
Single-Server Private Information Retrieval
with Sublinear Amortized Time

Henry Corrigan-Gibbs
MIT

Appeared at Eurocrypt 2022

MIT Fordefi
Alexandra Henzinger Dmitry Kogan

ServerClient

holds database
D ∈ {0,1}n

PIR protocol

learns Di learns nothing about i

Applications: private media [GCMSAW16], private e-commerce [HOG11], private ads
[J01…], private web browsing [KC21], metadata-hiding messaging [AS16…], …

holds
i ∈ {1,⋯, n}

Private information retrieval [CGKS95,KO97]

ServerClient

holds database
D ∈ {0,1}n

PIR protocol

learns Di learns nothing about i

holds
i ∈ {1,⋯, n}

 communication
[CMS99,BGI16,DG16]
≪ n

Private information retrieval [CGKS95,KO97]

ServerClient

holds database
D ∈ {0,1}n

learns Di learns nothing about i

holds
i ∈ {1,⋯, n}

 communication
[CMS99,BGI16,DG16]
≪ n

Private information retrieval [CGKS95,KO97]

PIR inherently has high server-side computation costs [BIM04]:
To answer a single query, the server(s) must run in time .
n

ServerClient

holds database
D ∈ {0,1}n

learns Di learns nothing about i

holds
i ∈ {1,⋯, n}

 communication
[CMS99,BGI16,DG16]
≪ n

Private information retrieval [CGKS95,KO97]

Idea: Amortize the server time over many queries [BIM04,IKOS04]

PIR inherently has high server-side computation costs [BIM04]:
To answer a single query, the server(s) must run in time .
n

[IKOS04,HHG13,GKL10,AS16,H16,ACLS18,CHLR18]

Batch PIR with non-adaptive queries

[CK20,SACM21,KC21]

Offline/online PIR with 2 servers

Download the database

[BIPW17,CHR17,HOWW18]

PIR with preprocessing

Existing PIR with sublinear time

[IKOS04,HHG13,GKL10,AS16,H16,ACLS18,CHLR18]

Batch PIR with non-adaptive queries

[CK20,SACM21,KC21]

Offline/online PIR with 2 servers

Download the database

 bits per
client, or

VBB

n
 bitsn

Existing PIR with sublinear time

[BIPW17,CHR17,HOWW18]

PIR with preprocessing

This work

a single server

adaptive queries

sublinear
amortized time

2. Matching lower bounds that relate server time and client storage.

1. The first PIR schemes to have:

sublinear
extra storage

This work

a single server

adaptive queries

sublinear
amortized time

2. Matching lower bounds that relate server time and client storage.

1. The first PIR schemes to have:

sublinear
extra storage

Results preview:
 time + storage from DDH

 time + storage from FHE

n3/4

n1/2

This work

a single server

sublinear
amortized time

2. Matching lower bounds that relate server time and client storage.

1. The first PIR schemes to have:

sublinear
extra storage

adaptive queries

Results preview:
 time + storage from DDH

 time + storage from FHE

n3/4

n1/2

This talk
1. Background: The offline/online PIR model

2. Our results

➤ New PIR schemes with sublinear time

➤ New lower bounds on many-query PIR

3. Open questions

This talk
1. Background: The offline/online PIR model

2. Our results

➤ New PIR schemes with sublinear time

➤ New lower bounds on many-query PIR

3. Open questions

Our approach: build PIR with two phases

1. Once, run a linear-time “offline” phase.

2. For each of the queries, run a sublinear-time “online” phase.Q

Goal: build PIR for adaptive queries, with sublinear amortized timeQ

Our approach: build PIR with two phases

1. Once, run a linear-time “offline” phase.

2. For each of the queries, run a sublinear-time “online” phase.Q

Goal: build PIR for adaptive queries, with sublinear amortized timeQ

If , the per-query
amortized time is sublinear

Q ≥ nϵ

Our approach: build PIR with two phases

1. Once, run a linear-time “offline” phase.

2. For each of the queries, run a sublinear-time “online” phase.Q

Goal: build PIR for adaptive queries, with sublinear amortized timeQ

Related work [CK20,SACM21,KC21] supports 1 query per offline phase
in the single-server setting → cannot give sublinear amortized time

holds
D ∈ {0,1}n

Many-query offline/online PIR

holds
D ∈ {0,1}n

hint

Many-query offline/online PIR

holds
D ∈ {0,1}n

hint

wants
i1 ∈ [n]

recovers Di1

Many-query offline/online PIR

holds
D ∈ {0,1}n

hint

wants
i1 ∈ [n]

recovers Di2

recovers Di1i2 ∈ [n]

Many-query offline/online PIR

holds
D ∈ {0,1}n

hint

wants
i1 ∈ [n]

recovers Di2

recovers Di1

⋯

i2 ∈ [n]
 ⋯

Many-query offline/online PIR

holds
D ∈ {0,1}n

recovers DiQ

hint

wants
i1 ∈ [n]

recovers Di2

recovers Di1

⋯iQ ∈ [n]

i2 ∈ [n]
 ⋯

Many-query offline/online PIR

• Correctness: If the client and server execute the protocol faithfully,
for any , for any , the client correctly recovers ,
with overwhelming probability.

• Malicious security: Even if the server does not follow the protocol, the
server learns nothing about .
More formally, for any

D i1, ⋯, iQ ∈ [n] Di1, ⋯, DiQ

i1, ⋯, iQ
I, I′ ∈ [n]Q,

{Server's view on query sequence I} ≈c {Server's view on query sequence I′ }

Many-query PIR requirements

• Correctness: If the client and server execute the protocol faithfully,
for any , for any , the client correctly recovers ,
with overwhelming probability.

• Malicious security: Even if the server does not follow the protocol, the
server learns nothing about .
More formally, for any

D i1, ⋯, iQ ∈ [n] Di1, ⋯, DiQ

i1, ⋯, iQ
I, I′ ∈ [n]Q,

{Server's view on query sequence I} ≈c {Server's view on query sequence I′ }

In our schemes, the queries are independent of the server’s past answers.

Many-query PIR requirements

• Correctness: If the client and server execute the protocol faithfully,
for any , for any , the client correctly recovers ,
with overwhelming probability.

• Malicious security: Even if the server does not follow the protocol, the
server learns nothing about .
More formally, for any

D i1, ⋯, iQ ∈ [n] Di1, ⋯, DiQ

i1, ⋯, iQ
I, I′ ∈ [n]Q,

{Server's view on query sequence I} ≈c {Server's view on query sequence I′ }

Goal: Minimize communication, computation, and storage costs

Many-query PIR requirements

This talk
1. Background: The offline/online PIR model

2. Our results

➤ New PIR schemes with sublinear time

➤ New lower bounds on many-query PIR

3. Open questions

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on
database size , when the client makes adaptive queries, has:

• amortized server time ,

• client storage and no extra server storage,

• amortized client time , and

• amortized communication .

n n1/4

n3/4

n3/4

n1/2

n1/2

Theorem 1: From linearly homomorphic encryption.

Throughout this talk, we omit and factors.log(n) poly(λ)

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on
database size , when the client makes adaptive queries, has:

• amortized server time ,

• client storage and no extra server storage,

• amortized client time , and

• amortized communication .

n n1/4

n3/4

n3/4

n1/2

n1/2

Theorem 2: From fully homomorphic encryption.

Theorem 1: From linearly homomorphic encryption.

Throughout this talk, we omit and factors.log(n) poly(λ)

Assuming FHE*, we improve the amortized server time and client storage to
, if the client makes adaptive queries.n1/2 n1/2

Assuming FHE*, we improve the amortized server time and client storage to
, if the client makes adaptive queries.n1/2 n1/2

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on
database size , when the client makes adaptive queries, has:

• amortized server time ,

• client storage and no extra server storage,

• amortized client time , and

• amortized communication .

n n1/4

n3/4

n3/4

n1/2

n1/2

Theorem 2: From fully homomorphic encryption.

Theorem 1: From linearly homomorphic encryption.

The amortized time is optimal, given
the number of queries. [BIM04]

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on
database size , when the client makes adaptive queries, has:

• amortized server time ,

• client storage and no extra server storage,

• amortized client time , and

• amortized communication .

n n1/4

n3/4

n3/4

n1/2

n1/2

Theorem 2: From fully homomorphic encryption.

Theorem 1: From linearly homomorphic encryption.

The amortized time is optimal, given
the number of queries. [BIM04]

Assuming FHE*, we improve the amortized server time and client storage to
, if the client makes adaptive queries.n1/2 n1/2

We show that the tradeoff between server time and client storage is optimal.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on
database size , when the client makes adaptive queries, has:

• amortized server time ,

• client storage and no extra server storage,

• amortized client time , and

• amortized communication .

n n1/4

n3/4

n3/4

n1/2

n1/2

Theorem 2: From fully homomorphic encryption.

Theorem 1: From linearly homomorphic encryption.

The amortized time is optimal, given
the number of queries. [BIM04]

Assuming FHE*, we improve the amortized server time and client storage to
, if the client makes adaptive queries.n1/2 n1/2

We show that the tradeoff between server time and client storage is optimal.

Proof sketch for Theorem 1

Single-query PIR with
sublinear online time

[CK20]

New: Many-query PIR with
sublinear amortized time

New: generic compiler,
applying ideas from batch codes

[IKOS04]

recovers Di

hint size n2/3

offline time n

online time n2/3

Assuming DDH, QR, DCR, or LWE

wants
i ∈ [n]

holds
D ∈ {0,1}n

Single-query PIR with sublinear online time [CK20]

recovers Di

❌

Assuming DDH, QR, DCR, or LWE

wants
i ∈ [n]

holds
D ∈ {0,1}n

Single-query PIR with sublinear online time [CK20]

hint size n2/3

offline time n

online time n2/3

holds ,

in chunks of size

D ∈ {0,1}n

Q n/Q

sends permutation

Our compiler: To handle adaptive queries, split the database in random chunks. Q Q

holds ,

in chunks of size

D ∈ {0,1}n

Q n/Q

sends permutation

Observation: With probability ,
at most distinct queries fall in any one chunk.

1 − negl(λ)
λ

Our compiler: To handle adaptive queries, split the database in random chunks. Q Q

Offline: Permute + partition the database, then run offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

 The client caches all recovered bits, to never re-query for the same index.

λ

holds
D ∈ {0,1}n

holds
D ∈ {0,1}n

Offline: Permute + partition the database, then run offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

 The client caches all recovered bits, to never re-query for the same index.

λ

holds ,

in chunks of size

D ∈ {0,1}n

Q n/Q

Offline: Permute + partition the database, then run offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

 The client caches all recovered bits, to never re-query for the same index.

λ

holds ,

in chunks of size

D ∈ {0,1}n

Q n/Q

Offline: Permute + partition the database, then run offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

 The client caches all recovered bits, to never re-query for the same index.

λ

holds ,

in chunks of size

D ∈ {0,1}n

Q n/Q

 hintsλQ

Offline: Permute + partition the database, then run offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

 The client caches all recovered bits, to never re-query for the same index.

λ

holds ,

in chunks of size

D ∈ {0,1}n

Q n/Q

wants
i1 ∈ [n]

 hintsλQ

Offline: Permute + partition the database, then run offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

 The client caches all recovered bits, to never re-query for the same index.

λ

i1

holds ,

in chunks of size

D ∈ {0,1}n

Q n/Q

wants
i1 ∈ [n]

 hintsλQ

Offline: Permute + partition the database, then run offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

 The client caches all recovered bits, to never re-query for the same index.

λ

i1

holds ,

in chunks of size

D ∈ {0,1}n

Q n/Q

wants
i1 ∈ [n]

 hintsλQ

Offline: Permute + partition the database, then run offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

 The client caches all recovered bits, to never re-query for the same index.

λ

i1

holds ,

in chunks of size

D ∈ {0,1}n

Q n/Q

wants
i1 ∈ [n]

 hintsλQ

Offline: Permute + partition the database, then run offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

 The client caches all recovered bits, to never re-query for the same index.

λ

i1

holds ,

in chunks of size

D ∈ {0,1}n

Q n/Q

wants
i1 ∈ [n]

 hintsλQ

Offline: Permute + partition the database, then run offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

 The client caches all recovered bits, to never re-query for the same index.

λ

recovers + caches Di1

i1

holds ,

in chunks of size

D ∈ {0,1}n

Q n/Q

wants
i1 ∈ [n] ❌

 hintsλQ

Offline: Permute + partition the database, then run offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

 The client caches all recovered bits, to never re-query for the same index.

λ

recovers + caches Di1

i2

i1

holds ,

in chunks of size

D ∈ {0,1}n

Q n/Q

wants
i2 ∈ [n] ❌

 hintsλQ

Offline: Permute + partition the database, then run offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

 The client caches all recovered bits, to never re-query for the same index.

λ

i2

i1

holds ,

in chunks of size

D ∈ {0,1}n

Q n/Q

wants
i2 ∈ [n] ❌

❌

 hintsλQ

Offline: Permute + partition the database, then run offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

 The client caches all recovered bits, to never re-query for the same index.

λ

recovers + caches Di2

i3

i2

i1

holds ,

in chunks of size

D ∈ {0,1}n

Q n/Q

wants
i3 ∈ [n] ❌

❌

 hintsλQ

Offline: Permute + partition the database, then run offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

 The client caches all recovered bits, to never re-query for the same index.

λ

i3

i2

i1

holds ,

in chunks of size

D ∈ {0,1}n

Q n/Q

wants
i3 ∈ [n] ❌

❌
❌

 hintsλQ

Offline: Permute + partition the database, then run offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

 The client caches all recovered bits, to never re-query for the same index.

λ

recovers + caches Di3

i3

i2

i1

holds ,

in chunks of size

D ∈ {0,1}n

Q n/Q
❌
❌

❌

 hintsλQ

Correctness: for any query sequence, the client does not run out of fresh hints
(with overwhelming probability over the choice of permutation).

Offline: Permute + partition the database, then run offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

 The client caches all recovered bits, to never re-query for the same index.

λ

i3

i2

i1

holds ,

in chunks of size

D ∈ {0,1}n

Q n/Q
❌
❌

❌

 hintsλQ

Security: The client’s query does not reveal which chunk it is reading.

Offline: Permute + partition the database, then run offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

 The client caches all recovered bits, to never re-query for the same index.

λ

i3

i2

i1

holds ,

in chunks of size

D ∈ {0,1}n

Q n/Q
❌
❌

❌

 hintsλQ

Cost: We ran the underlying PIR times, on database size .λQ n/Q

Offline: Permute + partition the database, then run offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

 The client caches all recovered bits, to never re-query for the same index.

λ

Input: Single-query PIR with
sublinear online time [CK20]

offline time n

online time n2/3

hint size n2/3

Output: Many-query PIR with
sublinear amortized time

offline time n

online time n3/4

hint size n3/4

Generic compiler, with
 queriesQ = n1/4

Proof sketch for Theorem 1

Throughout this talk, we omit and factors.log(n) poly(λ)

Input: Single-query PIR with
sublinear online time [CK20]

offline time n

online time n2/3

hint size n2/3

Output: Many-query PIR with
sublinear amortized time

offline time n

online time n3/4

hint size n3/4

Proof sketch for Theorem 1

Throughout this talk, we omit and factors.log(n) poly(λ)

amortized time n3/4

✔
Generic compiler, with

 queriesQ = n1/4

Assuming FHE*, we improve the amortized server time and client storage to
, if the client makes adaptive queries.n1/2 n1/2

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on
database size , when the client makes adaptive queries, has:

• amortized server time ,

• client storage and no extra server storage,

• amortized client time , and

• amortized communication .

n ≥ n1/4

n3/4

n3/4

n1/2

n1/2

Theorem 2: From fully homomorphic encryption.

Theorem 1: From linearly homomorphic encryption.

Assuming FHE*, we improve the amortized server time and client storage to
, if the client makes adaptive queries.n1/2 n1/2

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on
database size , when the client makes adaptive queries, has:

• amortized server time ,

• client storage and no extra server storage,

• amortized client time , and

• amortized communication .

n ≥ n1/4

n3/4

n3/4

n1/2

n1/2

Theorem 2: From fully homomorphic encryption.

Theorem 1: From linearly homomorphic encryption.

Proof sketch for Theorem 2

Given the parities of random, size- subsets of the database,
the client can make adaptive queries with online time .

O(Q) n/Q
Q n/Q

Informal claim 1.

Proof sketch for Theorem 2

Given the parities of random, size- subsets of the database,
the client can make adaptive queries with online time .

O(Q) n/Q
Q n/Q

Informal claim 1.

Prior work [CK20,SACM21,KC21] only supports one adaptive query.

Proof sketch for Theorem 2

Given the parities of random, size- subsets of the database,
the client can make adaptive queries with online time .

O(Q) n/Q
Q n/Q

Informal claim 1.

Informal claim 2.

We give a Boolean circuit for retrieving the parities of subsets of
the database, each of size , in gates.

O(Q)
n/Q O(n)

Prior work [CK20,SACM21,KC21] only supports one adaptive query.

Proof sketch for Theorem 2

Given the parities of random, size- subsets of the database,
the client can make adaptive queries with online time .

O(Q) n/Q
Q n/Q

Informal claim 1.

Informal claim 2.

We give a Boolean circuit for retrieving the parities of subsets of
the database, each of size , in gates.

O(Q)
n/Q O(n)

In the offline phase, the server runs the circuit under FHE in linear time.

Prior work [CK20,SACM21,KC21] only supports one adaptive query.

(1) Sample subsets of , each of size .

(2) For each subset , send to the server and get its parity, .

O(Q) {1,⋯, n} n/Q
S Enc(S) ∑

j∈S

Dj

holds
D ∈ {0,1}n

(1) Sample subsets of , each of size .

(2) For each subset , send to the server and get its parity, .

O(Q) {1,⋯, n} n/Q
S Enc(S) ∑

j∈S

Dj

holds
D ∈ {0,1}n

wants
i1 ∈ [n]

(1) Sample subsets of , each of size .

(2) For each subset , send to the server and get its parity, .

O(Q) {1,⋯, n} n/Q
S Enc(S) ∑

j∈S

Dj

If some subset contains : then, with good probability,

• ask the server for the parity of and recover ,

• discard and “refresh” the distribution of subsets.

Else: send a random subset (that, with some probability, contains).

S i1
S − {i1} Di1

S
i1

holds
D ∈ {0,1}n

wants
i1 ∈ [n]

(1) Sample subsets of , each of size .

(2) For each subset , send to the server and get its parity, .

O(Q) {1,⋯, n} n/Q
S Enc(S) ∑

j∈S

Dj

If some subset contains : then, with good probability,

• ask the server for the parity of and recover ,

• discard and “refresh” the distribution of subsets.

Else: send a random subset (that, with some probability, contains).

S i1
S − {i1} Di1

S
i1

holds
D ∈ {0,1}n

wants
i1 ∈ [n]

Repeat
λ ×

(1) Sample subsets of , each of size .

(2) For each subset , send to the server and get its parity, .

O(Q) {1,⋯, n} n/Q
S Enc(S) ∑

j∈S

Dj

If some subset contains : then, with good probability,

• ask the server for the parity of and recover ,

• discard and “refresh” the distribution of subsets.

Else: send a random subset (that, with some probability, contains).

S i1
S − {i1} Di1

S
i1

holds
D ∈ {0,1}n

wants
i1 ∈ [n]

Repeat
λ ×

Client storage: O(Q) Server offline time: Õ(n)

Server online time: O(n/Q)

Assuming FHE, we improve the amortized server time and client storage to
, if the client makes adaptive queries.n1/2 n1/2

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on
database size , when the client makes adaptive queries, has:

• amortized server time ,

• client storage and no extra server storage,

• amortized client time , and

• amortized communication .

n ≥ n1/4

n3/4

n3/4

n1/2

n1/2

Theorem 2: From fully homomorphic encryption.

Theorem 1: From linearly homomorphic encryption.

This talk
1. Background: The offline/online PIR model

2. Our results

➤ New PIR schemes with sublinear time

➤ New lower bounds on many-query PIR

3. Open questions

Every single-server PIR scheme for adaptive queries, where:

• the server stores the -bit database in its original form,

• the client stores bits between queries, and

• the server runs in amortized time per query,

satisfies .

n
S

T
S ⋅ T ≥ n

Theorem 3: Lower bound for adaptive queries

Every single-server PIR scheme for adaptive queries, where:

• the server stores the -bit database in its original form,

• the client stores bits between queries, and

• the server runs in amortized time per query,

satisfies .

n
S

T
S ⋅ T ≥ n

Theorem 3: Lower bound for adaptive queries

Theorem 4: Lower bound for non-adaptive queries

When the scheme supports a batch of non-adaptive queries, it satisfies
.

Q
max(S, Q) ⋅ T ≥ n

Every single-server PIR scheme for adaptive queries, where:

• the server stores the -bit database in its original form,

• the client stores bits between queries, and

• the server runs in amortized time per query,

satisfies .

n
S

T
S ⋅ T ≥ n

Theorem 3: Lower bound for adaptive queries

Theorem 4: Lower bound for non-adaptive queries

When the scheme supports a batch of non-adaptive queries, it satisfies
.

Q
max(S, Q) ⋅ T ≥ n

Generalizes the
linear-server-time
bound to include
client storage…

Every single-server PIR scheme for adaptive queries, where:

• the server stores the -bit database in its original form,

• the client stores bits between queries, and

• the server runs in amortized time per query,

satisfies .

n
S

T
S ⋅ T ≥ n

Theorem 3: Lower bound for adaptive queries

Theorem 4: Lower bound for non-adaptive queries

When the scheme supports a batch of non-adaptive queries, it satisfies
.

Q
max(S, Q) ⋅ T ≥ n … and batch queries.

Generalizes the
linear-server-time
bound to include
client storage…

Every single-server PIR scheme for adaptive queries, where:

• the server stores the -bit database in its original form,

• the client stores bits between queries, and

• the server runs in amortized time per query,

satisfies .

n
S

T
S ⋅ T ≥ n

Theorem 3: Lower bound for adaptive queries

Generalizes the
linear-server-time
bound to include
client storage…

Theorem 4: Lower bound for non-adaptive queries

When the scheme supports a batch of non-adaptive queries, it satisfies
.

Q
max(S, Q) ⋅ T ≥ n … and batch queries.

Bounds on PIR with preprocessing, where the server stores extra bits:

• With any number of servers, [BIM04].

• With a single server, if , then [PY22].

B
B ⋅ T ≥ n

B ≥ log n B ⋅ T ≥ n log n

Every single-server PIR scheme for adaptive queries, where:

• the server stores the -bit database in its original form,

• the client stores bits between queries, and

• the server runs in amortized time per query,

satisfies .

n
S

T
S ⋅ T ≥ n

Theorem 3: Lower bound for adaptive queries

Theorem 4: Lower bound for non-adaptive queries

When the scheme supports a batch of non-adaptive queries, it satisfies
.

Q
max(S, Q) ⋅ T ≥ n

The server time/client
storage tradeoff in our

new adaptive PIR (Thm 2)
is optimal.

Every single-server PIR scheme for adaptive queries, where:

• the server stores the -bit database in its original form,

• the client stores bits between queries, and

• the server runs in amortized time per query,

satisfies .

n
S

T
S ⋅ T ≥ n

Theorem 3: Lower bound for adaptive queries

Theorem 4: Lower bound for non-adaptive queries

When the scheme supports a batch of non-adaptive queries, it satisfies
.

Q
max(S, Q) ⋅ T ≥ n

If , existing batch PIR [IKOS04] has optimal time.

If , our new adaptive PIR (Thm 2) has optimal time.

S < Q
S > Q

The server time/client
storage tradeoff in our

new adaptive PIR (Thm 2)
is optimal.

Every single-server PIR scheme for adaptive queries, where:

• the server stores the -bit database in its original form,

• the client stores bits between queries, and

• the server runs in amortized time per query,

satisfies .

n
S

T
S ⋅ T ≥ n

Theorem 3: Lower bound for adaptive queries

Theorem 4: Lower bound for non-adaptive queries

When the scheme supports a batch of non-adaptive queries, it satisfies
.

Q
max(S, Q) ⋅ T ≥ n

If , existing batch PIR [IKOS04] has optimal time.

If , our new adaptive PIR (Thm 2) has optimal time.

S < Q
S > Q

Proof via reduction to
single-query PIR

The server time/client
storage tradeoff in our

new adaptive PIR (Thm 2)
is optimal.

Every single-server PIR scheme for adaptive queries, where:

• the server stores the -bit database in its original form,

• the client stores bits between queries, and

• the server runs in amortized time per query,

satisfies .

n
S

T
S ⋅ T ≥ n

Theorem 3: Lower bound for adaptive queries

Theorem 4: Lower bound for non-adaptive queries

When the scheme supports a batch of non-adaptive queries, it satisfies
.

Q
max(S, Q) ⋅ T ≥ n

If , existing batch PIR [IKOS04] has optimal time.

If , our new adaptive PIR (Thm 2) has optimal time.

S < Q
S > Q

Proof via reduction to
single-query PIR

Proof via incompressibility argument

The server time/client
storage tradeoff in our

new adaptive PIR (Thm 2)
is optimal.

This talk
1. Background: The offline/online PIR model

2. Our results

➤ New PIR schemes with sublinear time

➤ New lower bounds on many-query PIR

3. Open questions

 adaptive queriesn

 amortized
time

n

Adaptive single-server PIR with sublinear time + storage is feasible:

 client
storage

n

But, these schemes are not yet efficient enough for use in practice.
➤ Follow-up work [ZLTS22] improves the communication to .

➤ Can we construct optimal schemes from assumptions weaker than FHE?

➤ Can we beat our lower bounds by having the server encode the database?

Õλ(1)

 adaptive queriesn

 amortized
time

n

But, these schemes are not yet efficient enough for use in practice.
➤ Follow-up work [ZLTS22] improves the communication to .

➤ Can we construct optimal schemes from assumptions weaker than FHE?

➤ Can we beat our lower bounds by having the server encode the database?

Õλ(1)

Adaptive single-server PIR with sublinear time + storage is feasible:

 client
storage

n

 adaptive queriesn

 amortized
time

n

Adaptive single-server PIR with sublinear time + storage is feasible:

 client
storage

n

ahenz@csail.mit.edu — https://eprint.iacr.org/2022/081

But, these schemes are not yet efficient enough for use in practice.
➤ Follow-up work [ZLTS22] improves the communication to .

➤ Can we construct optimal schemes from assumptions weaker than FHE?

➤ Can we beat our lower bounds by having the server encode the database?

Õλ(1)

mailto:ahenz@csail.mit.edu
https://eprint.iacr.org/2022/081

