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ServerClient

holds database 
D ∈ {0,1}n

learns Di learns nothing about i

holds 
i ∈ {1,⋯, n}

 communication 
[CMS99,BGI16,DG16]
≪ n

Private information retrieval [CGKS95,KO97]

Idea: Amortize the server time over many queries [BIM04,IKOS04]

PIR inherently has high server-side computation costs [BIM04]:               
To answer a single query, the server(s) must run in time .
n
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Our approach: build PIR with two phases
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Our approach: build PIR with two phases


1. Once, run a linear-time “offline” phase.


2. For each of the  queries, run a sublinear-time “online” phase.Q

Goal: build PIR for  adaptive queries, with sublinear amortized timeQ

Related work [CK20,SACM21,KC21] supports 1 query per offline phase 
in the single-server setting → cannot give sublinear amortized time
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• Correctness: If the client and server execute the protocol faithfully,          
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• Correctness: If the client and server execute the protocol faithfully,          
for any , for any , the client correctly recovers , 
with overwhelming probability.


• Malicious security: Even if the server does not follow the protocol, the 
server learns nothing about .                                                    
More formally, for any  

D i1, ⋯, iQ ∈ [n] Di1, ⋯, DiQ

i1, ⋯, iQ
I, I′￼ ∈ [n]Q,

{Server's view on query sequence I} ≈c {Server's view on query sequence I′￼}

Goal: Minimize communication, computation, and storage costs

Many-query PIR requirements
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Proof sketch for Theorem 1

Single-query PIR with 
sublinear online time 

[CK20]

New: Many-query PIR with 
sublinear amortized time

New: generic compiler,       

applying ideas from batch codes 

[IKOS04]
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holds ,

in  chunks of size 

D ∈ {0,1}n

Q n/Q

sends permutation

Observation: With probability ,               
at most  distinct queries fall in any one chunk.

1 − negl(λ)
λ

Our compiler: To handle  adaptive queries, split the database in  random chunks. Q Q
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Security: The client’s query does not reveal which chunk it is reading.
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Cost: We ran the underlying PIR  times, on database size .λQ n/Q
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            The client caches all recovered bits, to never re-query for the same index.
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Proof sketch for Theorem 1

Throughout this talk, we omit  and  factors.log(n) poly(λ)

amortized time n3/4

✔
Generic compiler, with 

 queriesQ = n1/4
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Proof sketch for Theorem 2

Given the parities of  random, size-  subsets of the database, 
the client can make  adaptive queries with online time .

O(Q) n/Q
Q n/Q

Informal claim 1.

Informal claim 2.

We give a Boolean circuit for retrieving the parities of  subsets of 
the database, each of size , in  gates.  

O(Q)
n/Q O(n)

In the offline phase, the server runs the circuit under FHE in linear time.


Prior work [CK20,SACM21,KC21] only supports one adaptive query.
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If some subset  contains : then, with good probability,
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Client storage: O(Q) Server offline time: Õ(n)

Server online time: O(n/Q)
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satisfies .

n
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Theorem 3: Lower bound for adaptive queries
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Theorem 4: Lower bound for non-adaptive queries

When the scheme supports a batch of  non-adaptive queries, it satisfies 
.

Q
max(S, Q) ⋅ T ≥ n … and batch queries.

Bounds on PIR with preprocessing, where the server stores  extra bits:

• With any number of servers,  [BIM04].

• With a single server, if , then  [PY22].

B
B ⋅ T ≥ n

B ≥ log n B ⋅ T ≥ n log n
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The server time/client 
storage tradeoff in our 

new adaptive PIR (Thm 2) 
is optimal.



This talk
1. Background: The offline/online PIR model


2. Our results

➤ New PIR schemes with sublinear time

➤ New lower bounds on many-query PIR


3. Open questions



 adaptive queriesn

 amortized 
time

n

Adaptive single-server PIR with sublinear time + storage is feasible:

 client 
storage 

n

But, these schemes are not yet efficient enough for use in practice.

➤ Follow-up work [ZLTS22] improves the communication to .


➤ Can we construct optimal schemes from assumptions weaker than FHE?


➤ Can we beat our lower bounds by having the server encode the database?
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