Explanation: A(n Abridged!) Survey

Joe Halpern
Cornell University

Includes joint work with Judea Pearl (UCLA)
Defining explanation is hard!

- People have been trying for millenia
- Lots of examples developed to shoot down the many attempts
 - just as with definitions of causality

The goal of this talk: to present a definition (based on ideas that Judea Pearl and I developed) that involves causality and knowledge, and to discuss *partial* explanations.

- **Basic idea:** an explanation is a fact that, if found to be true, would constitute an actual cause of the *explanandum* (the fact to be explained), regardless of the agent’s initial uncertainty.
The classic definitions of explanation (going back to Hempel and Salmon) do not involve causality.

- Very roughly speaking, an explanation consists of some initial conditions from which the explanandum logically follows.
- There were later statistical versions.
- Van Fraassen and Gärdenfors: the explanation must raise the probability of the explanandum.
 - Problem: these definitions did not take causality into account.
 - Example: The barometer falling rapidly is not an explanation of the storm approaching, even though finding it out raises the probability of a storm.
 - The barometer falling is not a cause of the storm.
[Van Fraassen:] What counts as an explanation for one person might not count as an explanation for another.

Example: [Gärdenfors:] Suppose that we seek an explanation of why Mr. Johansson has been taken ill with lung cancer. Some possible explanations:

(a) he worked for years in asbestos manufacturing

(b) a causal model describing the connection between asbestos fibres and lung cancer.

If you know (a) and not (b), then (b) is a good explanation; if you know (b) and not (a), then (a) is a good explanation.
Causal models

A causal model is a tuple $M = (U, V, F)$:

- U: set of exogenous variables
- V: set of endogenous variables
- F: set of structural equations (one for each $X \in V$):
 - E.g., $X = Y \land Z$
Causal models

A causal model is a tuple $M = (\mathcal{U}, \mathcal{V}, \mathcal{F})$:

- \mathcal{U}: set of exogenous variables
- \mathcal{V}: set of endogenous variables
- \mathcal{F}: set of structural equations (one for each $X \in \mathcal{V}$):
 - E.g., $X = Y \land Z$

Variable X depends on variable Y if Y can affect the value of X:

- There is a setting of the other variables such that changing the value of Y changes the value of X (according to \mathcal{F})

We focus on acyclic models, where the dependency relation is acyclic. Such models can be described using causal networks:

- Like Bayesian networks, except that instead of associating with each node X a conditional probability table, we associate with it the equation that shows how the value of X is determined by the value of its parents
Let \(\vec{u} \) be a \textit{context}: a setting of the exogenous variables:

\begin{itemize}
 \item (\(M, \vec{u} \)) \models Y = y \text{ if } Y = y \text{ is unique solution to equations in } \vec{u}
 \item Here we’re assjing that the network is acyclic
 \item (\(M, \vec{u} \)) \models [\vec{X} \leftarrow \vec{x}] \varphi \text{ if } (M_{\vec{X} \leftarrow \vec{x}}, \vec{u}) \models \varphi.
 \begin{itemize}
 \item [\vec{X} \leftarrow \vec{x}] \varphi \text{ means “after intervening to set } \vec{X} \text{ to } \vec{x}, \text{ } \varphi \text{ holds”}
 \item \(M_{\vec{X} \leftarrow \vec{x}} \) is the causal model after setting \(\vec{X} \) to \(\vec{x} \):
 \begin{itemize}
 \item replace the original equations for the variables in \(\vec{X} \) by \(\vec{X} = \vec{x} \).
 \end{itemize}
 \end{itemize}
\end{itemize}
Example 1: Arsonists

Two arsonists drop lit matches in different parts of a dry forest, and both cause trees to start burning. Consider two scenarios.

1. Disjunctive scenario: either match by itself suffices to burn down the whole forest.
2. Conjunctive scenario: both matches are necessary to burn down the forest.
Arsonist scenarios

Same causal network for both scenarios:

- endogenous variables ML_i, $i = 1, 2$:
 - $ML_i = 1$ iff arsonist i drops a match
- exogenous variable $U = u_{j_1j_2}$
 - $j_i = 1$ iff arsonist i the background conditions are such that arsonist i will drop a match
- endogenous variable FB (forest burns down).
 - For the disjunctive scenario $FB = ML_1 \lor ML_2$
 - For the conjunctive scenario $FB = ML_1 \land ML_2$
Sufficient Cause: Definition

Pearl and I defined a notion of actual causality, but for explanation, we seem to need a stronger notion: sufficient causality

$\vec{X} = \vec{x}$ is a sufficient cause of φ in (M, \vec{u}) if, not only does $\vec{X} = \vec{x}$ bring about φ in context \vec{u}, but in all contexts.
Sufficient Cause: Definition

Pearl and I defined a notion of actual causality, but for explanation, we seem to need a stronger notion: sufficient causality

- $\vec{X} = \vec{x}$ is a sufficient cause of φ in (M, \vec{u}) if, not only does $\vec{X} = \vec{x}$ bring about φ in context \vec{u}, but in all contexts.

Formally, $\vec{X} = \vec{x}$ is a sufficient cause of φ in (M, \vec{u}) if

\[\text{SC1. } (M, \vec{u}) \models (\vec{X} = \vec{x}) \text{ and } (M, \vec{u}) \models \varphi \text{ (like AC1)} \]
Pearl and I defined a notion of *actual causality*, but for explanation, we seem to need a stronger notion: *sufficient causality*

\[\vec{X} = \vec{x} \] is a sufficient cause of \(\varphi \) in \((M, \vec{u})\) if, not only does \(\vec{X} = \vec{x} \) bring about \(\varphi \) in context \(\vec{u} \), but in all contexts.

Formally, \(\vec{X} = \vec{x} \) is a *sufficient cause of \(\varphi \) in* in \((M, \vec{u})\) if

SC1. \((M, \vec{u}) \models (\vec{X} = \vec{x})\) and \((M, \vec{u}) \models \varphi\) (like AC1)

SC2. (Simplified version:) For some \(\vec{x}' \neq \vec{x} \), variables \(\vec{Y} \), and setting \(\vec{y} \) of these variables, \((M, \vec{u}) \models [\vec{X} \leftarrow \vec{x}', \vec{Y} \leftarrow \vec{y}]\neg \varphi\)
Pearl and I defined a notion of actual causality, but for explanation, we seem to need a stronger notion: sufficient causality

- $\overrightarrow{X} = \overrightarrow{x}$ is a sufficient cause of φ in (M, \overrightarrow{u}) if, not only does $\overrightarrow{X} = \overrightarrow{x}.$ bring about φ in context $\overrightarrow{u},$ but in all contexts.

Formally, $\overrightarrow{X} = \overrightarrow{x}$ is a sufficient cause of φ in in (M, \overrightarrow{u}) if

1. **SC1.** $(M, \overrightarrow{u}) \models (\overrightarrow{X} = \overrightarrow{x})$ and $(M, \overrightarrow{u}) \models \varphi$ (like AC1)
2. **SC2.** (Simplified version:) For some $\overrightarrow{x}' \neq \overrightarrow{x},$ variables $\overrightarrow{Y},$ and setting \overrightarrow{y} of these variables,

 $$(M, \overrightarrow{u}) \models [\overrightarrow{X} \leftarrow \overrightarrow{x}', \overrightarrow{Y} \leftarrow \overrightarrow{y}] \neg \varphi$$
3. **SC3.** $(M, \overrightarrow{u}') \models [\overrightarrow{X} \leftarrow \overrightarrow{x}] \varphi$ for all contexts $\overrightarrow{u}'.$
Sufficient Cause: Definition

Pearl and I defined a notion of actual causality, but for explanation, we seem to need a stronger notion: sufficient causality

\[\vec{X} = \vec{x} \text{ is a sufficient cause of } \varphi \text{ in } (M, \vec{u}) \text{ if, not only does } \vec{X} = \vec{x} \text{ bring about } \varphi \text{ in context } \vec{u}, \text{ but in all contexts.} \]

Formally, \(\vec{X} = \vec{x} \) is a sufficient cause of \(\varphi \) in \((M, \vec{u}) \) if

SC1. \((M, \vec{u}) \models (\vec{X} = \vec{x}) \) and \((M, \vec{u}) \models \varphi \) (like AC1)

SC2. (Simplified version:) For some \(\vec{x}' \neq \vec{x} \), variables \(\vec{Y} \), and setting \(\vec{y} \) of these variables,

\((M, \vec{u}) \models [\vec{X} \leftarrow \vec{x}', \vec{Y} \leftarrow \vec{y}] \neg \varphi \)

SC3. \((M, \vec{u}') \models [\vec{X} \leftarrow \vec{x}] \varphi \) for all contexts \(\vec{u}' \).

SC4. \(\vec{X} \) is minimal; there is no subset \(\vec{X}' \) of \(\vec{X} \) such that \(\vec{X}' = \vec{x}|_{\vec{X}} \), satisfies conditions SC1, SC2, and SC3
Sufficient Cause: Examples

- In the disjunctive forest fire example, both $ML_1 = 1$ and $ML_2 = 1$ are sufficient causes of the fire.
- In the conjunctive forest fire example, $ML_1 = 1 \land ML_2 = 1$ is a sufficient cause of the fire.
Explanation: The Basic Definition

The definition of explanation is relative to an agent’s epistemic state. For now we assume that the causal model M is known.

- An agent’s epistemic state is a set \mathcal{K} of contexts with a probability \Pr on them
- \mathcal{K} is the set of contexts that the agent considers possible.
Explanation: The Basic Definition

The definition of explanation is relative to an agent’s epistemic state. For now we assume that the causal model M is known.

- An agent’s epistemic state is a set K of contexts with a probability Pr on them.
- K is the set of contexts that the agent considers possible.

Definition: $\vec{X} = \vec{x}$ is an explanation of φ relative to a set K of contexts in causal model M if

1. **EX1.** $\vec{X} = \vec{x}$ is a sufficient cause of φ in all contexts in K satisfying $\vec{X} = \vec{x} \land \varphi$.
 - We “condition” on what we know ($\vec{X} = \vec{x} \land \varphi$)
 - We consider only contexts in K in SC3.

2. **EX2.** \vec{X} is minimal; there is no strict subset \vec{X}' of \vec{X} such that $\vec{X}' = \vec{x} |_{\vec{X}'}$ satisfies EX1.

3. **EX3.** There exists a context $\vec{u} \in K$ such that $(M, \vec{u}) \models \vec{X} = \vec{x} \land \varphi$.
 - The agent considers possible a context where the explanation holds.
Explanation: Examples

- In the disjunctive forest fire example, let u_{ij} be the context where $ML_1 = i$ and $ML_2 = j$.
 - relative to $K = \{u_{00}, u_{01}, u_{10}, u_{11}\}$, both $ML_1 = 1$ and $ML_2 = 1$ explain the fire
 - relative to $K = \{u_{00}, u_{10}\}$, $ML_1 = 1$ explains the fire, but $ML_2 = 1$ doesn’t
 - EX3 fails: the agent knows that $ML_2 = 1$ doesn’t happen

- In the conjunctive forest fire example,
 - $ML_1 = 1 \land ML_2 = 1$ is a sufficient cause of the fire relative to K if $u_{11} \in K$
 - if $K = \{u_{01}, u_{11}\}$, $ML_1 = 1$ is an explanation;
 $ML_1 = 1 \land ML_2 = 1$ is not (it violates minimality); $ML_2 = 1$ is not (it violates SC3: it’s not a sufficient cause)
Partial Explanations

Not all explanations are equally good.

- There are many different “dimensions” of goodness: simplicity, generality, informativeness,
 - I focus on three of them here
Partial Explanations

Not all explanations are equally good.

- There are many different “dimensions” of goodness: simplicity, generality informativeness,
- I focus on three of them here

EX1 appeals to sufficient cause, and thus requires SC2 and SC3. for all contexts $\vec{u} \in K$.

- But what if SC2/SC3 hold only for most contexts?
Partial Explanations

Not all explanations are equally good.

- There are many different “dimensions” of goodness: simplicity, generality, informativeness,
 - I focus on three of them here

EX1 appeals to sufficient cause, and thus requires SC2 and SC3. for all contexts $\vec{u} \in \mathcal{K}$.

- But what if SC2/SC3 hold only for most contexts?

Here is where the probability \Pr on \mathcal{K} comes in.

- We can consider the probability that a claimed explanation satisfies SC2/SC3 (i.e., the probability of the set of contexts for which SC2/SC3 hold).

Definition: $\vec{X} = \vec{x}$ is a partial explanation of φ with goodness (α, β) relative to (\mathcal{K}, \Pr) if the set of contexts where SC2 (resp., SC3) holds has probability at least α (resp., β).
Partial Explanations: Examples

Example: Victoria is tanned; I seek an explanation.

- The causal model includes the three variables “Victoria took a vacation in the Canary Islands”, “sunny in the Canary Islands”, and “went to a tanning salon”
- There are 8 contexts u_{ijk} assigning values (0 or 1) to each of these variables.
- Victoria going to the Canaries is not an explanation of Victoria’s tan.
 - It doesn’t satisfy SC3 (if it’s not sunny, she won’t get a tan even if she goes)
 - it may not satisfy SC2 if the reason she got a tan is that she went to the tanning salon

Nevertheless, most people would accept “Victoria took a vacation in the Canary Islands” as a satisfactory explanation of Victoria being tanned.

- It is a partial explanation with high α and β
Likelihood

We often prefer the more likely explanation:

Example: In the disjunctive forest-fire example, if \(\mathcal{K} = \{u_{10}, u_{01}\} \) and I give \(u_{10} \) higher probability (\(ML_1 = 1 \) has higher probability than \(ML_2 = 1 \)), then \(ML_1 = 1 \) is a better explanation of \(FB = 1 \).
Likelihood

We often prefer the more likely explanation:

Example: In the disjunctive forest-fire example, if $\mathcal{K} = \{u_{10}, u_{01}\}$ and I give u_{10} higher probability ($ML_1 = 1$ has higher probability than $ML_2 = 1$), then $ML_1 = 1$ is a better explanation of $FB = 1$. But that’s not the whole story either . . .

Example: Suppose there’s a fire in a lab; you suspect an arsonist. But one of the variables in the model is O: presence of oxygen.

- if \mathcal{K} consists only of contexts where there is a fire, then $O = 1$ is a sufficient cause for the fire relative to \mathcal{K}, so is an explanation of the fire.
- Moreover, the probability that $O = 1$ is high (also conditional on there being a fire).
- But we don’t view the presence of oxygen as a very good explanation of the fire.
Roughly speaking, we define the *explanatory power* of a partial explanation $\vec{X} = \vec{x}$ for ϕ relative to (\mathcal{K}, \Pr) as $\Pr(\phi \mid \vec{X} = \vec{x})$.

- $O = 1$ has low explanatory power for lab fires
- It’s unlikely for a lab fire to occur just because there is oxygen
Explanatory Power

Roughly speaking, we define the *explanatory power* of a partial explanation $\vec{X} = \vec{x}$ for φ relative to (\mathcal{K}, \Pr) as $\Pr(\varphi \mid \vec{X} = \vec{x})$.

- $O = 1$ has low explanatory power for lab fires
 - It’s unlikely for a lab fire to occur just because there is oxygen

But this rough definition is not quite right.

- It confounds correlation with causation
 - a falling barometer would have high explanatory power for rain
Roughly speaking, we define the *explanatory power* of a partial explanation \(\vec{X} = \vec{x} \) for \(\varphi \) relative to \((\mathcal{K}, \Pr)\) as \(\Pr(\varphi \mid \vec{X} = \vec{x}) \).

- \(O = 1 \) has low explanatory power for lab fires
 - It’s unlikely for a lab fire to occur just because there is oxygen

But this rough definition is not quite right.

- It confounds correlation with causation
 - a falling barometer would have high explanatory power for rain

So we define explanatory power of \(\vec{X} = \vec{x} \) for \(\varphi \) relative to \((\mathcal{K}, \Pr)\) as the probability that \(\vec{X} = \vec{x} \) is a cause of \(\varphi \) conditional on \(\vec{X} = \vec{x} \).
Competing notions of goodness

There is a tension between these notions of goodness:

▶ goodness of partial explanation
▶ likelihood of explanation
▶ explanatory power of explanation

We may not be able to get an explanation that optimizes all three.

There is no obvious way to resolve the tension

▶ The modeler has to decide what is important.
Conclusion

Explanation is a slippery notion.

- This is not the first or second definition that I tried . . .
 - And it differs from the one in the original Halpern-Pearl paper since it focuses more on sufficient causes
- Since it’s not clear how to prove a theorem saying “the definition is right”, we must rely on examples to sharpen intuition.
Conclusion

Explanation is a slippery notion.

- This is not the first or second definition that I tried . . .
 - And it differs from the one in the original Halpern-Pearl paper since it focuses more on sufficient causes

- Since it’s not clear how to prove a theorem saying “the definition is right”, we must rely on examples to sharpen intuition.

- There are many notions of “goodness” for explanations, and a modeler needs to trade them off.
I’ve only scratched the surface here. For more details, see Chapter 7 in Actual Causality by Joseph Y. Halpern.