MaxSAT Resolution and SubCube Sums

Meena Mahajan

The Institute of Mathematical Sciences, Homi Bhabha National Institute, Chennai, India.

《口》《四》《臣》《臣》 三臣

Meena Mahajan

Joint work with Yuval Filmus, Gaurav Sood, Marc Vinyals Satisfiability: Theory, Practice, and Beyond — Reunion 14-17 June 2022

- The rule: From $(C \lor x)$ and $(D \lor \neg x)$, infer $C \lor D$.
- A refutation of a propositional CNF formula F: A sequence C₁, C₂,..., C_t where C_t = □, and for each i ∈ [t], either C_i ∈ F or C_i is inferred from C_j, C_k for some j, k < i.
- Sequence $F_0, F_1, F_2, \dots F_t$ where $F_0 = F$, and for each $i \in [t]$, $F_i = F_{i-1} \cup \{C_i\}$.
- The invariant: Every assignment satisfying F_{i-1} also satisfies F_i .
- $\Box \in F_t$, so no assignment satisfies F_t , so F_t unsat, so $F_0 = F$ unsat.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

- For CNF formula F, number k, Goal: show that every assignment falsifes at least k clauses.
- Produce a sequence F_0, F_1, \ldots, F_t of multisets of clauses.
- Desired invariant: For every assignment α, number of clauses falsified in F_{i-1} equals number of clauses falsified in F_i.

$$\operatorname{viol}_{F_{i-1}}(\alpha) = \operatorname{viol}_{F_i}(\alpha).$$

- Desired target: F_t has at least k copies of \Box .
- Resolution does not maintain this invariant. The MaxSAT resolution rule, [BonetLevyManyá 2007], does.

イロト イ団ト イヨト イヨト 二百

The MaxSat Resolution Rule

Rearrange cubes of falsifying assignments.

Meena Mahajan

メロト メロト メヨト メヨト

The MaxSat Resolution Rule

$$\begin{array}{cccc} x \lor a_{1} \lor \ldots \lor a_{s} & (x \lor A) \\ \overline{x} \lor b_{1} \lor \ldots \lor b_{t} & (\overline{x} \lor B) \\ \hline a_{1} \lor \ldots \lor a_{s} \lor b_{1} \lor \ldots \lor b_{t} & (\text{the "standard resolvent"}) \\ x \lor A \lor \overline{b}_{1} & \\ x \lor A \lor b_{1} \lor \overline{b}_{2} & \\ \vdots & \\ x \lor A \lor b_{1} \lor \ldots \lor b_{t-1} \lor \overline{b}_{t} \end{array} \right\} & (\text{weakenings of } x \lor A) \\ \hline \overline{x} \lor B \lor \overline{a}_{1} & \\ \overline{x} \lor B \lor a_{1} \lor \overline{a}_{2} & \\ \vdots & \\ \overline{x} \lor B \lor a_{1} \lor \ldots \lor a_{s-1} \lor \overline{a}_{s} \end{array} \right\} & (\text{weakenings of } \overline{x} \lor B)$$

_

- A sequence F_0, F_1, \ldots, F_t of **multisets** of clauses.
- $F_0 = F$.
- For $i \in [t]$, F_i obtained from F_{i-1} by applying MaxSAT resolution rule, **replacing** the antecedents by the consequents.

- A sequence F_0, F_1, \ldots, F_t of **multisets** of clauses.
- $F_0 = F$.
- For $i \in [t]$, F_i obtained from F_{i-1} by applying MaxSAT resolution rule, **replacing** the antecedents by the consequents.

$\bar{x} \lor y$	$\overline{x} \lor \overline{y} \lor z$	$\overline{y} \vee \overline{z}$
------------------	---	----------------------------------

- A sequence F_0, F_1, \ldots, F_t of **multisets** of clauses.
- $F_0 = F$.
- For $i \in [t]$, F_i obtained from F_{i-1} by applying MaxSAT resolution rule, **replacing** the antecedents by the consequents.

<ロト < 四ト < 臣 > < 臣 >

- A sequence F_0, F_1, \ldots, F_t of **multisets** of clauses.
- $F_0 = F$.
- For $i \in [t]$, F_i obtained from F_{i-1} by applying MaxSAT resolution rule, **replacing** the antecedents by the consequents.

イロト イヨト イヨト

- A sequence F_0, F_1, \ldots, F_t of **multisets** of clauses.
- $F_0 = F$.
- For $i \in [t]$, F_i obtained from F_{i-1} by applying MaxSAT resolution rule, **replacing** the antecedents by the consequents.

イロト イヨト イヨト

- A sequence F_0, F_1, \ldots, F_t of **multisets** of clauses.
- $F_0 = F$.
- For $i \in [t]$, F_i obtained from F_{i-1} by applying MaxSAT resolution rule, **replacing** the antecedents by the consequents.

- Recall invariant to be maintained: number of falsified clauses preserved.
- Usual weakening not sound. Instead:
- Replace a clause A by the two clauses $A \lor x$ and $A \lor \overline{x}$.

《口》《四》《臣》《臣》 三臣

- Recall invariant to be maintained: number of falsified clauses preserved.
- Usual weakening not sound. Instead:
- Replace a clause A by the two clauses $A \lor x$ and $A \lor \overline{x}$.
- Note: derivations are reversible.
 From F_i we can obtain F_{i-1} through a sequence of MaxSAT resolution and MaxSAT weakening rules.

<ロ> <四> <四> <四> <三</td>

• MaxSAT Resolution sound and complete for certifying MaxSAT value. [BonetLevyManyá 2007].

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ ─ 臣

- In practice, MaxSAT solvers don't really use this rule directly.
- So why is it interesting?

Certifying Unsatisfiability

- Resolution can certify unsatisfiability.
- Using MaxSAT Resolution overkill?
- Interesting things can happen if we do preprocessing.
 - Encode F into dualRailHorn F'; then $\max \operatorname{SAT}(F') \ge n$; and F sat iff $\max \operatorname{SAT}(F') \le n$.
 - weighted DualRailMaxSAT p-simulates general Resolution. [Bonet,Buss,Ignatiev,Marques-Silvao 2018]:
- Interesting things can happen if we allow arbitrary positive weights: It simulates Resolution and is equivalent to Circular Resolution. [BonetLevy 2020].
- Interesting things can happen if we allow negative weights and virtual creation add (A, w) and (A, -w) to the current multiset.
 It simulates Resolution and is equivalent to Circular Resolution.
 [LarrossaRollon 2020].
- Understanding unweighted MaxSAT resolution and weakening better can help lead to more such extensions.

- We consider two proof systems for certifying unsatisfiability: MaxRes: only MaxSAT Resolution, and MaxResW: MaxSAT Resolution and MaxSAT Weakening. (All rules unweighted)
- Sound invariant maintained at each stage
- Complete because complete even for certifying MaxSAT value

イロト イ団ト イヨト イヨト 二百

Meena Mahajan

• *p*-simulated by Resolution: add instead of replace clauses.

MaxResW *p*-simulates TreeRes

590

・ロト ・回 ト ・ ヨト ・ ヨト

MaxResW *p*-simulates TreeRes

イロト イロト イヨト イヨト

MaxResW *p*-simulates TreeRes

Meena Mahajan

イロト イ団ト イヨト イヨト 二百

MaxResW better than TreeRes

Theorem

TreeRes does not simulate MaxRes

- Pebbling formulas on single-sink DAGs: easy in TreeRes
- Compose with OR₂: hard for TreeRes on Pyramid Graphs [Ben-SassonImpagliazzoWigderson 2004].

MaxResW better than TreeRes

Theorem

TreeRes does not simulate MaxRes

- Pebbling formulas on single-sink DAGs: easy in TreeRes
- Compose with OR₂: hard for TreeRes on Pyramid Graphs [Ben-SassonImpagliazzoWigderson 2004].
- Composed formula easy in MaxRes/MaxResW?? We don't know.

→ Ξ → → Ξ →

MaxResW better than TreeRes

Theorem

TreeRes does not simulate MaxRes

- Pebbling formulas on single-sink DAGs: easy in TreeRes
- Compose with OR₂: hard for TreeRes on Pyramid Graphs [Ben-SassonImpagliazzoWigderson 2004].
- Composed formula easy in MaxRes/MaxResW?? We don't know.
- Tweak the composed formulas add some *hint* clauses.
- Show: now short MaxRes refutation.
- Show: still hard for TreeRes. use game, 1-query complexity, pebbling

$$\begin{aligned} \text{TreeResSz}(F \circ OR) &\geq 2^{\text{DelayerScore on } F \circ OR} & [\text{PudImp 2000}] \\ &\geq 2^{DT_1(\text{SearchF})} \\ &\geq 2^{\text{peb}(G)} & (\text{if } F = \text{PebHint}(G)) \\ &\geq 2^{\text{PyramidHeight}} & (\text{for } G = \text{Pyr}, [\text{Cook 1974}]) \end{aligned}$$

Relating to Resolution

Relating to Resolution

- Does MaxRes, or even MaxResW, simulate Res?
 We wouldn't expect this, but it seemed hard to prove.
- Need a lower bound technique that is specific to MaxResW, not inherited from Res.

イロト イポト イヨト ・

Relating to Resolution

- Does MaxRes, or even MaxResW, simulate Res?
 We wouldn't expect this, but it seemed hard to prove.
- Need a lower bound technique that is specific to MaxResW, not inherited from Res.
- Observation: MaxResW refutation F_0, F_1, \ldots, F_t where $\Box \in F_t$. Let $G = F_t$ minus one copy of \Box .
 - For every assignment α , $\operatorname{viol}_{F_0}(\alpha) = \operatorname{viol}_{F_t}(\alpha) = 1 + \operatorname{viol}_{\mathcal{G}}(\alpha)$.
 - |G| is polynomial in |F|, t.

Showing that every such G is large gives a MaxResW lower bound.

The SubCube Sums Proof System

A proof that F is unsatisfiable: a multiset G of clauses such that

```
\forall \alpha : \operatorname{viol}_{F}(\alpha) = 1 + \operatorname{viol}_{G}(\alpha).
```


The SubCube Sums Proof System

A proof that F is unsatisfiable: a multiset G of clauses such that

 $\forall \alpha : \operatorname{viol}_{F}(\alpha) = 1 + \operatorname{viol}_{G}(\alpha).$

 $\equiv \rightarrow$

The SubCube Sums Proof System

A proof that F is unsatisfiable: a multiset G of clauses such that

 $\forall \alpha : \operatorname{viol}_{F}(\alpha) = 1 + \operatorname{viol}_{G}(\alpha).$

Meena Mahajan

イロト イヨト イヨト

The SubCube Sums Proof System (cont'd)

• A proof that F is unsatisfiable: a multiset G of clauses such that

$$\forall \alpha : \operatorname{viol}_{F_0}(\alpha) = \operatorname{viol}_{F_t}(\alpha) = 1 + \operatorname{viol}_{G}(\alpha).$$

The SubCube Sums Proof System (cont'd)

• A proof that F is unsatisfiable: a multiset G of clauses such that

$$\forall \alpha : \operatorname{viol}_{F_0}(\alpha) = \operatorname{viol}_{F_t}(\alpha) = 1 + \operatorname{viol}_{G}(\alpha).$$

- Not easy to verify the proof. (Possible in randomized polynomial time.)
- Not important if we only use such proofs for MaxResW lower bounds.

《口》《四》《臣》《臣》 三臣

• A proof that F is unsatisfiable: a multiset G of clauses such that

$$\forall \alpha : \operatorname{viol}_{F_0}(\alpha) = \operatorname{viol}_{F_t}(\alpha) = 1 + \operatorname{viol}_{G}(\alpha).$$

- Not easy to verify the proof. (Possible in randomized polynomial time.)
- Not important if we only use such proofs for MaxResW lower bounds.
- Sound: almost by definition
- Complete: every MaxRes refutation gives a SubCubeSums proof.
- SubCubeSums lower bound ⇒ MaxResW lower bound, not Res lower bound.

<ロ> <四> <四> <四> <三</td>

• Everything easy for MaxResW, in particular for TreeRes.

- Everything easy for MaxResW, in particular for TreeRes.
- The SubsetCardinality Formulas.

A bipartite graph has a subgraph where the left-degrees are bounded above, the right-degrees are bounded below, and the sums are not the same – obviously Unsat.

<ロ> <四> <四> <四> <三</td>

Meena Mahajan

On expander graphs, hard for Res and $\ensuremath{\mathsf{Max}\mathsf{Res}\mathsf{W}}$

[MiksaNordstrom 2014].

Easy for SubCubeSums.

- Everything easy for MaxResW, in particular for TreeRes.
- The SubsetCardinality Formulas.

A bipartite graph has a subgraph where the left-degrees are bounded above, the right-degrees are bounded below, and the sums are not the same – obviously Unsat.

On expander graphs, hard for Res and MaxResW [MiksaNordstrom 2014].

Easy for SubCubeSums.

 The PigeonHole Principle Formulas PHPⁿ⁺¹. Upper bound implicit in [LarrosaRollon 2020], but proved via negative weighted MaxSAT resolution. We give direct combinatorial proof.

<ロ> <四> <四> <四> <三</td>

The Tseitin Contradictions on expander graphs. SubCubeSums proofs must have exponential size.

These formulas are also hard for Res. So not useful for separating Res from MaxResW.

Theorem (Lifting)

If d is the minimum width of any SubCubeSums refutation of F, then any SubCubeSums refutation of $F \circ XOR$ has size $\exp(\Omega(d))$.

<ロ> <四> <四> <四> <三</td>

Outline:

- $\operatorname{viol}_{F}(\alpha_{1} \oplus \alpha_{2}) = \operatorname{viol}_{F \circ \oplus}(\alpha_{1}, \alpha_{2})$. Hence
- $\operatorname{viol}_{F \circ \oplus} 1 = ((\operatorname{viol}_F) \circ \oplus) 1 = (\operatorname{viol}_F 1) \circ \oplus.$
- A "size-width" relation holds for SubCubeSums: [SubCubeSums width for F] is $O(\log[SubCubeSums size for <math>F \circ XOR])$.

- A width lower bound for SubCubeSums; [FlemingGöösGrosserRobere 2022].
- The hard formula F is a specific kind of pebbling contradiction. $F \circ XOR$ is easy to refute in Resolution.
- Thus, Resolution is strictly stronger than MaxResW, and incomparable with SubCubeSums.
- Another close variant of MaxRes defined and separated from Resolution; [GöösHollenderJainMaystrePiresRobereTao 2022].

イロト イ団ト イヨト イヨト 二百

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

•
$$\operatorname{viol}_{F}(\alpha) = \operatorname{viol}_{G}(\alpha) + 1.$$

- $\operatorname{viol}_{F}(\alpha) = \operatorname{viol}_{G}(\alpha) + 1.$
- Encode clauses as polynomials. $(x \lor \neg y \lor z \to x(1-y)z) p_F(\alpha) + p_G(\alpha) + 1 = 0$ for all $\alpha \in \{0, 1\}^n$.

< ロト < 回 ト < 差 ト < 差 ト 三 差</p>

≣ ∽ < (~ Meena Mahajan

- $\operatorname{viol}_{\mathcal{F}}(\alpha) = \operatorname{viol}_{\mathcal{G}}(\alpha) + 1.$
- Encode clauses as polynomials. $(x \lor \neg y \lor z \to x(1-y)z) p_F(\alpha) + p_G(\alpha) + 1 = 0$ for all $\alpha \in \{0, 1\}^n$.
- Polynomials multilinear, hence this is an identity: $-p_F + p_G + 1 \equiv 0$. A restricted Sherali–Adams proof!
- Many negated literals in a clause ⇒ too many monomials.
 Standard approach: use twin variables x, x̄ and axioms x + x̄ = 1.
- $-p_F + p_G + 1 + (a \text{ polynomial combination of Boolean axioms}) \equiv 0.$

・ロト・日本・モート・モー うへぐ

Algebraic Measures for SubCubeSums

Algebraic Measures for SubCubeSums (cont'd)

- For an SCS proof, SCS size \leq SCS reduced algebraic size \leq SCS algebraic size.
- For any unsat formula,
 - Sherali–Adams size \leq unary Sherali–Adams size \leq SCS algebraic size.
 - Sherali-Adams degree \leq SCS degree $= \max{\{ width(F), width(G) \}}$.

イロト イボト イヨト イヨト 二日

- Using the MaxSAT Resolution and MaxSAT weakening rules to certify unsatisfiability:
 - no worse than TreeRes.
 - on some formulas, exponentially better.
- Key to understanding MaxSAT: rearrangements of Boolean subcubes.

<ロ> <四> <四> <四> <三</td>

- SubCubeSums proof system:
 - simulates and strictly better than MaxSAT resolution,
 - incomparable with Resolution.
 - can be viewed as a restriction of Sherali-Adams.

- Using the MaxSAT Resolution and MaxSAT weakening rules to certify unsatisfiability:
 - no worse than TreeRes.
 - on some formulas, exponentially better.
- Key to understanding MaxSAT: rearrangements of Boolean subcubes.
- SubCubeSums proof system:
 - simulates and strictly better than MaxSAT resolution,
 - incomparable with Resolution.
 - can be viewed as a restriction of Sherali-Adams.

Thank you for listening!

<ロ> <四> <四> <四> <三</td>