
1

Alex Lombardi
(MIT → Simons & Berkeley)

Based on:
• “Post-Quantum Zero Knowledge, Revisited” by Alex Lombardi, Fermi Ma, and

Nicholas Spooner (2022)

Quantum Rewinding Tutorial Part 3:

Zero Knowledge Beyond Watrous

2

Post-Quantum Zero-Knowledge:
• [Watrous06] ZK for very special protocols

• “Oblivious guessing simulator” -> full simulator
• ???

Post-Quantum Soundness:
• [Unruh12, Unruh16]: weak soundness for special protocols
• [CMSZ21]: strong soundness for more protocols
• Key components: collapsing, special soundness

Today So Far

This talk: new toolkit for post-quantum ZK

What is [Watrous06] good for?

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Watrous simulates by guessing 𝑟.

Works when 𝑟 is one bit.
• Actual protocol is sequential

repetition of Blum

Works when only poly many 𝑟, but
soundness is still poor.

What about arbitrary length 𝑟?

Simulation Beyond Guessing

𝑟(, … , 𝑟)
P V

Repeated Protocol for Hamiltonian Cycle

This is not even classically ZK!
(How does Sim get 𝑟&, … , 𝑟'?)

𝑐(, … , 𝑐)

𝑧(, … , 𝑧)

• There are two classical “fixes” to this: paradigms due to Golreich-Kahan [GK96] and
Feige-Shamir [FS90]. Have the verifier commit to its challenge in advance.

• Simulation task is no longer about guessing, but about extracting

• New tools can show: both of these paradigms are post-quantum secure!

Example: Graph non-isomorphism

5

6

𝑃(𝐺*, 𝐺() 𝑉(𝐺*, 𝐺()
𝐻 𝐻 ≔ 𝜋 𝐺+𝜋 ∈, 𝑆-, 𝑏 ← {0,1}

𝑏

𝑟. = 0: 𝜋.,*, 𝜋.,(

𝐺.,*, 𝐺.,(= 𝜋.,* 𝐺* , 𝜋.,(𝐺({𝐺.,*, 𝐺.,(}

𝑟 ← 0,1 - 𝑟

𝑟. = 1: 𝜋.,0∗ ∘ 𝜋1(

(ensure malicious verifier
“knows” isomorphism

between 𝐻 and 𝐺+)

Graph non-isomorphism protocol [GMW86]

Aside: [GMW86] also gives GI protocol, which is ZK by Watrous

7

𝑃(𝐺*, 𝐺() 𝑉(𝐺*, 𝐺()
𝐻 𝐻 ≔ 𝜋 𝐺+𝜋 ∈, 𝑆-, 𝑏 ← {0,1}

𝑏

𝑟. = 0: 𝜋.,*, 𝜋.,(

𝐺.,*, 𝐺.,(= 𝜋.,* 𝐺* , 𝜋.,(𝐺({𝐺.,*, 𝐺.,(}

𝑟 ← 0,1 - 𝑟

𝑟. = 1: 𝜋.,0∗ ∘ 𝜋1(

(ensure malicious verifier
“knows” isomorphism

between 𝐻 and 𝐺+)

Is it post-quantum ZK?

GNI protocol is classically (statistically) zero knowledge.

Graph non-isomorphism protocol [GMW86]

9

Intuition:
If 𝐺*, 𝐺(are not isomorphic, any 𝐻

defines “correct” 𝑏

Classical Sim: rewind 𝑉∗ to extract 𝑏

Graph non-isomorphism protocol [GMW86]

11

Sim:
• Run 𝑉∗ once. If 𝑃 does not reject, rewind
𝑉∗ (on different 𝑟) until it succeeds again

• Sub-protocol is special sound → extract
and output 𝑏

Runtime: if 𝑉∗ is 𝜀-convincing,

• Sim does nothing with probability 1 − 𝜀
• Sim rewinds 1/𝜀 times (in expectation) with probability 𝜀
• Expected # of Sim rewinds is 𝜀 ⋅ 1/𝜀 = 1

Graph non-isomorphism protocol [GMW86]

13

Sim:
• Run 𝑉∗ once. If 𝑃 does not reject, rewind
𝑉∗ (on different 𝑟) until it succeeds again

• Sub-protocol is special sound → extract
and output 𝑏

ZK of this protocol essentially equivalent to a soundness property of the sub-protocol.

Want to be able to find 𝑏 (in expected poly time) without changing 𝑉’s state.

Takeaway:

Graph non-isomorphism protocol [GMW86]

14

Outline

1) Show how to extract with probability 1 in expected polynomial time.

2) How to extract in a way that preserves the adversary’s state.
• This more or less directly implies ZK simulation

3) Serious modelling issue: how to formalize expected polynomial
time ZK simulation

15

Outline

1) Show how to extract with probability 1 in expected polynomial time.

2) How to extract in a way that preserves the adversary’s state.
• This more or less directly implies ZK simulation

3) Serious modelling issue: how to formalize expected polynomial
time ZK simulation

16

1) Show how to extract with probability 1 in expected polynomial time.
• Defining “guaranteed extraction”
• Rewinding with abstract singular vector algorithms [GSLW19].
• New rewinding meta-algorithm

2) How to extract in a way that preserves the adversary’s state.
• This more or less directly implies ZK simulation

3) Serious modelling issue: how to formalize expected polynomial
time ZK simulation

Outline

Guaranteed Extraction
A 3-message protocol has guaranteed extraction for a relation
𝑅 𝑥,𝑤 if it has an extraction procedure of the following form:

17

𝑃∗ Ext

|𝜓⟩

𝑎

∑ |𝑟⟩

∑ 𝛼(,* 𝑟 𝑧 (*) Measure 𝑉(𝑎, 𝑟, 𝑧)
If 0, stop.
If 1, output a string 𝑤

• If (*) does not abort, then 𝑅(𝑥, 𝑤) holds with 1 − negl λ probability
• Ext runs in expected poly-time

Where:

Achieving Guaranteed Extraction
Theorem [LMS22]:

18

Any 3-message protocol satisfying the following two conditions has
guaranteed extraction for 𝑅(𝑥, 𝑤):

• 𝑘-Special Soundness: 𝑘 accepting pairs (𝑟+ , 𝑧+) (for fixed 𝑎) → valid 𝑤.
• Collapsing: (Partial) prover responses z are (computationally) unique

Conditions of this form hold for typical protocols (care required)

Achieving Guaranteed Extraction
Theorem [LMS22]:

19

Any 3-message protocol satisfying the following two conditions has
guaranteed extraction for 𝑅(𝑥, 𝑤):

• 𝑘-Special Soundness: 𝑘 accepting pairs (𝑟+ , 𝑧+) (for fixed 𝑎) → valid 𝑤.
• Collapsing: (Partial) prover responses z are (computationally) unique

Q: Does CMSZ solve this problem?
A: If only life were so easy

20

• + ! ≔
"
!
∑#∈! |𝑟⟩ (uniform superposition of challenges)

• Π%&& ≔ ∑# |𝑟⟩⟨𝑟|! ⊗Π#.
• Π'()* ≔ + ⟨+|! ⊗ 𝕀.

Start with prover state |𝜓⟩ that is 𝛾-successful

Recap of [CMSZ21] Extraction

𝜓 + ! = ∑" 𝛼"|𝑣"⟩ in the Π#$%&, Π'((Jordan basis

Step 1: MW alternating projectors outputs a value 𝑝

Step 2: Try to generate an accepting transcript on random 𝑟

Step 3: Repair state 𝜓) to (almost) maintain invariant

Invariant: 𝜙 = ∑" 𝛼")|𝑣"⟩where 𝑝" ≥ 𝑝 whp.

21

Recap of [CMSZ21] Extraction

Step 3: Repair state 𝜓) to (almost) maintain invariant

Invariant: 𝜙 = ∑" 𝛼")|𝑣"⟩where 𝑝" ≥ 𝑝 almost surely.

• Append a workspace register 𝑊 for running MW
• Π+∗ ≔ ``running MW unitary would result in a value ≥ 𝑝 − 𝜀.
• Π#,.∗ ≔ Π#,.⊗ 0 ⟨0|/. Π#,. checks whether 𝑃(𝑟) makes 𝑉 output 𝑏.

Alternate M*
∗ , M,,.

∗ measurements until M*
∗ → 1

𝜓, 0 - is the result of M(
∗ applied to state satisfying invariant.

𝑂(1) alternations suffice in expectation to get back.

22

Recap of [CMSZ21] Extraction

First, let’s make this procedure guarantee an output.

23

• + ! ≔
"
!
∑#∈! |𝑟⟩ (uniform superposition of challenges)

• Π%&& ≔ ∑# |𝑟⟩⟨𝑟|! ⊗Π#.
• Π'()* ≔ + ⟨+|! ⊗ 𝕀.

Start with prover state |𝜓⟩ that is 𝛾-successful

Recap of [CMSZ21] Extraction

𝜓 + ! = ∑" 𝛼"|𝑣"⟩ in the Π#$%&, Π'((Jordan basis

Step 1: MW alternating projectors outputs a value 𝑝

How long? Given accuracy parameter 𝜀, run in 1/𝜀/ time

Guaranteed extraction asks for a guarantee for all provers.

24

Start with prover state |𝜓⟩ that is 𝛾-successful

Naïve Guaranteed Extraction

Step 0: Apply M!"" to 𝜓 |+#⟩ (check if prover success).

If 1, continue.

Step 1: MW alternating projectors outputs a value 𝑝

Π!"" 𝜓 + # = ∑$ 𝑝$𝛼$|𝑤$⟩ in the Π%&'(, Π!"" Jordan basis

How long? Until your numerator is at least 𝜆

Expected runtime ∑$ 𝛼$
)
𝑝$ ⋅

*
+0
= 𝜆

25

So, what is the overall running time?

26

Naïve Guaranteed Extraction

Step 3: Repair state 𝜓, to (almost) maintain invariant

Repair runtime: 𝑂(1) Π+∗ measurement

Π+∗ corresponds to MW estimate to 𝜀 = 𝑝) accuracy.

Why? Need to repair 𝑘/𝑝 times, start at 𝑝.

Complexity of Π+∗ =
.
/1
= .

+2
.

Thus, total runtime of the extractor is 0
+
⋅ .
+2
= .

+3
if you start at 𝑝.

27

Naïve Guaranteed Extraction

Thus, total runtime of the extractor is 0
+
⋅ .
+2
= .

+3
if you start at 𝑝.

Q: What is 𝑝?

Π!"" 𝜓 + # = ∑$ 𝑝$𝛼$|𝑤$⟩ in the Π%&'(, Π!"" Jordan basis

A: Arbitrary nonzero number???

Expected running time is ∑$ 𝛼$)𝑝$ ⋅
.
+0
3 = ∞

Any 3-message protocol satisfying 𝑘-Special Soundness and collapsing
has guaranteed extraction for 𝑅(𝑥, 𝑤):

Achieving Guaranteed Extraction

28

Proof Idea:
Classical Rewinding Runtime

• With probability 𝜀, rewind 𝑘/𝜀 times

• Total work 𝜀 ⋅ 𝑘/𝜀 ⋅ 1 = 𝑘

Quantum Rewinding Runtime

• With probability 𝜀, rewind and
repair 𝑘/𝜀 times

• Total work 𝜀 ⋅ 𝑘/𝜀 ⋅ 1/𝜀/ = ∞

Theorem [LMS22]:

Any 3-message protocol satisfying 𝑘-Special Soundness and collapsing
has guaranteed extraction for 𝑅(𝑥, 𝑤):

Achieving Guaranteed Extraction

29

Proof Idea:
Classical Rewinding Runtime

• With probability 𝜀, rewind 𝑘/𝜀 times

• Total work 𝜀 ⋅ 𝑘/𝜀 ⋅ 1 = 𝑘

Theorem [LMS22]:

Our Rewinding Runtime

• With probability 𝜀, rewind and
repair 𝑘 times

• Total work 𝜀 ⋅ 𝑘 ⋅ 1/𝜀 = 𝑘

30

Key Ideas

1. Alternating projectors is secretly three algorithms at the same time.
• Given 𝜙 = ∑0 𝛼0|𝑣0⟩ (in the Π1, Π2 Jordan basis), approximately

measure 𝑝0 (constant multiplicative accuracy).
(initial estimation)
• Given 𝜙 = ∑0 𝛼0|𝑣0⟩, accept if 𝑝0 ≥ 𝑝 and reject if 𝑝0 ≤ 𝑝(1 − 𝜖)
(implementation of Π3∗)
• Given 𝜙 = ∑0 𝛼0|𝑣0⟩, find a state in im(Π2).
(repair procedure)

31

Key Ideas

1. Alternating projectors is secretly three algorithms at the same time.
• We can describe a rewinding algorithm making black-box use of

procedures for these three tasks.
• All three can be done faster than alternating projectors!

32

Key Ideas
1. Alternating projectors is secretly three algorithms at the same time.
• Given 𝜙 = ∑0 𝛼0|𝑣0⟩ (in the Π1, Π2 Jordan basis), approximately

measure 𝑝0 (constant multiplicative accuracy).

(Variable-Accuracy) Phase Estimation (&
3!

time using many QFTs)

• Given 𝜙 = ∑0 𝛼0|𝑣0⟩, accept if 𝑝0 ≥ 𝑝 and reject if 𝑝0 ≤ 𝑝(1 − 𝜖)

Gap Phase Estimation (&
4 3

time using QFT)

• Given 𝜙 = ∑0 𝛼0|𝑣0⟩, find a state in im(Π2).

Singular Vector Transform (&
3!

time using Est + Grover-type algorithm)

33

+ variable-runtime modifications

35

Faster Guaranteed Extraction

Total runtime of the extractor is 0
+
⋅ .
+1
= .

+4
if you start at 𝑝.

Expected running time is ∑$ 𝛼$)𝑝$ ⋅
.
+0
4 = ∞

36

Key Ideas

1. Alternating projectors is secretly three algorithms at the same time.

2. This rewinding template is doomed…
• We need 𝑘/𝑝 transcripts if we start at eigenvalue 𝑝.
• Repair… probably takes more than 𝑂(1) total time
• So… ∑0 𝛼05𝑝0 ⋅ 𝑘/𝑝0 ⋅ 𝑡 𝑝0 = ∞

37

Key Ideas

1. Alternating projectors is secretly three algorithms at the same time.

2. This rewinding template is doomed…

3. Our rewinding is too classical!
• Instead of hoping that 𝑃∗ answers 𝑟 correctly, let’s force 𝑃∗ to

answer correctly!
• Amplify im(Π6789) → im(Π:;;)

38

The [CMSZ21] Extraction Templateinitial state

|S⟩

39

Estimate

The [CMSZ21] Extraction Templateinitial state

|S⟩

40

Estimate

𝑝

The [CMSZ21] Extraction Templateinitial state

|S⟩

41

success prob ≈ 𝑝

𝑟&

Repair

|S&⟩

|S&′⟩

Estimate

𝑝

The [CMSZ21] Extraction Templateinitial state

𝑽

|S⟩

𝑧&/⊥

𝑟5
|S5⟩

42

success prob ≈ 𝑝

𝑟&

Repair |S5′⟩

…

Repair

|S&⟩

|S&′⟩

Estimate

𝑝

The [CMSZ21] Extraction Template

success prob ≈ 𝑝

initial state

𝑽 𝑽

|S⟩

𝑧&/⊥ 𝑧5/⊥

43

Our Extractor

|S⟩
1) Use joint state of
challenge-adversary.
2) Transform ensures
we only measure
accepting (𝑟, 𝑧).
3) Fast (variable
runtime) algorithms +
difficult analysis: repair
takes 1/𝑝 time.

44

Our Extractor superposition
of challenges

+< ⊗ |S⟩
1) Use joint state of
challenge-adversary.
2) Transform ensures
we only measure
accepting (𝑟, 𝑧).
3) Fast (variable
runtime) algorithms +
difficult analysis: repair
takes 1/𝑝 time.

45

Our Extractor superposition
of challenges

+< ⊗ |S⟩

Estimate

1) Use joint state of
challenge-adversary.
2) Transform ensures
we only measure
accepting (𝑟, 𝑧).
3) Fast (variable
runtime) algorithms +
difficult analysis: repair
takes 1/𝑝 time.

𝑝

46

Our Extractor superposition
of challenges

+< ⊗ |S⟩

Estimate

QSVT

W
(

𝛼(𝑟 ⊗ |S(⟩

|S3⟩ guaranteed
to succeed on 𝑟

superposition of
accepting executions

1) Use joint state of
challenge-adversary.
2) QSVT ensures we
only measure accepting
(𝑟, 𝑧).
3) Fast (variable
runtime) algorithms +
difficult analysis: repair
takes 1/𝑝 time.

𝑝

47

Our Extractor superposition
of challenges

+< ⊗ |S⟩

Estimate

QSVT

W
(

𝛼(𝑟 ⊗ |S(⟩

(𝑟(, 𝑧()

1) Use joint state of
challenge-adversary.
2) QSVT ensures we
only measure accepting
(𝑟, 𝑧).
3) Fast (variable
runtime) algorithms +
difficult analysis: repair
takes 1/𝑝 time.

𝑝

48

Our Extractor superposition
of challenges

+< ⊗ |S⟩

Estimate

QSVT

W
(

𝛼(𝑟 ⊗ |S(⟩

(𝑟(, 𝑧()

Repair

1) Use joint state of
challenge-adversary.
2) QSVT ensures we
only measure accepting
(𝑟, 𝑧).
3) Fast (variable
runtime) algorithms +
difficult analysis: repair
takes 1/𝑝 time.

𝑝

49

Our Extractor superposition
of challenges

+< ⊗ |S⟩

Estimate

QSVT

W
(

𝛼(𝑟 ⊗ |S(⟩

(𝑟(, 𝑧()

Repair

+< ⊗ |S(&)⟩

success prob
≥ 𝑝 − 𝜀

1) Use joint state of
challenge-adversary.
2) QSVT ensures we
only measure accepting
(𝑟, 𝑧).
3) Fast (variable
runtime) algorithms +
difficult analysis: repair
takes 1/𝑝 time.

𝑝

50

Our Extractor superposition
of challenges

+< ⊗ |S⟩

Estimate

QSVT

W
(

𝛼(𝑟 ⊗ |S(⟩

(𝑟(, 𝑧()

Repair

+< ⊗ |S(&)⟩

W
(

𝛼(𝑟 ⊗ |S(
(&)⟩

(𝑟4, 𝑧4)

Repair

…
QSVT

1) Use joint state of
challenge-adversary.
2) QSVT ensures we
only measure accepting
(𝑟, 𝑧).
3) Fast (variable
runtime) algorithms +
difficult analysis: repair
takes 1/𝑝 time.

𝑝

success prob
≥ 𝑝 − 𝜀

51

Our Extractor superposition
of challenges

+< ⊗ |S⟩

Estimate

QSVT

W
(

𝛼(𝑟 ⊗ |S(⟩

(𝑟(, 𝑧()

Repair

+< ⊗ |S(&)⟩

W
(

𝛼(𝑟 ⊗ |S(
(&)⟩

(𝑟4, 𝑧4)

Repair

…
QSVT

1) Use joint state of
challenge-adversary.
2) QSVT ensures we
only measure accepting
(𝑟, 𝑧).
3) Fast algorithms +
careful analysis +
miracle: repair takes
1/𝑝 time.

𝑝

success prob
≥ 𝑝 − 𝜀

52

Our Extractor superposition
of challenges

+< ⊗ |S⟩

Estimate

QSVT

W
(

𝛼(𝑟 ⊗ |S(⟩

(𝑟(, 𝑧()

Repair

+< ⊗ |S(&)⟩

W
(

𝛼(𝑟 ⊗ |S(
(&)⟩

(𝑟4, 𝑧4)

Repair

…
QSVT

Why does Repair work?

• In [CMSZ], “Return to
subspace principle”

• If |S(3)⟩ was disturbed
only a small amount,
then Repair will return
|S(, ⟩ to the 𝑝-subspace
quickly

• But measurement of 𝑟
is a huge disturbance…

𝑝

success prob
≥ 𝑝 − 𝜀

53

Our Extractor superposition
of challenges

+< ⊗ |S⟩

Estimate

QSVT

W
(

𝛼(𝑟 ⊗ |S(⟩

(𝑟(, 𝑧()

Repair

+< ⊗ |S(&)⟩

W
(

𝛼(𝑟 ⊗ |S(
(&)⟩

(𝑟4, 𝑧4)

Repair

…

Our Analysis:
1) Measuring (𝑟+ , 𝑧+)
looks disturbing, but:
2) There exists a good
X𝑆 such that S&, could

have been obtained
from a log 1/𝑝
disturbance to X𝑆 .
3) Fast repair succeeds
after 1/ 𝑝 calls to
Estimate.

QSVT

𝑝

success prob
≥ 𝑝 − 𝜀

54

Not shown: very insidious problem with the runtime

Solution: calculate how long repair should take before
disturbing the state.

55

Outline

1) Show how to extract with probability 1 in expected polynomial time.

2) How to extract in a way that preserves the adversary’s state.
• This more or less directly implies ZK simulation

3) Serious modelling issue: how to formalize expected polynomial
time ZK simulation

State-Preserving Extraction

A protocol has state-preserving extraction if it has an extraction
procedure SPExt1∗ → 𝜏,𝑤, 𝜓) such that:

56

• The probability that 𝜏 is accepting but 𝑤 is invalid is negligible.

• SPExt runs in expected polynomial time.

• 𝜏, 𝜓) is computationally indistinguishable from real 𝑃∗ view

Dual notion to post-quantum ZK.

57

(Informally) Whenever the extractor
outputs a (computationally) unique string

Lemma: Guaranteed extraction → state-preserving
extraction for nice protocols.

Example to have in mind: commit-and-prove protocols

Reduction to Guaranteed Extraction

SPExt Sketch:

1. Run the guaranteed extractor coherently
2. Measure (𝑎, 𝑏) and (if 𝑏 = 1) measure 𝑤
3. Uncompute (1)
4. Run 𝑃∗ forwards to get 𝑟, 𝑧

𝑤 measurement in (2) is undetectable, so (1) and (3) “cancel out.”

58

Putting everything together

1) GNI 3-message subprotocol has guaranteed extraction

2) So it has state-preserving extraction

3) So the GNI protocol is post-quantum ZK!
59

60

Outline

1) Show how to extract with probability 1 in expected polynomial time.

2) How to extract in a way that preserves the adversary’s state.
• This more or less directly implies ZK simulation

3) Serious modelling issue: how to formalize expected polynomial
time ZK simulation

What is our simulator doing?

SPExt Sketch:
1. Run the guaranteed extractor coherently
2. Measure (𝑎, 𝑏) and (if 𝑏 = 1) measure 𝑤
3. Uncompute (1)
4. Run 𝑃∗ forwards to get 𝑟, 𝑧

(1) and (3) think of the guaranteed extractor as a unitary 𝑈 + measurement,
and apply 𝑈 (step 1) and 𝑈? (step 3).

Is this expected polynomial time? What is expected polynomial time??
61

62

What is Expected Quantum Polynomial Time?

Register Function Initialization

State Machine

Workspace

Input/Output

63

Variable-Runtime Quantum Turing Machines
[Deutsch85, Ozawa98]

|𝑞2⟩𝒬

𝒲 |0⟩

𝒜 |𝜓⟩

The “transition function” of a QTM is defined so that if 𝒬 contains
the “halting state” 𝑞3 , no additional computation is done.

Register Function Initialization

State Machine

Workspace

Input/Output

64

|𝑞2⟩𝒬

𝒲 |0⟩

𝒜 |𝜓⟩

Observation [M97, O98a, LP98,O98b]:
1) The runtime of a QTM is always effectively measured
2) Computation paths with different running times do not interfere

Variable-Runtime Quantum Turing Machines
[Deutsch85, Ozawa98]

65

Measured-Runtime Expected Poly Time (EQPTM)

ℬ records the runtime; we require polynomial expected value.

66

EQPTM is a bad model for ZK simulation

ZK: the view of every (malicious) verifier can be simulated in EPT
• However, different verifiers will have different simulator *runtime

distributions*
• Computation paths with different running times do not interfere
• This means that an EQPT@ simulator will break a superposition of two

verifiers with different runtime distributions.

Theorem [Chia-Chung-Liu-Yamakawa, FOCS ‘21]
Quantum EQPT5 black-box simulation for constant-round protocols is impossible

67

What is the definition of classical ZK?

Sim Output =)
!

𝑎! 𝑀 ! 𝑥, st

Theorem [Barak-Lindell ‘02]: Constant-round black-box ZK is impossible with
fixed polynomial-time simulation.

Solution [GMR85,GMW86,GK96,FS90]: expected polynomial-time simulation

N
!

𝑎! ⋅ 𝑡 = poly 𝜆 In this “branch”, 𝑀(𝑥, 𝑠𝑡) runs in time t.

68

Coherent-Runtime Expected Poly Time (EQPT!)

Output =)
!

𝛼! 𝑈 ! "
𝐶 𝑈 ! ⋅ Π ! |𝜓⟩

In this ``branch,’’ both U and U? run for t steps. N
!

𝛼! " ⋅ 𝑡 = poly 𝜆

Allows implementing projective measurements from EQPT@ procedures.

On this state, running 𝑈
for 𝑡 steps will reach end.

69

Make use of 𝑈# to uncompute the runtime.

(𝑈 is a coherent EQPT5 computation)

Coherent-Runtime Expected Poly Time (EQPT!)

70

• Usefulness: Captures all of our ZK simulators

• Approximability: Can be truncated to time poly(λ, 1/ε) with ε error.

• Doesn’t solve hard problems: If a computational assumption (e.g.
LWE) is broken by EQPT; then it is broken by BQP.

We propose EQPT; to be the “right” quantum analogue of classical EPT simulation.

For the purposes of ZK simulation, EQPT; is as good as classical EPT:

Coherent-Runtime Expected Poly Time (EQPT!)

Recap
• ZK Simulation by State-Preserving Extraction
• Guaranteed extraction + collapsing → state-preserving extraction

• Extraction with (fast) singular vector algorithms
• Jordan singular value estimation + singular vector transform
• Amplify prover state onto accepting transcript, measure transcript,

and then repair. Appeal to pseudoinverse state to bound runtime.

• Coherent-runtime expected quantum polynomial time simulation

Final Thoughts
• Very open: conditions under which a cryptographic security property is

generically post-quantum.

• Singular vector algorithms are good tools for crypto security proofs

• Crypto also formulates interesting quantum algorithmic problems!

• Collapsing is an extremely important security notion
• When are quantum phenomena collapsing? Current tools are limited

• What quantum computational models accurately characterize
cryptographic security properties?

Thank you!

𝜃&

Π:

ΠA

Π:

ΠA
Π1
ΠA𝜃5

𝜃B

