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Today So Far

Post-Quantum Soundness:

« [Unruh12, Unruh16]: weak soundness for special protocols
« [CMSZ21]: strong soundness for more protocols
« Key components: collapsing, special soundness

Post-Quantum Zero-Knowledge:

« |[Watrous06] ZK for very special protocols
« “Oblivious guessing simulator” -> full simulator

o 777 | am once again asking
for quantum rewinding algorithms

This talk: new toolkit for post-quantum ZK



What is [Watrous06] good for?

Blum’s Protocol for Hamiltonian Cycle

B8 2n6

:G_ v s

! ﬂﬁg’ﬂﬁ
@ﬂﬁ "@

&af

: & (fr=0 & (fr=1)
; -1+ i ® ©
! 1 ™/ 1 1 1./ 1
M@ 'y @ @ )@
! 1 0 5 1

' (© (©

Watrous simulates by guessing r.

Works when r is one bit.

« Actual protocol is sequential
repetition of Blum

Works when only poly many r, but
soundness is still poor.

What about arbitrary length r?



Simulation Beyond Guessing

______________________________________________

N , .
7 - T 1t &, (How does Sim get ry, ..., 17?)
ATRIIEE A

X _ . V1 Thisis not even classically ZK!

« There are two classical “fixes” to this: paradigms due to Golreich-Kahan [GK96] and
Feige-Shamir [FS90]. Have the verifier commit to its challenge in advance.

« Simulation task is no longer about guessing, but about extracting

* New tools can show: both of these paradigms are post-quantum secure!



Example: Graph non-isomorphism



Graph non-isomorphism protocol [GMW86]

P(Go, G1) V(Go, G1)
___________________________________________ & Sub < (01} H=m(Gy)
Wi Gt} {Gio, Gy} = {mi0(Go),mi1(G1)} !
r < {0,1}" r '

(ensure malicious verifier
r; = 0:m30, ;1 "knows" isomorphism
) between H and G,)

Aside: [GMW86] also gives Gl protocol, which is ZK by Watrous
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Graph non-isomorphism protocol [GMW86]

P(Go, G1) V(Go, G1)
___________________________________________ & Sub < (01} H=m(Gy)
Wi Gt} {Gio, Gy} = {mi0(Go),mi1(G1)} !
r < {0,1}" r '

(ensure malicious verifier
r; = 0:m30, ;1 "knows" isomorphism
1 between H and G,)

GNI protocol is classically (statistically) zero knowledge.

s It post-quantum ZK? :



Graph non-isomorphism protocol [GMW86]

P(Go G1) V(Go,G1) IntuItion:
____________________________________________  m&Sube (1) H=1G) | |
(610, Gi1) (Gior Gi1) = {10 (Go), 01 (G1)) | If Gy, G; are not isomorphic, any H
r « {0,1}" T |

defines “correct” b

Classical Sim: rewind V* to extract b




Graph non-isomorphism protocol [GMW86]

P(Go, Gy) V(Go, Gy) Sim:
____________________________________________ & Swbe (O H=7(G) . .
(Gio,Gir) (oo Gr) = oG} . © RUnV*once. If P does not reject, rewind
- reooly . V* (on different r) until it succeeds again
Ty = Ui 0, i . .
n= Lm0l ~» Sub-protocol is special sound — extract

‘ and output b

Runtime: if V* is e-convincing,

« Sim does nothing with probability 1 — &
« Sim rewinds 1/¢ times (in expectation) with probability ¢
« Expected # of Simrewindsise-1/e =1
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Graph non-isomorphism protocol [GMW86]

P(Go, Gy) V(Go, Gy) Sim:
____________________________________________ . TErSwb SO H=n) . .
G0 G} {610,60) = meGorma o} RUNV*once. If P does not reject, rewind
- reooly . V* (on different r) until it succeeds again
M ~ + Sub-protocol is special sound — extract
‘ and output b
Takeaway:

/K of this protocol essentially equivalent to a soundness property of the sub-protocol.

Want to be able to find b (in expected poly time) without changing V's state.
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Qutline

1) Show how to extract with probability 1 in expected polynomial time.

2) How to extract in a way that preserves the adversary’s state.
* This more or less directly implies ZK simulation

3) Serious modelling issue: how to formalize expected polynomial
time ZK simulation



Outline

1) Show how to extract with probability 1 in expected polynomial time.

2) How to extract in a way that preserves the adversary’s state.
* This more or less directly implies ZK simulation

3) Serious modelling issue: how to formalize expected polynomial
time ZK simulation
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Outline

1) Show how to extract with probability 1 in expected polynomial time.

Defining “quaranteed extraction”
Rewinding with abstract singular vector algorithms [GSLW19].

New rewinding meta-algorithm

?) How to extract in a way that preserves the adversary's state.
* This more or less directly implies ZK simulation

3) Serious modelling issue: how to formalize expected polynomial
time ZK simulation
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Guaranteed Extraction

A 3-message protocol has guaranteed extraction for a relation
R(x,w) if it has an extraction procedure of the following form:

P* a > EXt
| _ZIn
h:b> 2. Ay ,|T)|2) | (*) Measure V(a,r, z)
If 0, stop.

If 1, output a stringw
Where:

« |f (*) does not abort, then R(x, w) holds with 1 — negl()) probability
« Extruns in expected poly-time



Achieving Guaranteed Extraction
Theorem [LMS22]:

Any 3-message protocol satisfying the following two conditions has
guaranteed extraction for R(x, w):

« k-Special Soundness: k accepting pairs (r;, z;) (for fixed a) — valid w.
« Collapsing: (Partial) prover responses z are (computationally) unique

Conditions of this form hold for typical protocols (care required)



Achieving Guaranteed Extraction
Theorem [LMS22]:

Any 3-message protocol satisfying the following two conditions has
guaranteed extraction for R(x, w):

« k-Special Soundness: k accepting pairs (r;, z;) (for fixed a) — valid w.
« Collapsing: (Partial) prover responses z are (computationally) unique

Q: Does CMSZ solve this problem?
A: If only life were so easy



Recap of [CMSZ21] Extraction

Start with prover state [y) that is y-successtul

|4+)r = %ZTER Ir) (uniform superposition of challenges)

Mace = Xr [P @11,
Mynir = [+)X{+|rg ® L.

[W)+)r = X ajlv;) inthe (Typip M) Jordan basis

Step 1: MW alternating projectors outputs a value p
Invariant: |¢) = ¥, a;|v;) where p; = p whp.

Step 2: Try to generate an accepting transcript on random r

Step 3: Repair state [¢') to (almost) maintain invariant



Recap of [CMSZ21] Extraction
Invariant: |¢) = ¥, a;|v;) where p; = p almost surely.

Step 3: Repair state [¢') to (almost) maintain invariant

« Append a workspace register W for running MW
« II; :== running MW unitary would result in a value = p — .

« I, =11, & |0X0[y . I1,. , checks whether P(r) makes V output b.

Alternate (M3, My, ) measurements until M3 — 1

|} 0)y, is the result of M applied to state satisfying invariant.

0(1) alternations suffice in expectation to get back.



Recap of [CMSZ21] Extraction

First, let's make this procedure guarantee an output.



Recap of [CMSZ21] Extraction

Start with prover state [y) that is y-successtul

|4+)r = %ZTER Ir) (uniform superposition of challenges)

Mace = Xr [P @11,
Mynir = [+)X{+|rg ® L.

[W)+)r = X ajlv;) inthe (Typip M) Jordan basis
Step 1: MW alternating projectors outputs a value p

How long? Given accuracy parameter g, run in 1/&4 time

Guaranteed extraction asks for a guarantee for all provers.



Nalve Guaranteed Extraction

Start with prover state [y) that is y-successtul

Step 0: Apply M. to |Y)|+r) (check if prover success).

It 1, continue.
MacclP)+)r = 2 /pjajlw;) in the (Iypif, Macc) Jordan basis
Step 1: MW alternating projectors outputs a value p

How long? Until your numerator is at least 4

Expected runtime Zj\aj\zpj - f =
J



So, what is the overall running time?



Nalve Guaranteed Extraction

Step 3: Repair state [¢') to (almost) maintain invariant

Repalr runtime: 0(1) I, measurement

[T}, corresponds to MW estimate to € = p? accuracy.
Why? Need to repair k/p times, start at p.

Complexity of IT};, = giz = p—14.

Thus, total runtime of the extractor is S : p—14 = p—15 If you start at p.

26



Nalve Guaranteed Extraction

Thus, total runtime of the extractor is g : p—14 = p—15 If you start at p.

Q: What is p?

MacclP)+)r = 2 /pjajlw;) in the (Iypir, Mace) Jordan basis

A: Arbitrary nonzero number???

1

)

Expected running time is ¥ ; ajzpj : 00
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Achieving Guaranteed
Theorem [LMS22]:

-xtraction

Any 3-message protocol satisfying k-Special Soundness and collapsing

has guaranteed extraction for R(x, w):

Proof |dea:

Classical Rewinding Runtime Quantum Rewinding Runtime

With probability €, rewind k/e times| «  With probability €, rewind and

Totalworke - k/e-1=k

repair k/e times
« Totalworke-k/e-1/c* =



Achieving Guaranteed
Theorem [LMS22]:

-xtraction

Any 3-message protocol satisfying k-Special Soundness and collapsing

has guaranteed extraction for R(x, w):

Proof |dea:

Classical Rewinding Runtime

Our Rewinding Runtime

With probability €, rewind k /s times| «  With probability €, rewind and

repalr k times

Totalworke-k/e-1=k  Totalworke-k-1/e =k




Key |deas

1. Alternating projectors is secretly three algorithms at the same time.

»  Given |¢) = X, a;|v;) (in the Iy, I Jordan basis), approximately
measure p; (constant multiplicative accuracy).

(initial estimation)
- Given |¢) = X;q;|v;), acceptif p; = p and rejectif p; < p(1 —¢)
(implementation of I15)
« Given |¢p) = X, a;|v;), find a state in im(Ilg).
(repair procedure)



Key |deas

1. Alternating projectors is secretly three algorithms at the same time.
« We can describe a rewinding algorithm making black-box use of
procedures for these three tasks.
« All three can be done faster than alternating projectors!



Key Ideas

1. Alternating projectors is secretly three algorithms at the same time.
»  Given |¢) = X, a;|v;) (in the Iy, I Jordan basis), approximately
measure p; (constant multiplicative accuracy).

i_time using many QFTs)

N,
» Given|¢p) = X, a;|v;), acceptif p; = p andrejectif p; < p(1 —¢)

(Variable-Accuracy) Phase Estimation (

Gap Phase Estimation (% time using QFT)

« Given |¢) = X, a;|v;), find a state in im(Ilg).

i_ time using Est + Grover-type algorithm)

VPi .

Singular Vector Transform (



Quantum singular value transformation and beyond:
exponential improvements for quantum matrix arithmetics

Andrés Gilyén* Yuan Suf Guang Hao Low? Nathan Wiebe®

June 6, 2018

Abstract

Quantum computing is powerful because unitary operators describing the time-evolution
of a quantum system have exponential size in terms of the number of qubits present in the
system. We develop a new “Singular value transformation” algorithm capable of harnessing
this exponential advantage, that can apply polynomial transformations to the singular values
of a block of a unitary, generalizing the optimal Hamiltonian simulation results of Low and
Chuang [LC17a]. The proposed quantum circuits have a very simple structure, often give rise
to optimal algorithms and have appealing constant factors, while typically only use a constant
number of ancilla qubits.

We show that singular value transformation leads to novel algorithms. We give an efficient so-
lution to a “non-commutative” measurement problem used for efficient ground-state-preparation
of certain local Hamiltonians, and propose a new method for singular value estimation. We
also show how to exponentially improve the complexity of implementing fractional queries to
unitaries with a gapped spectrum. Finally, as a quantum machine learning application we show
how to efficiently implement principal component regression.

“Singular value transformation” is conceptually simple and efficient, and leads to a unified
framework of quantum algorithms incorporating a variety of quantum speed-ups. We illustrate
this by showing how it generalizes a number of prominent quantum algorithms, and quickly
derive the following algorithms: optimal Hamiltonian simulation, implementing the Moore-
Penrose pseudoinverse with exponential precision, fixed-point amplitude amplification, robust

1 1+ = 1+, 1 1* M 1 ~ " \A A A 1* M . " " NTY 1 "

+ variable-runtime modifications
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Faster Guaranteed Extraction

Total runtime of the extractor is S p_12 = p—13 If you start at p.

Expected running time is 2. a7 p; % =
Pj




Key Ideas

ternating projectors is secretly three algorithms at the same time.

nis rewinding template is doomed...
We need k/p transcripts it we start at eigenvalue p.
Repair... probably takes more than 0(1) total t|me

So.. %« p] k/pj - t(p])—oo

36



Key |deas

1. Alternating projectors is secretly three algorithms at the same time.

2. This rewinding template is doomed...

3. Our rewinding is too classical!
« Instead of hoping that P* answers r correctly, let's force P* to
answer correctly!
° Amp“fy irn(HUnif) - irn(l_[Acc)



initial state

The [CMSZ21] Extraction Template
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initial state

The [CMSZ21] Extraction Template

Estimate
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initial state

The [CMSZ21] Extraction Template

Estimate

l

p
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initial state

The [CMSZ21] Extraction Template

success prob = p

Estimate

l

p

< rl
o z /L V
}

|S1")=—>

Repair
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initial state

The [CMSZ21] Extraction Template

success prob = p

Estimate

l

p

< rl
o z /L V
}

|S1")=—>

success prob = p

Repair

/

< rz
Zy/ L V
;
|S,"y=—| Repair
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Our Extractor
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Our Extractor

1) Use joint state of
challenge-adversary.

superposition
of challenges

\
[+r) & [S)

44



Our Extractor

1) Use joint state of
challenge-adversary.

superposition
of challenges

\
[+r) & [S)
4

Estimate
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Our Extractor

1) Use joint state of
challenge-adversary.

2) QSVT ensures we
only measure accepting

(r,z).

S

uperposition

of challenges

\

\
[+r) & [S)
4

Estimate (— p

¥
QSVT |S,-) guaranteed

to succeedonr
v/

> @l ®ls,)

r

)

|
superposition of
accepting executions
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Our Extractor

1) Use joint state of
challenge-adversary.

2) QSVT ensures we
only measure accepting

(r,z).

superposition
of challenges

\
[+r) & [S)
4

Estimate (—p
4

QSVT
v

D @l ®Is)
¥
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Our Extractor

1) Use joint state of
challenge-adversary.

2) QSVT ensures we
only measure accepting

(r,z).

superposition
of challenges

\
[+r) & [S)
4

Estimate

¥

QSVT

2.

\

ar|r) @ [Sy)

Repair
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Our Extractor superposition

1) Use joint state of of challenges success prob
challenge-adversary. +2) ® [S) >p—c¢
2) QSVT ensures we ¥ /
only measure accepting Estimate [~ p [+z) ® |SD)
(r,2). y
QSVT
¥
> an®ls,)
" v
A Repair

49



Our Extractor superposition

1) Use joint state of of challenges success prob
challenge-adversary. +2) ® [S) >p—c¢
2) QSVT ensures we ¥ /
only measure accepting Estimate [~ p [+z) ® |SD)
(r,2). y v
QSVT QSVT
¥ ¥
Y amnels) /) anels®
. | = |
A Repair A > Repair

7 7
(r1,21) (12, 23)
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Our Extractor superposition

1) Use joint state of of challenges success prob
challenge-adversary. +2) ® [S) >p—c¢
2) QSVT ensures we ¥ /
only measure accepting Estimate [~ p [+7) ® |SD)
(r,z). ¥ I
V
3) Fast algorithms + Q% ! Q%VT
careful analysis + D an®ls) /) anelis®)
miracle: repair takes — R |
1/p time. A Repair A > Repair

7 7
(r1,21) (12, 23)
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Our Extractor

Why does Repair work?

In [CMSZ], “Return to
subspace principle’

If |S®)) was disturbed
only a small amount,
then Repair will return
|S;.) to the p-subspace
quickly

But measurement of r
IS a huge disturbance...

superposition
of challenges

success prob

\
+2) ® [S) =pTe
' /
Estimate + p |+5) ® |S)
v 4
QSVT QSVT
' ' (1)
D an®ls) /) anelst)
r * T *
A Repair A Repair
v v
(r1,71) (12, 22)
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Our Extractor superposition

Our Analysis: of challenges success prob
1) Measuring (r;, z;) |+:) ® |S) Zp-¢
looks disturbing, but: 4 /

2) There exists a good Estimate | p +r) ® [S)

|S) such that |S7) could QS*VT QS*VT

have been obtained ¥ ¥

fr.om a log 1/p A z CZT|T> ® [S,) z arlr) ® |S1€1)>
disturbance to |[S). —~ —~

3) Fast repair succeeds A Repair A Repair
after 1 calls to ' \
Estimat/e\./ﬁ (1, 21) (72,22)
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Not shown: very insidious problem with the runtime

Solution: calculate how

disturbi

Oon

g repair should take before

g the state.



Outline

1) Show how to extract with probability 1 in expected polynomial time.

?) How to extract in a way that preserves the adversary's state.
* This more or less directly implies ZK simulation

3) Serious modelling issue: how to formalize expected polynomial
time ZK simulation
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State-Preserving Extraction

A protocol has state-preserving extraction if it has an extraction
procedure SPExtF” — (z,w, [1)) such that:

« The probability that T is accepting but w is invalid is negligible.
« SPExt runs in expected polynomial time.

* (1, |y)) is computationally indistinguishable from real P* view

Dual notion to post-quantum ZK.



Lemma: Guaranteed extraction — state-preserving
extraction for nice protocols.

N\

(Informally) Whenever the extractor
outputs a (computationally) unique string

Example to have in mind: commit-and-prove protocols
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Reduction to Guaranteed Extraction

SPEXxt Sketch:

Run the guaranteed extractor coherently
Measure (a,b) and (if b = 1) measure w
Uncompute (1)

Run P* forwards to get (r, z)

N =

w measurement in (2) is undetectable, so (1) and (3) “cancel out.”



Putting everything together

P(Go, G1) V(Go, G1)
T E€R Spb < {0,1} H :=mn(Gy)

__________________________________________________________________________________________________________________

{Gio,Gi1} {Gi,o» Gi,l} = {ﬂi,o(Go)» 7Ti,1(G1)}

GNI 3-message subprotocol has guaranteed extraction
So it has state-preserving extraction

So the GNI protocol is post-quantum ZK!
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Outline

1) Show how to extract with probability 1 in expected polynomial time.

?) How to extract in a way that preserves the adversary's state.
* This more or less directly implies ZK simulation

3) Serious modelling issue: how to formalize expected polynomial
time ZK simulation

60



What is our simulator doing?

SPExt Sketch:

Run the guaranteed extractor coherently
Measure (a, b) and (if b = 1) measure w
Uncompute (1)

Run P* forwards to get (r, z)

N =

(1) and (3) think of the guaranteed extractor as a unitary U + measurement,
and apply U (step 1) and UT (step 3).

s this expected polynomial time? What is expected polynomial time??
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What is Expected Quantum Polynomial Time?

We would like to think of our QTMs as finishing their computation when they reach the final state
qr. However, it is unclear how we should regard a machine which reaches a superposition in which some

configurations are in state gy but others are not. We try to avoid such difficulties by saying that a QTM
halts on a particular input if it reaches a superposition consisting entirely of configurations in state ¢y .

Quantum complexity theory*

Ethan Bernstein ' Umesh Vazirani ?

September 8, 1997

Abstract

In this paper we study quantum computation from a complexity theoretic viewpoint. Our first result
is the existence of an efficient universal quantum Turing Machine in Deutsch's model of aquantum Turing
Machine [20]. This construction is substantially more complicated than the corresponding construction
for classical Turing Machines - in fact, even simple primitives such as looping, branching and composition
are nol straightforward in the context of quantum Turing Machines. We establish how these familiar
primitives can be implemented, and also introduce some new, purely quantum mechanical primitives,
such as changing the computational basis, and carrying out an arbitrary unitary transformation of
polynomially bounded dimension.

o consider the precision to which the transition amplitudes of a quantum Turing Machine need
to be fied. We prove that O(logT') bits of precision suffice to support a T’ step computation. This
Justifies the claim that that the quantum Turing Machine model should be regarded as a discrete model
of computation and not an analog one.

We give the first formal evidence that quantum Turing Machines violate the modern (complexity
theoretic) formulation of the Church-Turing thesis. We show the existence of a problem, relative to
an oracle, that can be solved in polynomial time on a quantum Turing Machine, but requires super-
polynomial time on a bounded-error probabilistic Turing Machine; and thus not in the class BPP. 62
The class BQP | of languages that are efficiently decidable {with small error-probability ) on a quantum

T o Machine caticfioc: BRPP - ROP  PiP Thorafore here te e maccibilite of aivin e o el he



Variable-Runtime Quantum Turing Machines

Register Function Initialization
Q State Machine qo)
W Workspace O)
A Input/Output 1/))

The "transition function” of a QTM is defined so that if @ contains
the "halting state” q¢, no additional computation is done.



Variable-Runtime Quantum Turing Machines

Register Function Initialization
Q State Machine qo)
W Workspace O)
A Input/Output 1/))

Observation [M97, 098a, LP98,098b):
1) The runtime of a QTM is always effectively measured
2) Computation paths with different running times do not interfere



Measured-Runtime Expected Poly Time (EQPTy,)

0)5, - — e Ao—

=
3
S
;T‘

2
=
SP
h
-

B records the runtime; we require polynomial expected value.



EQPT,, is a bad model for ZK simulation

/K: the view of every (malicious) verifier can be simulated in EPT

 However, different verifiers will have different simulator *runtime
distributions*

« Computation paths with different running times do not interfere

« This means that an EQPT,, simulator will break a superposition of two
verifiers with different runtime distributions.

Theorem [Chia-Chung-Liu-Yamakawa, FOCS 21]

Quantum EQPT,, black-box simulation for constant-round protocols is impossible
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What is the definition of classical ZK?

Theorem [Barak-Lindell ‘02]: Constant-round black-box ZK is impossible with
fixed polynomial-time simulation.

Solution [GMR85,GMW86,GK96,FSA0]: expected polynomial-time simulation

Sim Output = a, M (x, st)

-

z a; -t = poly(4) In this “branch’, M (x, st) runs in time t.
t



Coherent-Runtime

-Xpected

Doly Time (EQPT,)

Output = at(U(t)) c(U®) - H(t)\l/)>

L

Elatlz -t = poly(2)
t

\

On this state running U
for t steps will reach end.

In this ““branch,” both U and UT run for t steps.

Allows implementing projective measurements from EQPT,, procedures.



Coherent-Runtime Expected Poly Time (EQPT,)

Make use of UT to uncompute the runtime.

|P) x - Ch Co Cs

0)o ® 107)yy U UT

(U is a coherent EQPT,,, computation)



Coherent-Runtime Expected Poly Time (EQPT,)
For the purposes of ZK simulation, EQPT, is as good as classical EPT:

« Usefulness: Captures all of our ZK simulators
« Approximability: Can be truncated to time poly(A, 1/¢) with € error.
« Doesn't solve hard problems: If a computational assumption (e.g.

LWE) is broken by EQPT, then it is broken by BQP.

We propose EQPT, to be the “right” quantum analogue of classical EPT simulation.



Recap

« /K Simulation by State-Preserving Extraction
« (Guaranteed extraction + collapsing — state-preserving extraction

« Extraction with (fast) singular vector algorithms

« Jordan singular value estimation + singular vector transform
« Amplify prover state onto accepting transcript, measure transcript,
and then repair. Appeal to pseudoinverse state to bound runtime.

« Coherent-runtime expected quantum polynomial time simulation



Final Thoughts

Very open: conditions under which a cryptographic security property is
generically post-quantum.

Singular vector algorithms are good tools for crypto security proofs

« Crypto also formulates interesting gquantum algorithmic problems!

Collapsing is an extremely important security notion
« When are gquantum phenomena collapsing? Current tools are limited

What quantum computational models accurately characterize
cryptographic security properties?






