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Science and engineering have different priorities
and these affect our choices (especially regarding deep learning)
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The brain is a highly interconnected, dynamic network organized
hierarchically, in parallel, and at multiple scale

1. Multi-scale organization provides weak computational compartmentalization.
2. Brain connections are many-to-many and recurrent.

3. Brain representations are highly modulated by plans and goals.

4. The brain “learns” continuously and at multiple timescales.
(right) Modha & Singh, 2010



In neuroscience we are always data-limited...



A central problem in systems and cognitive neuroscience is to
model the representation of information across the brain




The best classical way to model representation in the brain
IS to use some form of the GLM
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Because brain data have low SNR, regularization must be
carefully managed across different feature spaces

joint model estimation with
banded ridge regresion
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We use an encoding model approach to fit multiple
navigation-related feature spaces to each voxel in each subject
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We visualize the representation of navigation-related features
by projecting voxelwise model weights onto the cortical surface
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To visualize the general distribution of navigation-related
representations we use a low-dimensional embedding
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PCA of these data reveals that navigation-related networks
are organized into three main functional classes
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Most of the variance in brain activity is explained by variables
related to perceptual, motor and goal-directed behavior
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Active navigation shifts semantic tuning

toward navigation-relevant categories
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Zhang & Gallant, in prep



Can we use deep networks to model brain data directly?
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Can we use the learned weights of pre-trained deep
network as a source of features for the GLM?
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Estimation Data Set

Validation Data Set

Can we use the learned weights of pre-trained deep
network as a source of features for the GLM?
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One problem with pre-trained deep networks is that
their features are often correlated across layers

(@) Ridge (best layer) (b) Ridge (all layers) (c) Banded ridge (all layers)
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Can we develop a hybrid modeling scheme
that uses deep learning to fit an explicit model?
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To test this idea we analyzed and modeled
long-term recordings from 302 area V4 neurons
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To better understand visual representation in area V4
we analyzed the predicted optimal patterns (POPs) for each cell
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Spatial, chromatic and temporal tuning of the V4 sample
can be recovered from feature-specific embeddings
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Summary

The goals of science and engineering are somewhat different. Scientists tend to prioritize explanatory
elegance, while engineers tend to prioritize utility (i.e., prediction accuracy and generalization).

The mammalian brain is a complex deep network that is organized hierarchically and in parallel, and which has
complex dynamics. Measurement presents the most important current obstacle to understanding this system.

Modern methods of regression and data science provide the infrastructure necessary for fitting complex
computational models to neuroscience data. When the model is described in terms of explicit transformations
of measured stimulus-, task-, or behavior-related variables, the resulting models are directly interpretable.

When sufficient data are available, deep networks can be used in place of classical regression algorithms, by
means of either supervised or unsupervised methods. However, the resulting networks are not directly
Interpretable.

Pre-trained deep networks can also be used as a source of features for classical regression algorithms.
However, once again the resulting networks are not directly interpretable.

One little used approach is to leverage the infrastructure for training deep networks to fix explicit hierarchical
computational models to brain data. The components of these models can be interpreted directly in terms of
their basic computational properties. However, the function of the model as a whole may still be difficult to
Interpret.



