Consistent Query Answering via SAT Solving

Phokion G. Kolaitis

UC Santa Cruz and IBM Research

joint work with

Akhil A. Dixit

Google

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Roadmap

- Relational databases, conjunctive queries, integrity constraints
- Inconsistent databases, repairs, consistent answers
- Complexity of consistent answers to conjunctive queries
- Aggregation queries, range consistent answers
- CAvSAT: Consistent query answering via SAT solving
- Experimental evaluation of CAvSAT

The Relational Data Model

Relational Database

- Collection $\mathcal{I} = (R_1, \ldots, R_m)$ of finite relations (tables).
- Relational structure $\mathbf{A} = (A, R_1, \dots, R_m)$.

In relational databases, the universe is not made explicit. Typically, one works with the active domain of the database.

Relational Query Languages

- **Relational Algebra: Operations** \cup , \setminus , \times , π , σ
- Relational Calculus: (Safe) First-Order Logic
- SQL: The industry-standard query language based on relational algebra and relational calculus.

Conjunctive Queries

Definition

A conjunctive query (CQ) is specified by a FO-formula

$$\exists y_1 \cdots \exists y_m \varphi(x_1, \ldots, x_n, y_1, \ldots, y_m),$$

where $\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m)$ is a conjunction of atoms.

Example

► PATH-OF-LENGTH-
$$3(x_1, x_2)$$
:
 $\exists y_1 \exists y_2 (E(x_1, y_1) \land E(y_1, y_2) \land E(y_2, x_2))$

► TAUGHT-BY
$$(x_1, x_2)$$
:
 $\exists y (ENROLLS(x_1, y) \land TEACHES(x_2, y)).$

Conjunctive Queries

Fact

- CQs are among the most frequently asked queries.
- SQL provides direct support for expressing CQs via the SELECT ... FROM ... WHERE ... construct.

Example

► ENROLLS(student,course), TEACHES(professor,course) TAUGHT-BY(x_1, x_2): $\exists y$ (Enrolls(x_1, y) \land Teaches(x_2, y))

SQL expression for TAUGHT-BY: SELECT ENROLLS.student, TEACHES.professor FROM ENROLLS, TEACHES WHERE ENROLLS.course = TEACHES.course

Boolean Conjunctive Queries

Definition A Boolean CQ is a CQ with no free variables:

 $\exists y_1 \cdots \exists y_m \varphi(y_1, \ldots, y_m),$

where $\varphi(y_1, \ldots, y_m)$ is a conjunction of atoms.

Example

► $\exists x, y, z(E(x, y) \land E(y, z) \land E(z, x))$ ("there is a triangle")

 $\blacksquare \exists x, y, z(R(x, y) \land T(x, z))$

("there is a node that has an *R*-neighbor and a *T*-neighbor")

The Conjunctive Query Evaluation Problem

Definition [CONJUNCTIVE QUERY EVALUATION - CQE] Given a database \mathcal{I} and a Boolean CQ q, does $\mathcal{I} \models q$? (i.e., is q true on \mathcal{I} ?)

The Conjunctive Query Evaluation Problem

Definition [CONJUNCTIVE QUERY EVALUATION - CQE] Given a database \mathcal{I} and a Boolean CQ q, does $\mathcal{I} \models q$? (i.e., is q true on \mathcal{I} ?)

Fact SAT is a special case of CQE.

Example The following statements are equivalent:

1. $(P \lor Q \lor T) \land (\neg P \lor Q \lor T) \land (\neg P \lor \neg Q \lor T)$ is satisfiable.

2.
$$\mathcal{I} \models \exists x, y, z(R_0(x, y, z) \land R_1(x, y, z) \land R_2(x, y, z)),$$

where

$$\blacktriangleright \mathcal{I} = (R_0, R_1, R_2),$$

•
$$R_0 = \{(0,1)\}^3 \setminus \{(0,0,0)\},\$$

$$R_1 = \{(0,1)\}^3 \setminus \{(1,0,0)\},$$

•
$$R_2 = \{(0,1)\}^3 \setminus \{(1,1,0)\}.$$

The Difference between SAT and CQE

Data Complexity: In practice, the query is typically fixed, only the database varies.

- If q is a Boolean CQ, then CQE(q) asks: Given a database I, does I ⊨ q?
- Fact: CQE(q) is in L, for every Boolean CQ q.
- The Data Complexity of CQE is in L.

Combined Complexity: In SAT (viewed as a CQE problem), both the query and the database vary.

The Combined Complexity of CQE is NP-complete.

Integrity Constraints in Databases

Definition R a relation schema, X and Y sets of attributes

- Functional Dependency $R: X \rightarrow Y$ If two tuples in *R* agree on *X*, then they agree on *Y*.
- Key Constraint $R: X \to Y$, where $Y = Attr(R) \setminus X$.

Example R(A, B, C, D)

Functional Dependency $R : A, B \rightarrow D$:

 $\forall a, b, c, c', d, d'(R(a, b, c, d) \land R(a, b, c', d') \rightarrow d = d')$

• Key Constraint $R : A, B \rightarrow C, D$:

 $\forall a, b, c, c', d, d'(R(a, b, c, d) \land R(a, b, c', d') \rightarrow c = c' \land d = d')$

Inconsistent Databases

- When designing databases, a schema S and a set Σ of integrity constraints on S are specified.
- An inconsistent database is a database \mathcal{I} that does not satisfy Σ .
- Inconsistent databases arise in a variety of contexts and for different reasons, including:
 - Lack of support of particular integrity constraints.
 - Integration of heterogeneous data residing in different sources and obeying different integrity constraints.

Question: How to cope with inconsistent databases?

Two Approaches for Coping with Inconsistency

- Data Cleaning: Based on heuristics or specific domain knowledge, the inconsistent database is transformed to a consistent one by modifying tuples in relations.
 - Data cleaning is the main approach in industry.
 - More engineering than science due to arbitrary choices.

Two Approaches for Coping with Inconsistency

- Data Cleaning: Based on heuristics or specific domain knowledge, the inconsistent database is transformed to a consistent one by modifying tuples in relations.
 - Data cleaning is the main approach in industry.
 - More engineering than science due to arbitrary choices.
- Database Repairs: A framework for coping with inconsistent databases without "cleaning" dirty data first.
 - Extensive study in academia.
 - A more principled approach.

Database Repairs

Definition (Arenas, Bertossi, Chomicki - 1999)

 Σ a set of integrity constraints and \mathcal{I} an inconsistent database. A database \mathcal{J} is a *repair* of \mathcal{I} w.r.t. Σ if

- \mathcal{J} is a consistent database (i.e., $\mathcal{J} \models \Sigma$);
- \mathcal{J} differs from \mathcal{I} in a minimal way.

Database Repairs

Definition (Arenas, Bertossi, Chomicki - 1999)

 Σ a set of integrity constraints and \mathcal{I} an inconsistent database. A database \mathcal{J} is a *repair* of \mathcal{I} w.r.t. Σ if

- \mathcal{J} is a consistent database (i.e., $\mathcal{J} \models \Sigma$);
- \mathcal{J} differs from \mathcal{I} in a minimal way.

Definition

 Σ a set of integrity constraints and ${\mathcal I}$ an inconsistent database.

A database \mathcal{J} is a *subset-repair* of \mathcal{I} w.r.t. Σ if

$$\blacktriangleright \ \mathcal{J} \subset \mathcal{I}$$

- $\mathcal{J} \models \Sigma$ (i.e., \mathcal{J} is consistent)
- there is no \mathcal{J}' such that $\mathcal{J}' \models \Sigma$ and $\mathcal{J} \subset \mathcal{J}' \subset \mathcal{I}$.

Note: From now on, the term repair means subset repair.

Example of Repairs

Schema consists of a binary relation symbol *R*.

Key constraint

 $\Sigma = \{ \forall x \forall y \forall ((R(x, y) \land R(x, z) \to y = z)) \}$

Database

 $\mathcal{I} = \{R(a_1, b_1), R(a_1, b_2), R(a_2, b_1), R(a_2, b_2)\}$

Repairs

 \mathcal{I} has four (subset) repairs w.r.t. Σ :

•
$$\mathcal{J}_1 = \{R(a_1, b_1), R(a_2, b_1)\}$$

- $\mathcal{J}_2 = \{R(a_1, b_1), R(a_2, b_2)\}$
- $\mathcal{J}_3 = \{R(a_1, b_2), R(a_2, b_1)\}$
- $\mathcal{J}_4 = \{ R(a_1, b_2), R(a_2, b_2) \}.$

Exponentially many repairs, in general.

Consistent Query Answering (CQA)

Definition (Arenas, Bertossi, Chomicki - 1999)

 Σ a set of integrity constraints, *q* a query, and *I* a database.

The consistent answers of q on \mathcal{I} w.r.t. Σ is the set

$$\mathsf{CONS}(q,\mathcal{I},\Sigma) = \bigcap \{q(\mathcal{J}) : \mathcal{J} \text{ is a repair of } \mathcal{I} \text{ w.r.t. } \Sigma \}.$$

Note:

- The motivation comes from the semantics of queries in the context of incomplete information and possible worlds.
- A consistent answers is guaranteed to be found in the evaluation of the query q on every repair of the inconsistent database I.

Consistent Query Answering

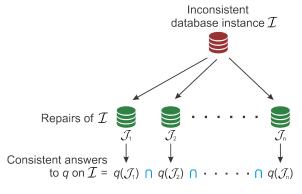


Figure: Consistent Answers

Example of Consistent Query Answering

$$\Sigma = \{ \forall x \forall y \forall z ((R(x, y) \land R(x, z) \to y = z)) \}$$

 $\blacktriangleright \mathcal{I} = \{R(a_1, b_1), R(a_1, b_2), R(a_2, b_1), R(a_2, b_2)\}$

Recall that \mathcal{I} has four repairs w.r.t. Σ :

•
$$\mathcal{J}_1 = \{R(a_1, b_1), R(a_2, b_1)\}, \mathcal{J}_2 = \{R(a_1, b_1), R(a_2, b_2)\}$$

• $\mathcal{J}_3 = \{R(a_1, b_2), R(a_2, b_1)\}, \mathcal{J}_4 = \{R(a_1, b_2), R(a_2, b_2)\}.$

▶ If q(x) is the query $\exists y R(x, y)$, then

$$CONS(q, \mathcal{I}, \Sigma) = \{a_1, a_2\}.$$

▶ If q(x) is the query $\exists z R(z, x)$, then

 $CONS(q, \mathcal{I}, \Sigma) = \emptyset.$

Main themes explored so far:

- Complexity of Consistent Query Answering
- Prototype Systems for Consistent Query Answering

Complexity of CQA: A "Simple" Case Study

Assume that

- Σ is a set of key constraints with one key per relation.
- q is a Boolean conjunctive query (no free variables).

Definition: CERTAINTY (q, Σ) is the following decision problem: Given a database \mathcal{I} , is CONS (q, \mathcal{I}, Σ) true? (i.e., is *q* true on every repair \mathcal{J} of \mathcal{I} ?)

Question: What is the complexity of CERTAINTY (q, Σ) ?

Easy Fact: CERTAINTY(q, Σ) is in coNP.

Reason: Repair-checking is in P.

Complexity of CQA: An Illustration

Binary relations R and S having the first attribute as key, i.e.,

$$\Sigma = \{ R(u, v) \land R(u, w) \to v = w, \ S(u, v) \land S(u, w) \to v = w \}.$$

- Let PATH be the Boolean query $\exists x, y, z(R(x, y) \land S(y, z))$.
- ► Let CYCLE be the Boolean query $\exists x, y(R(x, y) \land S(y, x))$.
- Let SINK be the Boolean query $\exists x, y, z(R(x, y) \land S(z, y))$.

Question:

What can we say about CERTAINTY (q, Σ) , where q is one of these three queries?

Complexity of CQA: An Illustration

► Let PATH be the query $\exists x, y, z(R(x, y) \land S(y, z))$. CERTAINTY(PATH, Σ) is in P; in fact, it is FO-rewritable as $\exists x, y, z(R(x, y) \land S(y, z) \land \forall y'(R(x, y') \rightarrow \exists z'S(y', z')))$. (Fuxman and Miller - 2007)

► Let CYCLE be the query $\exists x, y(R(x, y) \land S(y, x))$. CERTAINTY(CYCLE, Σ) is in P, but it is not FO-rewritable. (Wijsen - 2010)

► Let SINK be the query $\exists x, y, z(R(x, y) \land S(z, y))$. CERTAINTY(SINK, Σ) is coNP-complete. (Fuxman and Miller - 2007)

Classifying the Complexity of CQA

Conjecture (Trichotomy Conjecture for CERTAINTY (q, Σ))

If Σ is a set of key constraints with one key per relation and *q* is a Boolean conjunctive query, then one of the following holds:

- CERTAINTY (q, Σ) is FO-rewritable.
- CERTAINTY (q, Σ) is in P, but is not FO-rewritable.
- CERTAINTY (q, Σ) is coNP-complete.

Moreover, this trichotomy is decidable in polynomial time.

Progress towards the Trichotomy Conjecture

In 2015, Koutris and Wijsen proved the conjecture for Boolean conjunctive queries with no self-joins, i.e., no relation symbol occurs more than once in the query.

Key Notion: The attack graph associated with Σ and q.

- The nodes of the attack graph are the atoms of q.
- The edges of the attack graph are determined by the functional dependencies on the variables of an atom that are implied by the keys of the other atoms.

Progress towards the Trichotomy Conjecture

Theorem (Koutris and Wijsen - 2015)

Let Σ be a set of key constraints with one key per relation and let *q* is a Boolean self-join free conjunctive query.

- If the attack graph is acyclic, then CERTAINTY(q, Σ) is FO-rewritable.
- If the attack graph contains a cycle, but no strong cycle, then CERTAINTY(q, Σ) is in P, but it is not FO-rewritable.
- If the attack graph contains a strong cycle, then CERTAINTY(q, Σ) is coNP-complete.

Moreover, these conditions can be checked in quadratic time.

Theory and Practice

- The framework of repairs and consistent query answering is a principled approach to coping with inconsistency in databases.
- Extensive study of the complexity of repair checking and consistent query answering during the past twenty years.
- This research, however, has not penetrated the industry.
- One of the reasons for this gap between theory and practice is that industrial-strength CQA-systems have yet to be developed.

Earlier Prototype Consistent Query Answering Systems

System	Constraints	Queries	Method
Hippo	Universal	Projection-free with \cup and \setminus	Direct Algorithm
ConQuer	Key	Aggregation queries in Caggforest	SQL-Rewriting
ConsEx	Universal ⁺	Datalog with \neg	Answer Set Programming
EQUIP	Key	Conjunctive	Reduction to ILP

- Hippo (Chomicki, Marcinkowski, Staworko 2004)
- ConQuer (Fuxman 2007)
- ConsEx (Caniupan, Bertossi 2010)
- EQUIP (K . . ., Pema, Tan 2013)

A New Consistent Query Answering System

CAvSAT: Consistent Query Answering via SAT Solving

- CAvSAT can handle denial constraints.
- CAvSAT can handle unions of conjunctive queries and aggregation queries whose underlying query is a union of conjunctive queries.
- CAvSAT deploys reductions to SAT and to optimization variants of SAT.
- Developed by Akhil A. Dixit in his 2021 PhD Dissertation at UCSC.

Denial Constraints

Definition

A denial constraint is a FO-formula of the form

 $\forall \mathbf{x} \neg \psi(\mathbf{x}),$

where $\psi(\mathbf{x})$ is a conjunction of atoms and of built-in predicates $=, \neq, \leq, \leq$.

Example

Every functional dependency (hence, every key) is a denial constraint.

$$\begin{aligned} \forall a, b, c, c', d, d'(R(a, b, c, d) \land R(a, b, c', d') \rightarrow d = d') \\ \forall a, b, c, c', d, d' \neg (R(a, b, c, d) \land R(a, b, c', d') \land d \neq d') \end{aligned}$$

Every disjointness constraint is a denial constraint.

 $\forall \mathbf{x} \neg (R(\mathbf{x}) \land S(\mathbf{x}))$

Aggregation Queries

Definition An aggregation query is a query of the form SELECT Z, f(A) FROM R(U, Z, A) GROUP BY Z, where

- f(A) is one of the aggregation operators SUM(A), COUNT(A), COUNT(*), MIN(A), MAX(A), and AVG(A);
- \triangleright R(U, Z, A) is a conjunctive query or a union of conjunctive queries.

Example

- Relation ACCOUNTS(accid, type, city, bal)
- Aggregation query

SELECT city, SUM(bal) FROM ACCOUNTS GROUP BY city

Note

Aggregation queries are the most frequently asked database queries.

Question: What is the semantics of an aggregation query over an inconsistent database?

Definition: Let \mathcal{I} be a database and let Q be an aggregation query SELECT Z, f(A) FROM R(U, Z, A) GROUP BY Z.

A tuple (T, [glb, lub]) is a range consistent answer to Q on \mathcal{I} if

- For every repair \mathcal{J} of \mathcal{I} , there exists d s.t. $(T, d) \in Q(\mathcal{J})$ and $glb \leq d \leq lub$
- For some repair \mathcal{J}' of \mathcal{I} , we have that $(T, glb) \in Q(\mathcal{J}')$
- For some repair \mathcal{J}'' of \mathcal{I} , we have that $(T, lub) \in Q(\mathcal{J}'')$.

Arenas, Bertossi, Chomicki - 2003, Fuxman, Fazli, Miller - 2005)

Example of Range Consistent Answers

- Constraints: Set Σ of two key constraints ACCOUNTS: accid → type, city, bal CUSTACC: accid → cid
- ► Database: *I*

ACCOUNTS				
accid	type	city	bal	
A1	Checking	LA	900	
A2	Checking	LA	1000	
A3	Saving	SJ	1200	
A3	Saving	SF	-100	
A4	Saving	SJ	300	

CUSTACC				
cid	accid			
C1	A1			
C2	A2			
C2	A3			
C3	A4			

Aggregation Query: Q

SELECT SUM(ACCOUNTS.bal) FROM ACCOUNTS, CUSTACC WHERE ACCOUNTS.accid = CUSTACC.accid AND CUSTACC.CID = 'C2'

► Range Consistent Answers: $CONS(Q, I, \Sigma) = \{ [900, 2200] \}$

CQA Systems for Aggregation Queries

ConQuer is the only earlier CQA system supporting aggregation queries.
Fuxman, Fazli, Miller – 2005, Fuxman – 2007

However, ConQuer can only handle aggregation queries

SELECT Z, f(A) FROM R(U, Z, A) GROUP BY Z,

where the underlying query R(U, Z, A) is a conjunctive query in a class, called *C*_{forest}, of FO-rewritable queries.

The range consistent answers of such aggregation queries are SQL-rewritable.

CQA Systems for Aggregation Queries

ConQuer is the only earlier CQA system supporting aggregation queries.
Fuxman, Fazli, Miller – 2005, Fuxman – 2007

However, ConQuer can only handle aggregation queries

SELECT Z, f(A) FROM R(U, Z, A) GROUP BY Z,

where the underlying query R(U, Z, A) is a conjunctive query in a class, called *C*_{torest}, of FO-rewritable queries.

The range consistent answers of such aggregation queries are SQL-rewritable.

Fact: The range consistent answers to an aggregation query can be NP-hard, even when the underlying query has SQL-rewritable consistent answers.

NP-Hardness of Range Semantics

Theorem: Let *Q* be the aggregation query

```
SELECT SUM(A) FROM q(A),
```

where q(A) is the conjunctive query

 $\exists x \exists y (R_1(\underline{x}, \text{'red'}) \land R_2(y, \text{'blue'}) \land R_3(x, \text{'red'}, y, \text{'blue'}, A))$

with the underlined attributes as the keys. Then the following statements hold.

- CONS(q) is FO-rewritable (hence, it is SQL-rewritable).
- ► CONS(Q) is NP-hard.

Proof Hint: Polynomial-time reduction from MAXIMUM CUT to CONS(Q).

Consistent Query Answering Via SAT Solving

CAvSAT: Consistent Query Answering via SAT Solving

- CAvSAT can handle unions of conjunctive queries and aggregation queries with SUM(A), COUNT(A), COUNT(*), MIN(A), MAX(A), whose underlying query is a union of conjunctive queries.
- CAvSAT deploys reductions to SAT and to optimization variants of SAT.

Basic Notions and Terminology

Definition: Let \mathcal{I} be a database.

- ▶ $R(a_1, \ldots, a_n)$ is a fact of \mathcal{I} if (a_1, \ldots, a_n) is a tuple in the relation R of \mathcal{I} .
- ► Two facts R(a₁,..., a_n) and R(a'₁,..., a'_n) of a relation R of I are key-equal if they agree on the key attributes of R.
- A key-equal group of facts of *I* is an equivalence class of the key equal equivalence relation on a relation *R* of *I*.
- ▶ Let *q* be a Boolean query on \mathcal{I} . A sub-database S of \mathcal{I} is a minimal witness to *q* on \mathcal{I} if $S \models q$, but for every $S' \subset S$, we have that $S' \nvDash q$.

Example: Assume that \mathcal{I} consists of the facts $R(\underline{a}, c)$, $R(\underline{a}, d)$, $S(\underline{b}, c)$.

- The facts $R(\underline{a}, c)$ and $R(\underline{a}, d)$ are key-equal.
- The facts $R(\underline{a}, c)$, and $S(\underline{b}, c)$ form a minimal witness to the query

$$\exists x, y, z(R(x, y) \land S(z, y)).$$

Warmup: Reducing CQA to UNSAT for Boolean Conjunctive Queries

Fix a set Σ of key constraints and a Boolean conjunctive query qProblem: Given a database \mathcal{I} , compute CERTAINTY (q, \mathcal{I}, Σ) Reduction:

- Given database \mathcal{I} , let
 - \mathcal{G} = the set of key-equal groups of facts of \mathcal{I}
 - \mathcal{W} = the set of minimal witnesses to the query q on \mathcal{I} .
- For every fact f_i of \mathcal{I} , introduce a Boolean variable x_i .
- ► For every key-equal group $G_j \in G$, let $\alpha_j = \bigvee_{f_i \in G_i} x_i$
- For every minimal witness $W_k \in \mathcal{W}$, let $\beta_k = \bigvee_{t_i \in W_k} \neg x_i$
- Construct the CNF formula $\varphi = (\bigwedge_{i} \alpha_{j}) \land (\bigwedge_{k} \beta_{k})$

Fact: The formula φ is satisfiable if and only if CERTAINTY $(q, \mathcal{I}, \Sigma) = false$.

Reducing Range CQA to Weighted Partial MaxSAT

Fix a set Σ of key constraints and an aggregation query QSELECT COUNT(A) FROM T(U, A),

where T(U, A) is a self-join free conjunctive query.

Problem: Given a database \mathcal{I} , compute Range CONS (Q, \mathcal{I}, Σ)

Reducing Range CQA to Weighted Partial MaxSAT

Fix a set Σ of key constraints and an aggregation query ${\it Q}$

SELECT COUNT(A) FROM T(U, A),

where T(U, A) is a self-join free conjunctive query.

Problem: Given a database \mathcal{I} , compute Range $CONS(Q, \mathcal{I}, \Sigma)$

Definition: Weighted Partial MaxSAT (WPMaxSAT)

Given a CNF-formula ψ in which

- some clauses are assigned infinite weight (hard clauses) and
- the rest are assigned positive weights (soft clauses),

find an assignment that

- satisfies all hard clauses and
- maximizes the sum of weights of the satisfied soft clauses.

Reduction of Range CQA to Weighted Partial Max SAT

▶ Given database *I*, let

 \mathcal{G} = the set of key-equal groups of facts of \mathcal{I}

 \mathcal{W} = the set of minimal witnesses to $q(A) := \exists U T(U, A)$ on \mathcal{I} .

For every $G_j \in G$, do the following:

• Construct a hard clause $\alpha_j = \bigvee_{f_i \in G_j} x_i$

For every pair (f_m, f_n) of facts in G_j with $m \neq n$, construct a hard clause $\alpha_j^{mn} = (\neg x_m \lor \neg x_n)$

► For each $W_j \in W$, construct a weighted soft clause $\beta_j = (\bigvee_{f_i \in W_j} \neg x_i, 1)$

• Let
$$\psi = \left(\bigwedge_{j=1}^{|\mathcal{G}|} \alpha_j\right) \land \left(\bigwedge_{j=1}^{|\mathcal{G}|} \left(\bigwedge_{f_m, f_n \in \mathcal{G}_j} \alpha_j^{mn}\right)\right) \land \left(\bigwedge_{j=1}^{|\mathcal{W}|} \beta_j\right).$$

Fact: In a max assignment of the WPMaxSAT instance ψ , the sum of weights of the falsified clauses is the glb-answer in CONS(Q, \mathcal{I}, Σ). Similarly, for min assignments and lub-answers.

Modifications to Handle Self-Joins

- SQL uses bag (multiset) semantics.
- If there are no self-joins, it suffices to consider minimal witnesses.
- If there are self-joins, we need to consider witnesses with multiplicities

Example Let Q be the query

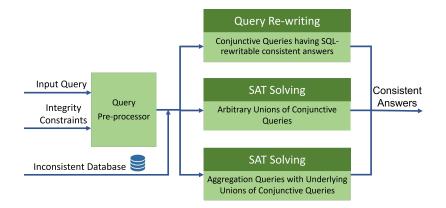
SELECT COUNT (*) FROM T(X,Y),

where $T(X, Y) := \exists Z(R(X, Y) \land R(X, Z))$, and let $\mathcal{I} = \{R(1, 1), R(1, 2)\}$.

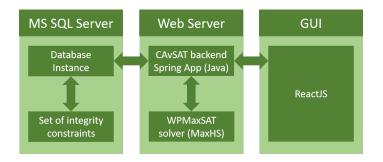
- ▶ Witness {R(1,1)}, assignment (X/1, Y/1, Z/1) \hookrightarrow tuple T(1,1).
- Witness $\{R(1,2)\}$, assignment $(X/1, Y/2, Z/2) \hookrightarrow$ tuple T(1,2).
- Witness $\{R(1,1), R(1,2)\}$
 - ▶ assignment $(X/1, Y/1, Z/2) \hookrightarrow$ tuple T(1, 1). ▶ assignment $(X/1, Y/2, Z/1) \hookrightarrow$ tuple T(1, 2).
- Bag of Witnesses

 $\mathcal{W} = \{\{R(1,1)\}: 1, \{R(1,2)\}: 1, \{R(1,1), R(1,2)\}: 2\}.$

Architecture Overview of CAvSAT



Implementation Overview of CAvSAT



Code is open-sourced at https://github.com/uccross/cavsat

Experimental Evaluation

- Standard TPC-H databases and TPC-H aggregation queries
- Aggregation queries with and without grouping
- Comparison of CAvSAT vs. ConQuer SQL-rewriting
- Scalability experiments by varying database size and inconsistency percentage
- Real-world Medigap database with denial constraints

Note:

- TPC-H is a decision support benchmark.
- Medigap is a public database about Medicare supplement insurance.

Experiments with Aggregation Queries Without Grouping

- TPC-H databases generated using the DBGen-tool (10% inconsistency, 1GB repair)
- One key constraint per relation
- TPC-H inspired aggregation queries without grouping

Experiments with Aggregation Queries Without Grouping

- TPC-H databases generated using the DBGen-tool (10% inconsistency, 1GB repair)
- One key constraint per relation
- TPC-H inspired aggregation queries without grouping

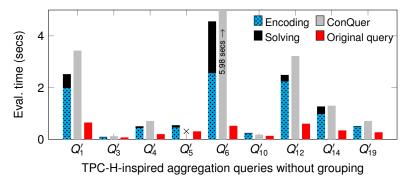
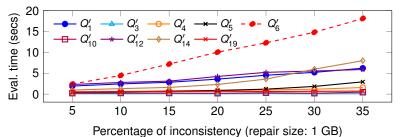
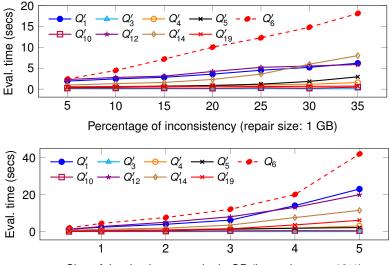


Figure: CAvSAT vs. ConQuer on TPC-H data generated using the DBGen tool

Scalability of CAvSAT: Aggregation Queries Without Grouping



Scalability of CAvSAT: Aggregation Queries Without Grouping



Size of the database repairs in GB (inconsistency: 10%)

Figure: Evaluation time of CAvSAT with varying inconsistency and database sizes

Experiments with Real-world Database and Queries

- Medigap: real-world database about Medicare supplement insurance
- Two functional dependencies, one denial constraint (5% existing inconsistency)
- Twelve natural aggregation queries

Experiments with Real-world Database and Queries

- Medigap: real-world database about Medicare supplement insurance
- Two functional dependencies, one denial constraint (5% existing inconsistency)
- Twelve natural aggregation queries

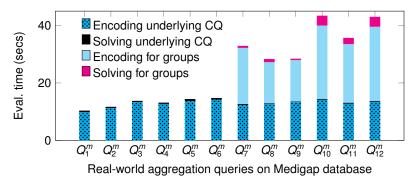


Figure: Performance of CAvSAT on a real-world database

Concluding Remarks

Summary:

- CAvSAT: A SAT-based CQA system that beats or performs as well as the earlier ones and supports aggregation queries.
- Natural reductions to compute the range consistent answers to aggregation queries with COUNT(*), COUNT(A), SUM(A), MIN(A), MAX(A).

Open Problems:

- Find "good" reductions from the range consistent answers to aggregation queries with AVG(A) to SAT and its variants.
- Prove dichotomy theorems for richer classes of queries.
- Develop a methodology for comparing data cleaning to consistent query answering.

References

Papers:

- Akhil A. Dixit, Phokion G. Kolaitis: A SAT-Based System for Consistent Query Answering. SAT 2019: 117-135.
- Akhil A. Dixit, Phokion G. Kolaitis: CAvSAT: Answering Aggregation Queries over Inconsistent Databases via SAT Solving. SIGMOD Conference 2021 (Demo Track): 2701-2705.
- Akhil A. Dixit, Phokion G. Kolaitis: Consistent Answers of Aggregation Queries via SAT. ICDE 2022: 924-936.

Dissertation:

 Akhil A. Dixit: Answering Queries Over Inconsistent Databases Using SAT Solvers. University of California, Santa Cruz, USA, 2021