

- CDCL equivalent to Resolution
- But only under assumptions, not all reasonable

Open Problems

- CDCL-specific results about space?
- Are restarts important?
- How much overhead do we need?

Take Home

- CDCL equivalent to Resolution
- But only under assumptions, not all reasonable

Open Problems

- CDCL-specific results about space?
- Are restarts important?
- How much overhead do we need?

Thanks!

