# MaxSAT Resolution and SubCube Sums 

Meena Mahajan

The Institute of Mathematical Sciences, Homi Bhabha National Institute, Chennai, India.

Joint work with Yuval Filmus, Gaurav Sood, Marc Vinyals Satisfiability: Theory, Practice, and Beyond - Reunion 14-17 June 2022

## Resolution

- The rule: From $(C \vee x)$ and $(D \vee \neg x)$, infer $C \vee D$.
- A refutation of a propositional CNF formula $F$ :

A sequence $C_{1}, C_{2}, \ldots, C_{t}$ where
$C_{t}=\square$, and for each $i \in[t]$, either $C_{i} \in F$ or $C_{i}$ is inferred from $C_{j}, C_{k}$ for some $j, k<i$.

- Sequence $F_{0}, F_{1}, F_{2}, \ldots F_{t}$ where $F_{0}=F$, and for each $i \in[t], F_{i}=F_{i-1} \cup\left\{C_{i}\right\}$.
- The invariant: Every assignment satisfying $F_{i-1}$ also satisfies $F_{i}$.
- $\square \in F_{t}$, so no assignment satisfies $F_{t}$, so $F_{t}$ unsat, so $F_{0}=F$ unsat.


## Certifying MaxSAT values

- For CNF formula $F$, number $k$, Goal: show that every assignment falsifes at least $k$ clauses.
- Produce a sequence $F_{0}, F_{1}, \ldots, F_{t}$ of multisets of clauses.
- Desired invariant: For every assignment $\alpha$, number of clauses falsified in $F_{i-1}$ equals number of clauses falsified in $F_{i}$.

$$
\operatorname{viol}_{F_{i-1}}(\alpha)=\operatorname{viol}_{F_{i}}(\alpha)
$$

- Desired target: $F_{t}$ has at least $k$ copies of $\square$.
- Resolution does not maintain this invariant. The MaxSAT resolution rule, [BonetLevyManyá 2007], does.


## The MaxSat Resolution Rule

Rearrange cubes of falsifying assignments.


## The MaxSat Resolution Rule

$$
\begin{aligned}
& x \vee a_{1} \vee \ldots \vee a_{s} \\
& (x \vee A) \\
& \bar{x} \vee b_{1} \vee \ldots \vee b_{t} \\
& a_{1} \vee \ldots \vee a_{s} \vee b_{1} \vee \ldots \vee b_{t} \\
& x \vee A \vee \bar{b}_{1} \\
& x \vee A \vee b_{1} \vee \bar{b}_{2} \\
& \left.x \vee A \vee b_{1} \vee \ldots \vee b_{t-1} \vee \bar{b}_{t}\right) \\
& \bar{x} \vee B \vee \bar{a}_{1} \\
& \bar{x} \vee B \vee a_{1} \vee \bar{a}_{2} \\
& \left.\bar{x} \vee B \vee a_{1} \vee \ldots \vee a_{s-1} \vee \bar{a}_{s}\right) \\
& \text { (weakenings of } x \vee A \text { ) } \\
& \text { (weakenings of } \bar{x} \vee B \text { ) }
\end{aligned}
$$

## A MaxSat Resolution derivation

- A sequence $F_{0}, F_{1}, \ldots, F_{t}$ of multisets of clauses.
- $F_{0}=F$.
- For $i \in[t], F_{i}$ obtained from $F_{i-1}$ by applying MaxSAT resolution rule, replacing the antecedents by the consequents.


## A MaxSat Resolution derivation

- A sequence $F_{0}, F_{1}, \ldots, F_{t}$ of multisets of clauses.
- $F_{0}=F$.
- For $i \in[t], F_{i}$ obtained from $F_{i-1}$ by applying MaxSAT resolution rule, replacing the antecedents by the consequents.

$$
\bar{x} \vee y
$$

$\bar{x} \vee \bar{y} \vee z$
$\bar{y} \vee \bar{z}$

## A MaxSat Resolution derivation

- A sequence $F_{0}, F_{1}, \ldots, F_{t}$ of multisets of clauses.
- $F_{0}=F$.
- For $i \in[t], F_{i}$ obtained from $F_{i-1}$ by applying MaxSAT resolution rule, replacing the antecedents by the consequents.

$\bar{y} \vee \bar{z}$


## A MaxSat Resolution derivation

- A sequence $F_{0}, F_{1}, \ldots, F_{t}$ of multisets of clauses.
- $F_{0}=F$.
- For $i \in[t], F_{i}$ obtained from $F_{i-1}$ by applying MaxSAT resolution rule, replacing the antecedents by the consequents.



## A MaxSat Resolution derivation

- A sequence $F_{0}, F_{1}, \ldots, F_{t}$ of multisets of clauses.
- $F_{0}=F$.
- For $i \in[t], F_{i}$ obtained from $F_{i-1}$ by applying MaxSAT resolution rule, replacing the antecedents by the consequents.



## A MaxSat Resolution derivation

- A sequence $F_{0}, F_{1}, \ldots, F_{t}$ of multisets of clauses.
- $F_{0}=F$.
- For $i \in[t], F_{i}$ obtained from $F_{i-1}$ by applying MaxSAT resolution rule, replacing the antecedents by the consequents.



## The MaxSat Weakening Rule

- Recall invariant to be maintained: number of falsified clauses preserved.
- Usual weakening not sound. Instead:
- Replace a clause $A$ by the two clauses $A \vee x$ and $A \vee \bar{x}$.


## The MaxSat Weakening Rule

- Recall invariant to be maintained: number of falsified clauses preserved.
- Usual weakening not sound. Instead:
- Replace a clause $A$ by the two clauses $A \vee x$ and $A \vee \bar{x}$.
- Note: derivations are reversible.

From $F_{i}$ we can obtain $F_{i-1}$ through a sequence of MaxSAT resolution and MaxSAT weakening rules.

## MaxSAT Resolution

- MaxSAT Resolution sound and complete for certifying MaxSAT value. [BonetLevyManyá 2007].
- In practice, MaxSAT solvers don't really use this rule directly.
- So why is it interesting?


## Certifying Unsatisfiability

- Resolution can certify unsatisfiability.
- Using MaxSAT Resolution - overkill?
- Interesting things can happen if we do preprocessing.
- Encode $F$ into dualRailHorn $F^{\prime}$; then $\operatorname{maxSAT}\left(F^{\prime}\right) \geq n$; and $F$ sat iff $\operatorname{maxSAT}\left(F^{\prime}\right) \leq n$.
- weighted DualRailMaxSAT p-simulates general Resolution. [Bonet, Buss,Ignatiev,Marques-Silvao 2018]:
- Interesting things can happen if we allow arbitrary positive weights: It simulates Resolution and is equivalent to Circular Resolution. [BonetLevy 2020].
- Interesting things can happen if we allow negative weights and virtual creation - add $(A, w)$ and $(A,-w)$ to the current multiset. It simulates Resolution and is equivalent to Circular Resolution. [LarrossaRollon 2020].
- Understanding unweighted MaxSAT resolution and weakening better can help lead to more such extensions.


## MaxRes, MaxResW

- We consider two proof systems for certifying unsatisfiability: MaxRes: only MaxSAT Resolution, and MaxResW: MaxSAT Resolution and MaxSAT Weakening. (All rules unweighted)
- Sound - invariant maintained at each stage
- Complete - because complete even for certifying MaxSAT value
- p-simulated by Resolution: add instead of replace clauses.


## MaxResW p-simulates TreeRes



## MaxResW p-simulates TreeRes



## MaxResW p-simulates TreeRes



Open: Is the weakening rule really necessary?

## MaxResW better than TreeRes

## Theorem

TreeRes does not simulate MaxRes

- Pebbling formulas on single-sink DAGs: easy in TreeRes
- Compose with $\mathrm{OR}_{2}$ : hard for TreeRes on Pyramid Graphs [Ben-SassonImpagliazzoWigderson 2004].


## MaxResW better than TreeRes

## Theorem

TreeRes does not simulate MaxRes

- Pebbling formulas on single-sink DAGs: easy in TreeRes
- Compose with $\mathrm{OR}_{2}$ : hard for TreeRes on Pyramid Graphs [Ben-SassonImpagliazzoWigderson 2004].
- Composed formula easy in MaxRes/MaxResW?? We don't know.


## MaxResW better than TreeRes

## Theorem

TreeRes does not simulate MaxRes

- Pebbling formulas on single-sink DAGs: easy in TreeRes
- Compose with $\mathrm{OR}_{2}$ : hard for TreeRes on Pyramid Graphs [Ben-SassonImpagliazzoWigderson 2004].
- Composed formula easy in MaxRes/MaxResW?? We don't know.
- Tweak the composed formulas - add some hint clauses.
- Show: now short MaxRes refutation.
- Show: still hard for TreeRes. use game, 1-query complexity, pebbling

TreeResSz $(F \circ O R) \geq 2^{\text {DelayerScore on } F \circ O R}$

$$
\begin{aligned}
& \geq 2^{D T_{1}(\text { SearchF })} \\
& \geq 2^{\text {peb }(G)} \\
& \geq 2^{\text {PyramidHeight }}
\end{aligned}
$$

$$
\text { (if } F=\operatorname{PebHint}(G))
$$

$$
(\text { for } G=P y r,[\text { Cook 1974] })
$$

## Relating to Resolution

```
MaxResE
DRMaxSAT
            V
    Res
            MaxResW
    TreeRes ......... MaxRes
```


## Relating to Resolution

```
MaxResE
DRMaxSAT
    `
    Res
    MaxResW
    TreeRes ........ * MaxRes
```

- Does MaxRes, or even MaxResW, simulate Res? We wouldn't expect this, but it seemed hard to prove.
- Need a lower bound technique that is specific to MaxResW, not inherited from Res.


## Relating to Resolution

```
MaxResE
DRMaxSAT
    `
    Res
    MaxResW
    TreeRes ........ MaxRes
```

- Does MaxRes, or even MaxResW, simulate Res? We wouldn't expect this, but it seemed hard to prove.
- Need a lower bound technique that is specific to MaxResW, not inherited from Res.
- Observation: MaxResW refutation $F_{0}, F_{1}, \ldots, F_{t}$ where $\square \in F_{t}$. Let $G=F_{t}$ minus one copy of $\square$.
- For every assignment $\alpha, \operatorname{viol}_{F_{0}}(\alpha)=\operatorname{viol}_{F_{t}}(\alpha)=1+\operatorname{viol}_{G}(\alpha)$.
- $|G|$ is polynomial in $|F|, t$.

Showing that every such $G$ is large gives a MaxResW lower bound.

## The SubCube Sums Proof System

A proof that $F$ is unsatisfiable: a multiset $G$ of clauses such that

$$
\forall \alpha: \operatorname{viol}_{F}(\alpha)=1+\operatorname{viol}_{G}(\alpha)
$$

## The SubCube Sums Proof System

A proof that $F$ is unsatisfiable: a multiset $G$ of clauses such that

$$
\forall \alpha: \operatorname{viol}_{F}(\alpha)=1+\operatorname{viol}_{G}(\alpha)
$$



## The SubCube Sums Proof System

A proof that $F$ is unsatisfiable: a multiset $G$ of clauses such that

$$
\forall \alpha: \operatorname{viol}_{F}(\alpha)=1+\operatorname{viol}_{G}(\alpha) .
$$



## The SubCube Sums Proof System (cont'd)

- A proof that $F$ is unsatisfiable: a multiset $G$ of clauses such that

$$
\forall \alpha: \operatorname{viol}_{F_{0}}(\alpha)=\operatorname{viol}_{F_{t}}(\alpha)=1+\operatorname{viol}_{G}(\alpha)
$$

## The SubCube Sums Proof System (cont'd)

- A proof that $F$ is unsatisfiable: a multiset $G$ of clauses such that

$$
\forall \alpha: \operatorname{viol}_{F_{0}}(\alpha)=\operatorname{viol}_{F_{t}}(\alpha)=1+\operatorname{viol}_{G}(\alpha)
$$

- Not easy to verify the proof.
(Possible in randomized polynomial time.)
- Not important if we only use such proofs for MaxResW lower bounds.


## The SubCube Sums Proof System (cont'd)

- A proof that $F$ is unsatisfiable: a multiset $G$ of clauses such that

$$
\forall \alpha: \operatorname{viol}_{F_{0}}(\alpha)=\operatorname{viol}_{F_{t}}(\alpha)=1+\operatorname{viol}_{G}(\alpha) .
$$

- Not easy to verify the proof. (Possible in randomized polynomial time.)
- Not important if we only use such proofs for MaxResW lower bounds.
- Sound: almost by definition
- Complete: every MaxRes refutation gives a SubCubeSums proof.
- SubCubeSums lower bound $\Longrightarrow$ MaxResW lower bound, not Res lower bound.


## What's easy for SubCubeSums

- Everything easy for MaxResW, in particular for TreeRes.


## What's easy for SubCubeSums

- Everything easy for MaxResW, in particular for TreeRes.
- The SubsetCardinality Formulas.

A bipartite graph has a subgraph where the left-degrees are bounded above, the right-degrees are bounded below, and the sums are not the same obviously Unsat.
On expander graphs, hard for Res and MaxResW [MiksaNordstrom 2014].
Easy for SubCubeSums.

## What's easy for SubCubeSums

- Everything easy for MaxResW, in particular for TreeRes.
- The SubsetCardinality Formulas.

A bipartite graph has a subgraph where the left-degrees are bounded above, the right-degrees are bounded below, and the sums are not the same obviously Unsat.
On expander graphs, hard for Res and MaxResW [MiksaNordstrom 2014].
Easy for SubCubeSums.

- The PigeonHole Principle Formulas $\mathrm{PHP}_{n}^{n+1}$. Upper bound implicit in [LarrosaRollon 2020], but proved via negative weighted MaxSAT resolution.
We give direct combinatorial proof.


## What's hard for SubCubeSums

The Tseitin Contradictions on expander graphs.
SubCubeSums proofs must have exponential size.

These formulas are also hard for Res.
So not useful for separating Res from MaxResW.

## A Lower Bound Technique for SubCubeSums

## Theorem (Lifting)

If $d$ is the minimum width of any SubCubeSums refutation of $F$, then any SubCubeSums refutation of $F \circ X O R$ has size $\exp (\Omega(d))$.

Outline:

- $\operatorname{viol}_{F}\left(\alpha_{1} \oplus \alpha_{2}\right)=\operatorname{viol}_{F \circ \oplus}\left(\alpha_{1}, \alpha_{2}\right)$. Hence
- $\operatorname{viol}_{F \circ \oplus}-1=\left(\left(\operatorname{viol}_{F}\right) \circ \oplus\right)-1=\left(\operatorname{viol}_{F}-1\right) \circ \oplus$.
- A "size-width" relation holds for SubCubeSums:
[SubCubeSums width for $F$ ] is
$O(\log [$ SubCubeSums size for $F \circ X O R])$.


## Recent Developments

- A width lower bound for SubCubeSums; [FlemingGöösGrosserRobere 2022].
- The hard formula $F$ is a specific kind of pebbling contradiction. $F \circ X O R$ is easy to refute in Resolution.
- Thus, Resolution is strictly stronger than MaxResW, and incomparable with SubCubeSums.
- Another close variant of MaxRes defined and separated from Resolution; [GöösHollenderJainMaystrePiresRobereTao 2022].


## Relations between proof systems



## Relations between proof systems



## SubCubeSums: An Algebraic View

- $\operatorname{viol}_{F}(\alpha)=\operatorname{viol}_{G}(\alpha)+1$.


## SubCubeSums: An Algebraic View

- $\operatorname{viol}_{F}(\alpha)=\operatorname{viol}_{G}(\alpha)+1$.
- Encode clauses as polynomials. $(x \vee \neg y \vee z \rightarrow x(1-y) z)$ $-p_{F}(\alpha)+p_{G}(\alpha)+1=0$ for all $\alpha \in\{0,1\}^{n}$.


## SubCubeSums: An Algebraic View

- $\operatorname{viol}_{F}(\alpha)=\operatorname{viol}_{G}(\alpha)+1$.
- Encode clauses as polynomials. $(x \vee \neg y \vee z \rightarrow x(1-y) z)$ $-p_{F}(\alpha)+p_{G}(\alpha)+1=0$ for all $\alpha \in\{0,1\}^{n}$.
- Polynomials multilinear, hence this is an identity: $-p_{F}+p_{G}+1 \equiv 0$. A restricted Sherali-Adams proof!
- Many negated literals in a clause $\Longrightarrow$ too many monomials. Standard approach: use twin variables $x, \bar{x}$ and axioms $x+\bar{x}=1$.
- $-p_{F}+p_{G}+1+($ a polynomial combination of Boolean axioms $) \equiv 0$.

Algebraic Measures for SubCubeSums

$$
\begin{aligned}
& -P_{F}+P_{G}+1+\left(\begin{array}{c}
\text { polynomid } \\
\text { comblimation } \\
\text { of Sodery } \\
\text { wina axious }
\end{array}\right) \equiv 0 \\
& -P_{F}+P_{G}+1+\sum_{j} q_{j}\left(1-x_{j}-\bar{x}_{j}\right) \equiv 0
\end{aligned}
$$

Degree
\# Moxmials

$$
\begin{aligned}
M & =M_{1}+M_{2}+1+M_{3} \\
& =|F|+|G|+1+M_{3}
\end{aligned}
$$

$$
\text { Cotal } \operatorname{Coff} \operatorname{Size}\left(U_{\text {nary }}\right)=|F|+|G|+1+S_{3}
$$

Algebraic Measures for SubCubeSums (cont'd)


- For an SCS proof, SCS size $\leq$ SCS reduced algebraic size $\leq$ SCS algebraic size.
- For any unsat formula,
- Sherali-Adams size $\leq$ unary Sherali-Adams size $\leq$ SCS algebraic size.
- Sherali-Adams degree $\leq$ SCS degree $=\max \{\operatorname{width}(F)$, width $(G)\}$.


## Take-away

- Using the MaxSAT Resolution and MaxSAT weakening rules to certify unsatisfiability:
- no worse than TreeRes.
- on some formulas, exponentially better.
- Key to understanding MaxSAT: rearrangements of Boolean subcubes.
- SubCubeSums proof system:
- simulates and strictly better than MaxSAT resolution,
- incomparable with Resolution.
- can be viewed as a restriction of Sherali-Adams.


## Take-away

- Using the MaxSAT Resolution and MaxSAT weakening rules to certify unsatisfiability:
- no worse than TreeRes.
- on some formulas, exponentially better.
- Key to understanding MaxSAT: rearrangements of Boolean subcubes.
- SubCubeSums proof system:
- simulates and strictly better than MaxSAT resolution,
- incomparable with Resolution.
- can be viewed as a restriction of Sherali-Adams.


## Thank you for listening!

