
Explanation: A(n Abridged!) Survey

Joe Halpern
Cornell University

Includes joint work with Judea Pearl (UCLA)

1 / 19



The Big Picture

Defining explanation is hard!

▶ People have been trying for millenia
▶ Lots of examples developed to shoot down the many attempts

▶ just as with definitions of causality

The goal of this talk: to present a definition (based on ideas that
Judea Pearl and I developed) that involves causality and
knowledge, and to discuss partial explanations.

▶ Basic idea: an explanation is a fact that, if found to be true,
would constitute an actual cause of the explanandum (the fact
to be explained), regardless of the agent’s initial uncertainty.
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Explanation: An Abridged History

The classic definitions of explanation (going back to Hempel and
Salmon) do not involve causality.

▶ Very roughly speaking, an explanation consists of some initial
conditions from which the explanandum logically follows

▶ There were later statistical versions
▶ Van Fraassen and Gärdenfors: the explanation must raise the

probability of the explanandum.
▶ Problem: these definitions did not take causality into account
▶ Example: The barometer falling rapidly is not an explanation

of the storm approaching, even though finding it out raises the
probability of a storm

▶ The barometer falling is not a cause of the storm

3 / 19



Why Knowledge Matters

[Van Fraassen:] What counts as an explanation for one person
might not count as an explanation for another.

Example: [Gärdenfors:] Suppose that we seek an explanation of
why Mr. Johansson has been taken ill with lung cancer. Some
possible explanations:

(a) he worked for years in asbestos manufacturing

(b) a causal model describing the connection between asbestos
fibres and lung cancer.

If you know (a) and not (b), then (b) is a good explanation; if you
know (b) and not (a), then (a) is a good explanation.
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Causal models

A causal model is a tuple M = (U ,V,F):
▶ U : set of exogenous variables
▶ V: set of endogenous variables
▶ F : set of structural equations (one for each X ∈ V):

▶ E.g., X = Y ∧ Z

Variable X depends on variable Y if Y can affect the value of X:

▶ There is a setting of the other variables such that changing
the value of Y changes the value of X (according to F)

We focus on acyclic models, where the dependency relation is
acyclic. Such models can be described using causal networks:

▶ Like Bayesian networks, except that instead of associating
with each node X a conditional probability table, we associate
with it the equation that shows how the value of X is
determined by the value of its parents
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Let u⃗ be a context: a setting of the exogenous variables:
▶ (M, u⃗) |= Y = y if Y = y is unique solution to equations in u⃗

▶ Here we’re assjing that the network is acyclic

▶ (M, u⃗) |= [X⃗ ← x⃗]φ if (MX⃗←x⃗, u⃗) |= φ.

▶ [X⃗ ← x⃗]φ means “after intervening to set X⃗ to x⃗, φ holds”
▶ MX⃗←x⃗ is the causal model after setting X⃗ to x⃗:

▶ replace the original equations for the variables in X⃗ by X⃗ = x⃗.
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Example 1: Arsonists

Two arsonists drop lit matches in different parts of a dry forest,
and both cause trees to start burning. Consider two scenarios.

1. Disjunctive scenario: either match by itself suffices to burn
down the whole forest.

2. Conjunctive scenario: both matches are necessary to burn
down the forest
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Arsonist scenarios
Same causal network for both scenarios:
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▶ endogenous variables MLi, i = 1, 2:
▶ MLi = 1 iff arsonist i drops a match

▶ exogenous variable U = uj1j2
▶ ji = 1 iff arsonist i the background conditions are such that

arsonist i will drop a match

▶ endogenous variable FB (forest burns down).
▶ For the disjunctive scenario FB = ML1 ∨ML2
▶ For the conjunctive scenario FB = ML1 ∧ML2
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Sufficient Cause: Definition

Pearl and I defined a notion of actual causality, but for explanation,
we seem to need a stronger notion: sufficient causality

▶ X⃗ = x⃗ is a sufficient cause of φ in (M, u⃗) if, not only does
X⃗ = x⃗ bring about φ in context u⃗, but in all contexts.

Formally, X⃗ = x⃗ is a sufficient cause of φ in in (M, u⃗) if

SC1. (M, u⃗) |= (X⃗ = x⃗) and (M, u⃗) |= φ (like AC1)

SC2. (Simplified version:) For some x⃗′ ̸= x⃗, variables Y⃗ ,
and setting y⃗ of these variables,
(M, u⃗) |= [X⃗ ← x⃗′, Y⃗ ← y⃗]¬φ

SC3. (M, u⃗′) |= [X⃗ ← x⃗]φ for all contexts u⃗′.

SC4. X⃗ is minimal; there is no subset X⃗ ′ of X⃗ such that
X⃗ ′ = x⃗|X⃗′ satisfies conditions SC1, SC2, and SC3
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Sufficient Cause: Examples

▶ In the disjunctive forest fire example, both ML1 = 1 and
ML2 = 1 are sufficient causes of the fire

▶ In the conjunctive forest fire example, ML1 = 1 ∧ML2 = 1 is
a sufficient cause of the fire
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Explanation: The Basic Definition
The definition of explanation is relative to an agent’s epistemic
state. For now we assume that the causal model M is known.
▶ An agent’s epistemic state is a set K of contexts with a

probability Pr on them
▶ K is the set of contexts that the agent considers possible.

Definition: X⃗ = x⃗ is an explanation of φ relative to a set K of
contexts in causal model M if

EX1. X⃗ = x⃗ is a sufficient cause of φ in all contexts in K
satisfying X⃗ = x⃗ ∧ φ.
▶ We “condition” on what we know (X⃗ = x⃗ ∧ φ)
▶ We consider only contexts in K in SC3.

EX2. X⃗ is minimal; there is no strict subset X⃗ ′ of X⃗ such
that X⃗ ′ = x⃗ |X⃗′ satisfies EX1.

EX3. There exists a context u⃗ ∈ K such that
(M, u⃗) |= X⃗ = x⃗ ∧ φ.
▶ The agent consider possible a context where the

explanation holds.
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Explanation: Examples

▶ In the disjunctive forest fire example, let uij be the context
where ML1 = i and ML2 = j.
▶ relative to K = {u00, u01, u10, u11}, both ML1 = 1 and

ML2 = 1 explain the fire
▶ relative to K = {u00, u10}, ML1 = 1 explains the fire, but

ML2 = 1 doesn’t
▶ EX3 fails: the agent knows that ML2 = 1 doesn’t happen

▶ In the conjunctive forest fire example,
▶ ML1 = 1 ∧ML2 = 1 is a sufficient cause of the fire relative to
K if u11 ∈ K

▶ if K = {u01, u11}, ML1 = 1 is an explanation;
ML1 = 1 ∧ML2 = 1 is not (it violates minimality); ML2 = 1 is
not (it violates SC3: it’s not a sufficient cause)
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Partial Explanations

Not all explanations are equally good.
▶ There are many different “dimensions” of goodness:

simplicity, generality informativeness, . . . .
▶ I focus on three of them here

EX1 appeals to sufficient cause, and thus requires SC2 and SC3.
for all contexts u⃗ ∈ K.
▶ But what if SC2/SC3 hold only for most contexts?

Here is where the probability Pr on K comes in.

▶ We can consider the probability that a claimed explanation
satisfies SC2/SC3 (i.e., the probability of the set of contexts
for which SC2/SC3 hold).

Definition: X⃗ = x⃗ is a partial explanation of φ with goodness
(α, β) relative to (K,Pr) if the set of contexts where SC2 (resp.,
SC3) holds has probability at least α (resp., β).

13 / 19



Partial Explanations

Not all explanations are equally good.
▶ There are many different “dimensions” of goodness:

simplicity, generality informativeness, . . . .
▶ I focus on three of them here

EX1 appeals to sufficient cause, and thus requires SC2 and SC3.
for all contexts u⃗ ∈ K.
▶ But what if SC2/SC3 hold only for most contexts?

Here is where the probability Pr on K comes in.

▶ We can consider the probability that a claimed explanation
satisfies SC2/SC3 (i.e., the probability of the set of contexts
for which SC2/SC3 hold).

Definition: X⃗ = x⃗ is a partial explanation of φ with goodness
(α, β) relative to (K,Pr) if the set of contexts where SC2 (resp.,
SC3) holds has probability at least α (resp., β).

13 / 19



Partial Explanations

Not all explanations are equally good.
▶ There are many different “dimensions” of goodness:

simplicity, generality informativeness, . . . .
▶ I focus on three of them here

EX1 appeals to sufficient cause, and thus requires SC2 and SC3.
for all contexts u⃗ ∈ K.
▶ But what if SC2/SC3 hold only for most contexts?

Here is where the probability Pr on K comes in.

▶ We can consider the probability that a claimed explanation
satisfies SC2/SC3 (i.e., the probability of the set of contexts
for which SC2/SC3 hold).

Definition: X⃗ = x⃗ is a partial explanation of φ with goodness
(α, β) relative to (K,Pr) if the set of contexts where SC2 (resp.,
SC3) holds has probability at least α (resp., β).

13 / 19



Partial Explanations: Examples

Example: Victoria is tanned; I seek an explanation.

▶ The causal model includes the three variables “Victoria took a
vacation in the Canary Islands”, “sunny in the Canary
Islands”, and “went to a tanning salon”

▶ There are 8 contexts uijk assigning values (0 or 1) to each of
these variables.

▶ Victoria going to the Canaries is not an explanation of
Victoria’s tan.
▶ It doesn’t satisfy SC3 (if it’s not sunny, she won’t get a tan

even if she goes)
▶ it may not satisfy SC2 if the reason she got a tan is that she

went to the tanning salon

Nevertheless, most people would accept “Victoria took a vacation
in the Canary Islands” as a satisfactory explanation of Victoria
being tanned.

▶ It is a partial explanation with high α and β
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Likelihood

We often prefer the more likely explanation:

Example: In the disjunctive forest-fire example, if K = {u10, u01}
and I give u10 higher probability (ML1 = 1 has higher probability
than ML2 = 1), then ML1 = 1 is a better explanation of FB = 1.

But that’s not the whole story either . . .
Example: Suppose there’s a fire in a lab; you suspect an arsonist.
But one of the variables in the model is O: presence of oxygen.

▶ if K consists only of contexts where there is a fire, then O = 1
is a sufficient cause for the fire relative to K, so is an
explanation of the fire.

▶ Moreover, the probability that O = 1 is high (also conditional
on there being a fire).

▶ But we don’t view the presence of oxygen as a very good
explanation of the fire.
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Explanatory Power

Roughly speaking, we define the explanatory power of a partial
explanation X⃗ = x⃗ for φ relative to (K,Pr) as Pr(φ | X⃗ = x⃗).
▶ O = 1 has low explanatory power for lab fires

▶ It’s unlikely for a lab fire to occur just because there is oxygen

But this rough definition is not quite right.
▶ It confounds correlation with causation

▶ a falling barometer would have high explanatory power for rain

So we define explanatory power of X⃗ = x⃗ for φ relative to (K,Pr)
as the probability that X⃗ = x⃗ is a cause of φ conditional on
X⃗ = x⃗.
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Competing notions of goodness

There is a tension between these notions of goodness:

▶ goodness of partial explanation

▶ likelihood of explanation

▶ explanatory power of explanation

We may not be able to get an explanation that optimizes all three.

There is no obvious way to resolve the tension

▶ The modeler has to decide what is important.
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Conclusion

Explanation is a slippery notion.
▶ This is not the first or second definition that I tried . . .

▶ And it differs from the one in the original Halpern-Pearl paper
since it focuses more on sufficient causes

▶ Since it’s not clear how to prove a theorem saying “the
definition is right”, we must rely on examples to sharpen
intuition.

▶ There are many notions of “goodness” for explanations, and a
modeler needs to trade them off.
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I’ve only scratched the surface here. For more details, see Chapter
7 in
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