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CNF-SAT
Given a CNF formula 𝜙 over variables 𝑥1, … , 𝑥𝑛
Question: Is 𝜙 satisfiable? 

Equivalent Question: Is Pr
𝑎∈ 0,1 𝑛

[𝜙 𝑎 = 1] > 0?  

Is the fraction of satisfying assignments positive?

#CNF-SAT
Given a CNF formula 𝜙 over variables 𝑥1, … , 𝑥𝑛

Question: Compute number of SAT assigns to 𝜙

Equivalent Question: Compute Pr
𝑎∈ 0,1 𝑛

[𝜙 𝑎 = 1]

Determine the exact fraction of satisfying assignments

Complexity:
NP-complete, 

even 3SAT 

#P-complete, 
even #2SAT 



MAJ-SAT
Given a CNF formula 𝜙 over variables 𝑥1, … , 𝑥𝑛
Question: Is Pr

𝑎∈ 0,1 𝑛
[𝜙 𝑎 = 1] ≥ 1/2?

Equivalently: Compute the most significant bit of the 
number of SAT assignments         

MAJ-kSAT
Given a k-CNF formula 𝜙 over variables 𝑥1, … , 𝑥𝑛
Question: Compute MAJ-SAT for 𝜙

PP-complete
[Simon’75,Gill’77]

𝑃𝑃𝑃 = 𝑃#𝑃

Complexity was 
still open!

In some papers, the hardness of MAJ-3SAT and extensions was 
being assumed in order to show hardness for other problems…

[BDK’07] Computing if #SAT 𝝓 ≥ 𝟐𝒏/𝟐 is PP-complete for 3-CNF 𝝓



[CM18]

[PLMZ10]

It seems most people working in the area believed that 
MAJ-3SAT was PP-complete, and that we were just lacking a 

good reduction.



Theorem 2 (THR  - SAT is easy)

Fix any positive integer     and rational                     with 
constant denominator. There is an algorithm which given a 
k-CNF     decides if                      in linear time.

Theorem 1 (MAJ-3SAT is easy)

There is an algorithm which given a 3-CNF     decides 
if                           in linear time.

It turns out MAJ-kSAT is actually easy…



A Variant: Greater-Than-MAJ-SAT

Given a CNF formula 𝜙,  is Pr[𝜙] ≥ 1/2? 

MAJ-SAT

PP-complete

GtMAJ-SAT

PP-complete

GtMAJ-3SAT

P

GtMAJ-4SAT

NP-complete!

Given a CNF formula 𝜙,  is Pr[𝜙] > 1/2? 

Given a 3-CNF 𝜙,  is Pr[𝜙] > 1/2? 

Given a 4-CNF 𝜙,  is Pr[𝜙] > 1/2? 

We prove:



The new formula has strictly more than ½ satisfying 
assignments if and only if 𝜙 is satisfiable!

So GtMAJ-4SAT is NP-hard

Greater-Than-MAJ-4SAT is NP-hard

Given a 3CNF 𝜙 on variables 𝑥1,… , 𝑥𝑛: 
introduce a new variable 𝑦, and add 𝑦 to every clause of 𝜙

It turns out there is also an NP verifier for this problem!

There is a huge difference between MAJ-4SAT and GtMAJ-4SAT 
(assuming P ≠ NP)



Exists-MAJ-SAT

Given a CNF formula 𝜙( Ԧ𝑥, Ԧ𝑦) on vars Ԧ𝑥 and Ԧ𝑦, 
is ∃𝑎 [Pr

𝑏
[𝜙(𝑎, 𝑏)] ≥ 1/2] true? 

EMAJ-SAT

𝑁𝑃𝑃𝑃-complete

EMAJ-kSAT

𝑷 for 𝒌 = 2
𝑵𝑷-complete for 𝒌 ≥ 3

We prove:

Given a k-CNF formula 𝜙( Ԧ𝑥, Ԧ𝑦), 
is ∃𝑎 [Pr

𝑏
[𝜙(𝑎, 𝑏)] ≥ 1/2] true? 

Many other results!



Outline for the Rest

∙ Some Intuition

∙MAJ-3SAT is Easy

∙ Conclusion

∙MAJ-2SAT is Easy 



Some Intuition…
General CNFs

2-CNFs

A single clause may have a high fraction of SAT assignments

A single clause already restricts the fraction considerably

Two “disjoint” clauses restrict the fraction further…

𝜙 = (𝑥1 ∨ ⋯∨ 𝑥𝑛)

𝜙 = 𝑥𝑎 ∨ 𝑥𝑏 ∧ ⋯

Pr 𝜙 = 1 −
1

2𝑛
≈ 1

Pr 𝜙 ≤
3

4

𝜙 = 𝑥𝑎 ∨ 𝑥𝑏 ∧ 𝑥𝑐 ∨ 𝑥𝑑 ∧ ⋯
𝑎, 𝑏, 𝑐, 𝑑 are distinct indices

Pr 𝜙 ≤
3

4

2

< 0.57



2-CNFs
Three “disjoint” clauses already restrict the fraction below 1/2

𝜙 = 𝑥𝑎 ∨ 𝑥𝑏 ∧ 𝑥𝑐 ∨ 𝑥𝑑 ∧ 𝑥𝑒 ∨ 𝑥𝑓 ∧ ⋯

𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 are distinct
Pr 𝜙 ≤

3

4

3

< 0.43

Completely analogous reasoning holds for 𝒌-CNFs!

If 𝝓 contains a variable-disjoint set of 𝒕 clauses of width 𝒌,

Pr 𝜙 ≤ 1 −
1

2𝑘

𝑡

≤ 𝑒
−
𝑡

2𝑘

So let’s look for large sets of disjoint clauses! But if we can’t find them, we need to do something else…

Some Intuition…



MAJ-2SAT Algorithm

Given a 2-CNF 𝜙, is Pr
𝑎∈ 0,1 𝑛

𝜙 𝑎 = 1 ≥ 1/2 ?

Idea: Search For Variable-Disjoint Clause Sets

} Satisfied at most         of the time

} An independent constraint

Implies that

Implies that



Greedy Algorithm for Disjoint Sets:

Pass through the clauses one 
at a time

If clause 𝐶 is variable-disjoint 
from all of 𝑆, add 𝐶 to 𝑆

Produces maximal disjoint set 𝑆:
for all clauses 𝐶′ not in 𝑆, there is a 
clause 𝐶 in 𝑆 such that 𝐶 and 𝐶′
share at least one variable

MAJ-2SAT Algorithm

Initialize 𝑆 ≔ ∅



Given a 2-CNF      is                          ?

Implies

Return NO for MAJ-2SAT

MAJ-2SAT Algorithm

1. Run greedy algorithm for disjoint sets,
get back a clause set 𝑆.

2. Suppose 𝑆 ≥ 3.

3. Suppose 𝑆 < 2…  what to do, then? 



Fact: If 𝑆 is a maximal disjoint 
set, then the union of all 
variables in all clauses of 𝑆 forms 
a hitting set for all clauses in 𝝓

Hitting set 

Consider any assignment

This sets at least one variable in every 
clause, so the formula simplifies to a 1-CNF

Example: If                              and                  …   

MAJ-2SAT Algorithm: case of small |𝑆|



If constraints are inconsistent:

If constraints are consistent,     
and      distinct variables appear:

MAJ-2SAT Algorithm: case of small |𝑆|

It is easy to solve #SAT on 1-CNF!

Idea: Enumerate all assignments to 𝑯 that 
satisfy the clauses they appear in, solve #1SAT 
on each subformula obtained.
We’ll compute #SAT exactly in this case!



Given a 2-CNF      is                          ?

Implies

Return NO for MAJ-2SAT

MAJ-2SAT Algorithm

1. Run greedy algorithm for disjoint sets,
get back a clause set 𝑆.

2. Suppose 𝑆 ≥ 3.

3. Suppose 𝑆 ≤ 2.
Try all SAT assignments to 𝑆, obtaining 
1-CNFs. Solve #SAT on each of them to 
determine #SAT for the entire formula. The same strategy 

works for all
thresholds, not just ½



Alternative Perspective: MAJ-2SAT

Random-Like

Has “Bad” Subformula

is small

Structured

Small Sum of 1-CNFs

…

…

is easy to compute

Every 2-CNF has one of two possible forms:



MAJ-3SAT Algorithm Given a 3-CNF     is                          ?

} Satisfied at most         of the time

Implies that

If we find at least    disjoint clauses… 

Implies that

For 𝑑 ≥ 6 we have 
and we can report NO

What can we do when 𝒅 < 𝟔?



As before, we get a “small” hitting set

Hitting set 

Any assignment
to     induces a 2-CNF

But now              is #P-hard to compute…



… …

Search for Disjoint Sets… Again!

Try all assignments

…
…

For each 2-CNF       , look for 
maximal disjoint set in 

Either (1) all these disjoint 
sets are “small”, 
or (2) a disjoint set is “large”

If all are small, obtain 1-CNFs

…

In case (1), compute             exactly! 



Picking out a Sunflower

Suppose       has a disjoint set 
of size at least     …         



Picking out a Sunflower

Suppose       has a disjoint set 
of size at least     …         

Some literal     from      must 
appear many times…

…

…by the pigeonhole principle

We obtain a sunflower with core {ℓ}



How to use the sunflower

If     appears in every clause, 
then

Otherwise, for 𝑠 ≥ 8,

…

Different from MAJ-3SAT resolved in either case!



MAJ-3SAT Algorithm

1. Find a maximal disjoint set of clauses in 

2. If disjoint set has size ≥ 6, return NO

3. Otherwise, find a hitting set 𝐻 of ≤ 18 variables for 

4. Try all SAT assignments to 𝐻, obtaining 2-CNFs

7. Otherwise some disjoint set is ≥ 8, yielding a “large” sunflower. If 
the sunflower core hits all clauses return YES, otherwise return NO

(same as MAJ-2SAT)

5. For each 2-CNF, find a maximal disjoint set 

6. If all disjoint sets are ≤ 7, obtain 1-CNFs and compute 



High-Level Intuition for MAJ-3SAT Algorithm

“Bad” Subformula

Big Disjoint Set

Structured

…

Sunflower + Extra

…

………

Sum of 1-CNFs Just Sunflower

…

ℓ appears in all clauses



Going Beyond MAJ-3SAT

MAJ-3SAT MAJ- SAT

THR - SAT
Extract More Disjoint Sets!

Extract More Sunflowers! 

3-CNF k-CNF 

3-CNF 



Conclusion

For 2-CNFs, either            is either “easy” to compute, or small

Extract Disjoint Sets

What other problems have easy threshold versions?
Generalization to 𝑘-CSPs of domain 𝑑 ≥ 3?

Some Future Directions:

For 3-CNFs, similar, but single literal may hit all clauses  

In general: testing 𝑘-CNFs at any constant threshold is “easy”

Extract Sunflowers

Better parameterized algorithms?
(Terrible running time dependence on 𝑘) Thank You!


