Single-Server Private Information Retrieval with Sublinear Amortized Time

Henry Corrigan-Gibbs <u>Alexandra Henzinger</u> MIT MIT

Appeared at Eurocrypt 2022

<u>ra Henzinger</u> Dmitry Kogan MIT Fordefi

Applications: private media [GCMSAW16], private e-commerce [HOG11], private ads [J01...], private web browsing [KC21], metadata-hiding messaging [AS16...], ...

Private information retrieval [CGKS95,KO97] Client Server $\ll n$ communication [CMS99,BGI16,DG16] holds $i \in \{1, \cdots, n\}$ learns D_i learns nothing about *i*

holds database $D \in \{0,1\}^n$

PIR inherently has high server-side computation costs [BIM04]: To answer a single query, the server(s) must run in time n.

PIR inherently has high server-side computation costs [BIM04]: To answer a single query, the server(s) must run in time n.

Idea: Amortize the server time over many queries [BIM04,IKOS04]

Existing PIR with sublinear time

Batch PIR with non-adaptive queries

[IKOS04,HHG13,GKL10,AS16,H16,ACLS18,CHLR18]

[BIPW17,CHR17,HOWW18]

Offline/online PIR with 2 servers

[CK20,SACM21,KC21]

Download the database

Existing PIR with sublinear time

Batch PIR with non-adaptive queries

[IKOS04,HHG13,GKL10,AS16,H16,ACLS18,CHLR18]

[BIPW17,CHR17,HOWW18]

Offline/online PIR with 2 servers

[CK20,SACM21,KC21]

Download the database

1. The first PIR schemes to have:

This work

a single server

2. Matching lower bounds that relate server time and client storage.

1. The first PIR schemes to have:

This work

Results preview: $n^{3/4}$ time + storage from DDH $n^{1/2}$ time + storage from FHE

a single server

2. Matching lower bounds that relate server time and client storage.

1. The first PIR schemes to have:

This work

Results preview: $n^{3/4}$ time + storage from DDH $n^{1/2}$ time + storage from FHE

2. Matching lower bounds that relate server time and client storage.

1. Background: The offline/online PIR model 2. Our results New PIR schemes with sublinear time New lower bounds on many-query PIR 3. Open questions

This talk

1. Background: The offline/online PIR model 2. Our results New PIR schemes with sublinear time New lower bounds on many-query PIR 3. Open questions

This talk

Goal: build PIR for Q adaptive queries, with sublinear amortized time

- 1. Once, run a linear-time "offline" phase.
- 2. For each of the Q queries, run a sublinear-time "online" phase.

Our approach: build PIR with two phases

Goal: build PIR for Q adaptive queries, with sublinear amortized time

- 1. Once, run a linear-time "offline" phase.
- 2. For each of the Q queries, run a sublinear-time "online" phase.

If $Q \ge n^{\epsilon}$, the per-query amortized time is sublinear

Our approach: build PIR with two phases

Goal: build PIR for Q adaptive queries, with sublinear amortized time

- 1. Once, run a linear-time "offline" phase.
- 2. For each of the Q queries, run a sublinear-time "online" phase.

Related work [CK20,SACM21,KC21] supports 1 query per offline phase in the single-server setting \rightarrow cannot give sublinear amortized time

Our approach: build PIR with two phases

Many-query offline/online PIR

Many-query offline/online PIR

holds $D \in \{0, 1\}$

Many-query PIR requirements

- Correctness: If the client and server execute the protocol faithfully, for any D, for any $i_1, \dots, i_Q \in [n]$, the client correctly recovers D_{i_1}, \dots, D_{i_Q} , with overwhelming probability.
- Malicious security: Even if the server does not follow the protocol, the server learns nothing about i_1, \dots, i_O . More formally, for any $I, I' \in [n]^Q$, {Server's view on query sequence I} \approx_c {Server's view on query sequence I'}

Many-query PIR requirements

- **Correctness**: If the client and server execute the protocol faithfully, for any D, for any $i_1, \dots, i_Q \in [n]$, the client correctly recovers D_{i_1}, \dots, D_{i_Q} , with overwhelming probability.
- Malicious security: Even if the server does not follow the protocol, the server learns nothing about i_1, \dots, i_O . More formally, for any $I, I' \in [n]^Q$, {Server's view on query sequence I} \approx_c {Server's view on query sequence I'}

In our schemes, the queries are independent of the server's past answers.

Many-query PIR requirements

- Correctness: If the client and server execute the protocol faithfully, for any D, for any $i_1, \dots, i_Q \in [n]$, the client correctly recovers D_{i_1}, \dots, D_{i_Q} , with overwhelming probability.
- Malicious security: Even if the server does not follow the protocol, the server learns nothing about i_1, \dots, i_Q . More formally, for any $I, I' \in [n]^Q$, {Server's view on query sequence I} \approx_c {Server's view on query sequence I'}

Goal: Minimize communication, computation, and storage costs

1. Background: The offline/online PIR model 2. Our results New PIR schemes with sublinear time New lower bounds on many-query PIR 3. Open questions

This talk

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on database size n, when the client makes $n^{1/4}$ adaptive queries, has: • amortized server time $n^{3/4}$,

- client storage $n^{3/4}$ and no extra server storage,
- amortized client time $n^{1/2}$, and
- amortized communication $n^{1/2}$.

Throughout this talk, we omit log(n) and $poly(\lambda)$ factors.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on database size n, when the client makes $n^{1/4}$ adaptive queries, has: • amortized server time $n^{3/4}$,

- client storage $n^{3/4}$ and no extra server storage,
- amortized client time $n^{1/2}$, and
- amortized communication $n^{1/2}$.

Theorem 2: From fully homomorphic encryption.

 $n^{1/2}$, if the client makes $n^{1/2}$ adaptive queries.

Throughout this talk, we omit log(n) and $poly(\lambda)$ factors.

database size n, when the client makes $n^{1/4}$ adaptive queries, has: • amortized server time $n^{3/4}$,

- client storage $n^{3/4}$ and no extra server storage,
- amortized client time $n^{1/2}$, and
- amortized communication $n^{1/2}$.

Theorem 2: From fully homomorphic encryption.

 $n^{1/2}$, if the client makes $n^{1/2}$ adaptive queries.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on

The amortized time is optimal, given the number of queries. [BIM04]

database size n, when the client makes $n^{1/4}$ adaptive queries, has: • amortized server time $n^{3/4}$,

- client storage $n^{3/4}$ and no extra server storage,
- amortized client time $n^{1/2}$, and
- amortized communication $n^{1/2}$.

Theorem 2: From fully homomorphic encryption.

 $n^{1/2}$, if the client makes $n^{1/2}$ adaptive queries.

We show that the tradeoff between server time and client storage is optimal.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on

The amortized time is optimal, given the number of queries. [BIM04]

database size n, when the client makes $n^{1/4}$ adaptive queries, has: • amortized server time $n^{3/4}$,

- client storage $n^{3/4}$ and no extra server storage,
- amortized client time $n^{1/2}$, and
- amortized communication $n^{1/2}$.

Theorem 2: From fully homomorphic encryption.

 $n^{1/2}$, if the client makes $n^{1/2}$ adaptive queries.

We show that the tradeoff between server time and client storage is optimal.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on

The amortized time is optimal, given the number of queries. [BIM04]

Proof sketch for Theorem 1

Single-query PIR with sublinear online time [CK20]

New: Many-query PIR with sublinear amortized time

New: generic compiler, applying ideas from batch codes [IKOS04]

Assuming DDH, QR, DCR, or LWE

Our compiler: To handle Q adaptive queries, split the database in Q random chunks.

sends permutation

holds $D \in \{0,1\}^n$, in Q chunks of size n/Q

Our compiler: To handle Q adaptive queries, split the database in Q random chunks.

Observation: With probability $1 - negl(\lambda)$, at most λ distinct queries fall in any one chunk.

Offline: Permute + partition the database, then run λ offline phases on each chunk. **Online:** Run an online phase on each chunk, using a hint matching the index. The client caches all recovered bits, to never re-query for the same index.

holds $D \in \{0,1\}^n$

Correctness: for any query sequence, the client does not run out of fresh hints (with overwhelming probability over the choice of permutation).

Security: The client's query does not reveal which chunk it is reading.

Cost: We ran the underlying PIR λQ times, on database size n/Q.

Input: Single-query PIR with sublinear online time [CK20]

hint size $n^{2/3}$

offline time *n*

online time $n^{2/3}$

Generic compiler, with $O = n^{1/4}$ queries

Throughout this talk, we omit log(n) and $poly(\lambda)$ factors.

Output: Many-query PIR with sublinear amortized time

hint size $n^{3/4}$

offline time *n*

online time $n^{3/4}$

Input: Single-query PIR with sublinear online time [CK20]

hint size $n^{2/3}$

offline time *n*

online time $n^{2/3}$

sublinear amortized time

Theorem 1: From linearly homomorphic encryption.

database size n, when the client makes $\geq n^{1/4}$ adaptive queries, has: • amortized server time $n^{3/4}$,

- client storage $n^{3/4}$ and no extra server storage,
- amortized client time $n^{1/2}$, and
- amortized communication $n^{1/2}$.

Theorem 2: From fully homomorphic encryption.

Assuming FHE*, we improve the amortized server time and client storage to $n^{1/2}$, if the client makes $n^{1/2}$ adaptive queries.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on

Theorem 1: From linearly homomorphic encryption.

database size n, when the client makes $\geq n^{1/4}$ adaptive queries, has: • amortized server time $n^{3/4}$,

- client storage $n^{3/4}$ and no extra server storage,
- amortized client time $n^{1/2}$, and
- amortized communication $n^{1/2}$.

Theorem 2: From fully homomorphic encryption.

Assuming FHE*, we improve the amortized server time and client storage to $n^{1/2}$, if the client makes $n^{1/2}$ adaptive queries.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on

Informal claim 1.

Given the parities of O(Q) random, size-n/Q subsets of the database, the client can make Q adaptive queries with online time n/Q.

Informal claim 1.

Given the parities of O(Q) random, size-n/Q subsets of the database, the client can make Q adaptive queries with online time n/Q.

Prior work [CK20,SACM21,KC21] only supports one adaptive query.

Informal claim 1.

the client can make Q adaptive queries with online time n/Q.

Prior work [CK20,SACM21,KC21] only supports one adaptive query.

Informal claim 2.

We give a Boolean circuit for retrieving the parities of O(Q) subsets of the database, each of size n/Q, in O(n) gates.

Given the parities of O(Q) random, size-n/Q subsets of the database,

Informal claim 1.

the client can make Q adaptive queries with online time n/Q.

Prior work [CK20,SACM21,KC21] only supports one adaptive query.

Informal claim 2.

We give a Boolean circuit for retrieving the parities of O(Q) subsets of the database, each of size n/Q, in O(n) gates.

In the offline phase, the server runs the circuit under FHE in linear time.

Given the parities of O(Q) random, size-n/Q subsets of the database,

(1) Sample O(Q) subsets of $\{1, \dots, n\}$, each of size n/Q.

- If some subset S contains i_1 : then, with good probability,
 - ask the server for the parity of $S \{i_1\}$ and recover D_{i_1} ,
- discard S and "refresh" the distribution of subsets. Else: send a random subset (that, with some probability, contains i_1).

If some subset S contains i_1 : then, with good probability,

- ask the server for the parity of $S - \{i_1\}$ and recover D_{i_1} ,

discard S and "refresh" the distribution of subsets.

- Else: send a random subset (that, with some probability, contains i_1).

If some subset S contains i_1 : then, with good probability,

• ask the server for the parity of $S - \{i_1\}$ and recover D_{i_1} ,

discard S and "refresh" the distribution of subsets.

- Else: send a random subset (that, with some probability, contains i_1).

Theorem 1: From linearly homomorphic encryption.

database size n, when the client makes $\geq n^{1/4}$ adaptive queries, has: • amortized server time $n^{3/4}$,

- client storage $n^{3/4}$ and no extra server storage,
- amortized client time $n^{1/2}$, and
- amortized communication $n^{1/2}$.

Theorem 2: From fully homomorphic encryption.

Assuming FHE, we improve the amortized server time and client storage to $n^{1/2}$, if the client makes $n^{1/2}$ adaptive queries.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on

1. Background: The offline/online PIR model 2. Our results New PIR schemes with sublinear time New lower bounds on many-query PIR 3. Open questions

This talk

Every single-server PIR scheme for adaptive queries, where: • the server stores the *n*-bit database in its original form, • the client stores S bits between queries, and • the server runs in amortized time T per query,

satisfies $S \cdot T \ge n$.

Every single-server PIR scheme for adaptive queries, where: • the server stores the *n*-bit database in its original form, • the client stores S bits between queries, and • the server runs in amortized time T per query,

satisfies $S \cdot T \geq n$.

Theorem 4: Lower bound for non-adaptive queries

When the scheme supports a batch of Q non-adaptive queries, it satisfies $\max(S, Q) \cdot T \ge n.$

Every single-server PIR scheme for adaptive queries, where: • the server stores the *n*-bit database in its original form, the client stores S bits between queries, and • the server runs in amortized time T per query,

satisfies $S \cdot T \ge n$.

Theorem 4: Lower bound for non-adaptive queries

When the scheme supports a batch of Q non-adaptive queries, it satisfies $\max(S, Q) \cdot T \ge n.$

Generalizes the linear-server-time bound to include client storage...

Every single-server PIR scheme for adaptive queries, where: • the server stores the *n*-bit database in its original form, the client stores S bits between queries, and • the server runs in amortized time T per query,

satisfies $S \cdot T \ge n$.

Theorem 4: Lower bound for non-adaptive queries

When the scheme supports a batch of Q non-adaptive queries, it satisfies $\max(S, Q) \cdot T \ge n.$... and batch queries.

Generalizes the linear-server-time bound to include client storage...

Theorem 3: Lower bound for adaptive queries

Every single-server PIR scheme for adaptive queries, where: • the server stores the *n*-bit database in its original form, • the client stores S bits between queries, and • the server runs in amortized time T per query,

satisfies $S \cdot T \ge n$.

Theorem 4: Lower bound for non-adaptive queries

When the scheme supports a batch of Q non-adaptive queries, it satisfies $\max(S, Q) \cdot T \ge n.$... and batch queries.

- With any number of servers, $B \cdot T \ge n$ [BIM04].

Generalizes the linear-server-time bound to include client storage...

Bounds on PIR with preprocessing, where the server stores B extra bits:

• With a single server, if $B \ge \log n$, then $B \cdot T \ge n \log n$ [PY22].

Theorem 3: Lower bound for adaptive queries

Every single-server PIR scheme for adaptive queries, where:

- the server stores the *n*-bit database in its original form,
- the client stores S bits between queries, and
- the server runs in amortized time T per query,

satisfies $S \cdot T \ge n$.

Theorem 4: Lower bound for non-adaptive queries

When the scheme supports a batch of Q non-adaptive queries, it satisfies $\max(S, Q) \cdot T \ge n.$

The server time/client storage tradeoff in our new adaptive PIR (Thm 2) is optimal.

Theorem 3: Lower bound for adaptive queries

Every single-server PIR scheme for adaptive queries, where:

- the server stores the *n*-bit database in its original form,
- the client stores S bits between queries, and
- the server runs in amortized time T per query,

satisfies $S \cdot T \ge n$.

Theorem 4: Lower bound for non-adaptive queries

When the scheme supports a batch of Q non-adaptive queries, it satisfies $\max(S, Q) \cdot T \ge n.$

The server time/client storage tradeoff in our new adaptive PIR (Thm 2) is optimal.

If S < Q, existing batch PIR [IKOS04] has optimal time. If S > Q, our new adaptive PIR (Thm 2) has optimal time.

Theorem 3: Lower bound for adap

Every single-server PIR scheme for

- the server stores the n-bit data
- the client stores S bits betwee
- the server runs in amortized till

satisfies $S \cdot T \geq n$.

Theorem 4: Lower bound for non-

When the scheme supports a batch of Q non-adaptive queries, it satisfies $\max(S, Q) \cdot T \ge n.$

otive queries	Proof via reduction to single-query PIR
r adaptive queries, where: abase in its original form,	
en queries, and me <i>T</i> per query,	The server time/clien storage tradeoff in ou new adaptive PIR (Thm
adaptive querie	is optimal. s

If S < Q, existing batch PIR [IKOS04] has optimal time. If S > Q, our new adaptive PIR (Thm 2) has optimal time.

Theorem 3: Lower bound for adap

Every single-server PIR scheme for

- the server stores the n-bit data
- the client stores S bits betwee
- the server runs in amortized till

satisfies $S \cdot T \ge n$.

Theorem 4: Lower bound for non-

When the scheme supports a batch of Q non-adaptive queries, it satisfies $\max(S, Q) \cdot T \ge n.$

otive queries	Proof via reduction to single-query PIR
r adaptive querie abase in its origi	es, where: nal form,
en queries, and me <i>T</i> per query,	The server time/clien storage tradeoff in ou new adaptive PIR (Thm
adaptive queries	is optimal. S

Proof via incompressibility argument

If S < Q, existing batch PIR [IKOS04] has optimal time. If S > Q, our new adaptive PIR (Thm 2) has optimal time.

1. Background: The offline/online PIR model 2. Our results New PIR schemes with sublinear time New lower bounds on many-query PIR

3. Open questions

This talk

Adaptive single-server PIR with sublinear time + storage is feasible:

- Follow-up work [ZLTS22] improves the communication to $O_{\lambda}(1)$.
- > Can we construct optimal schemes from assumptions weaker than FHE?
- Can we beat our lower bounds by having the server encode the database?

n adaptive queries \sqrt{n} amortized time

But, these schemes are not yet efficient enough for use in practice.

Adaptive single-server PIR with sublinear time + storage is feasible:

- Follow-up work [ZLTS22] improves the communication to $\tilde{O}_{\lambda}(1)$.
- Can we construct optimal schemes from assumptions weaker than FHE?
- > Can we beat our lower bounds by having the server encode the database?

But, these schemes are not yet efficient enough for use in practice.

Adaptive single-server PIR with sublinear time + storage is feasible:

- Follow-up work [ZLTS22] improves the communication to $\tilde{O}_{\lambda}(1)$.
- Can we construct optimal schemes from assumptions weaker than FHE?
- > Can we beat our lower bounds by having the server encode the database?

<u>ahenz@csail.mit.edu</u> – https://eprint.iacr.org/2022/081

But, these schemes are not yet efficient enough for use in practice.