Candidate Witness Encryption from Lattice Assumptions

Rotem Tsabary Reichman University (IDC), Israel Google Research, Israel

Witness Encryption [Garg, Gentry, Sahai, Waters, STOC13]

Encrypt a message s.t. decryption requires solving a problem in NP.

Encrypt with respect to a predicate $f: \{0,1\}^n \rightarrow \{0,1\}$. **Decrypt** with any witness w where f(w) = 1. **Security:** decryption is hard if f(w) = 0 for all w.

Witness Encryption [Garg, Gentry, Sahai, Waters, STOC13]

Existing Candidates

- From MMaps [GLW14]
- Lattice-based candidates [WZ17,CVW18]
- From iO

Motivation

A 'simple' lattice-based candidate with better insight on its security.

Our Contribution

[Wee22] Evasive LWE

A candidate with provable security from a new *** lattice assumption.

Branching Programs

Branching Programs

w = 1001

Branching Programs

[Barrington 89]: Every $f \in NC^1$ can be computed by a poly-sized BP.

Witness Encryption from Branching Programs

A natural approach: ct_{in} , ct_{out} , key-pair for each level

Security relies on the premise that f(w) = 0 for all w. **Problem:** Inconsistent inputs might result in the accepting state.

Witness Encryption from Branching Programs

A natural approach: ct_{in} , ct_{out} , key-pair for each level

Security relies on the premise that f(w) = 0 for all w. **Problem:** Inconsistent inputs might result in the accepting state.

Witness Encryption from Branching Programs

A natural approach: ct_{in} , ct_{out} , key-pair for each level

Observation: WE for read-once BP is trivial.

Multi-State Branching Program

Multi-State Branching Program

Consistency check:

Add a 'memory cell' for each input bit that verifies its consistency.

Memory cell for w_2 :

Graph-Induced Lattice Encodings (GGH15) [Gentry, Gorbunov, Halevi, TCC15]

 $Encodeig(A^{td},S_0,Big) o K_0 \ Encodeig(A^{td},S_1,Big) o K_1$

 $(sA+e)K_0=sS_0B+e'$ $(sA+e)K_1=sS_1B+e'$

GGH15 Encodings for Branching Programs [GGH15,CC17,WZ17,GKW17a,CVW18,CHVW19]

BP Encoding: $sA + e, \{K_0^i, K_1^i\}_i$

GGH15 Encodings for Branching Programs [GGH15,CC17,WZ17,GKW17a,CVW18,CHVW19]

 $PRF(x) \coloneqq s \int S_{x_i}^i B$

Evaluation on *x*:

$$(sA+e)\prod_{i}K_{x_{i}}^{i}\approx s\prod_{i}S_{x_{i}}^{i}B$$

Encoding the Consistency-Checking BP

Decryption

Let x be a transcript of a witness w s.t. f(w) = 1.

Decryption

Compute $S \prod_i S_{x_i}^i \boldsymbol{B_f} + \sum_j S \prod_i S_{x_i}^i \boldsymbol{B_j}$

Security - Intuition

Let x be a consistent transcript w.r.t. some w. **Recall:** f(w) = 0 for all w.

Security - Intuition

Let x be a transcript inconsistent at index j.

$$(A) \xrightarrow{S_0} (B)$$

 $egin{aligned} Encodeig(A^{td},S_0,Big) & o K_0 \ Encodeig(A^{td},S_1,Big) & o K_1 \ sA+e \end{aligned}$

Standard Analysis Steps: 1. LWE w.r.t. *B* is hard.

 $egin{aligned} Encodeig(A^{td},S_0,Big) & o K_0 \ Encodeig(A^{td},S_1,Big) & o K_1 \ sA+e \end{aligned}$

 $egin{aligned} Encodeig(A^{td},S_0,Big) & o K_0 \ Encodeig(A^{td},S_1,Big) & o K_1 \ sA+e \end{aligned}$

- 1. LWE w.r.t. B is hard.
- 2. Simulate K_0, K_1 without a trapdoor.

sA + e

- 1. LWE w.r.t. B is hard.
- 2. Simulate K_0, K_1 without a trapdoor.
- 3. Generate A without a trapdoor.

 $egin{aligned} Encodeig(A^{td},S_0,Big) & o K_0 \ Encodeig(A^{td},S_1,Big) & o K_1 \ sA+e \end{aligned}$

- 1. LWE w.r.t. B is hard.
- 2. Simulate K_0, K_1 without a trapdoor.
- 3. Generate A without a trapdoor.
- 4. LWE w.r.t. A is hard.

 $sA+e, \; \left\{K_{0}^{i},K_{1}^{i}
ight\}_{i}$

 $sA+e,~~ig\{K_{0}^{i},K_{1}^{i}ig\}_{i}$

Standard Analysis Steps:1. LWE w.r.t. i'th level is hard.

 $sA+e,~\left\{K_0^i,K_1^i
ight\}_i$

- 1. LWE w.r.t. i'th level is hard.
- 2. Simulate K_0^i, K_1^i without a trapdoor.

 $sA+e, \; \left\{K_{0}^{i},K_{1}^{i}
ight\}_{i}$

- 1. LWE w.r.t. i'th level is hard.
- 2. Simulate K_0^i, K_1^i without a trapdoor.
- 3. Generate (i-1)'th level without a trapdoor.

 $sA+e, \; \left\{K_{0}^{i},K_{1}^{i}
ight\}_{i}$

- 1. LWE w.r.t. i'th level is hard.
- 2. Simulate K_0^i, K_1^i without a trapdoor.
- 3. Generate (i-1)'th level without a trapdoor.
- 4. LWE w.r.t. (i-1)'th level is hard.

 $sA+e, \; \left\{K_{0}^{i},K_{1}^{i}
ight\}_{i}$

- 1. LWE w.r.t. i'th level is hard.
- 2. Simulate K_0^i, K_1^i without a trapdoor.
- 3. Generate (i-1)'th level without a trapdoor.
- 4. LWE w.r.t. (i-1)'th level is hard.

 $sA+e, \; \left\{K_{0}^{i},K_{1}^{i}
ight\}_{i}$

- 1. LWE w.r.t. i'th level is hard.
- 2. Simulate K_0^i, K_1^i without a trapdoor.
- 3. Generate (i-1)'th level without a trapdoor.
- 4. LWE w.r.t. (i-1)'th level is hard.

 $sA+e, \; \left\{K_{0}^{i},K_{1}^{i}
ight\}_{i}$

- 1. LWE w.r.t. i'th level is hard.
- 2. Simulate K_0^i, K_1^i without a trapdoor.
- 3. Generate (i-1)'th level without a trapdoor.
- 4. LWE w.r.t. (i-1)'th level is hard.

 $sA+e, \; \left\{K_{0}^{i},K_{1}^{i}
ight\}_{i}$

- 1. LWE w.r.t. i'th level is hard.
- 2. Simulate K_0^i, K_1^i without a trapdoor.
- 3. Generate (i-1)'th level without a trapdoor.
- 4. LWE w.r.t. (i-1)'th level is hard.

Security Analysis

LWE with respect to the last level is not hard since the matrices are correlated. However, correlated matrices **cannot** be accessed with the same LWE secret.

Security Analysis

Define a designated LWE experiment:

Security Analysis

WE security game \longrightarrow designated LWE experiment

A new assumption [Wee22,Tsa22]:

$$\begin{array}{l} \text{Let } A,B\in\mathbb{Z}_q^{n\times m} \text{ and } K\leftarrow A^{td}(B)\\\\ \text{LWE w.r.t. } [A]\\ \text{given } aux=K \end{array} \quad \text{is as hard as} \quad \text{LWE w.r.t. } [A|B] \end{array}$$

Security Analysis - Summary

