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Post-Quantum Zero-Knowledge:
• [Watrous06] ZK for very special protocols

• “Oblivious guessing simulator” -> full simulator
• ???

Post-Quantum Soundness:
• [Unruh12, Unruh16]: weak soundness for special protocols
• [CMSZ21]: strong soundness for more protocols
• Key components: collapsing, special soundness

Today So Far

This talk: new toolkit for post-quantum ZK 



What is [Watrous06] good for?
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Watrous simulates by guessing 𝑟.

Works when 𝑟 is one bit.
• Actual protocol is sequential 

repetition of Blum

Works when only poly many 𝑟, but 
soundness is still poor.

What about arbitrary length 𝑟?



Simulation Beyond Guessing

𝑟(, … , 𝑟)
P V

Repeated Protocol for Hamiltonian Cycle

This is not even classically ZK!
(How does Sim get 𝑟&, … , 𝑟'?)

𝑐(, … , 𝑐)

𝑧(, … , 𝑧)

• There are two classical “fixes” to this: paradigms due to Golreich-Kahan [GK96] and 
Feige-Shamir [FS90]. Have the verifier commit to its challenge in advance.

• Simulation task is no longer about guessing, but about extracting

• New tools can show: both of these paradigms are post-quantum secure!



Example: Graph non-isomorphism
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𝑃(𝐺*, 𝐺() 𝑉(𝐺*, 𝐺()
𝐻 𝐻 ≔ 𝜋 𝐺+𝜋 ∈, 𝑆-, 𝑏 ← {0,1}

𝑏

𝑟. = 0: 𝜋.,*, 𝜋.,(

𝐺.,*, 𝐺.,( = 𝜋.,* 𝐺* , 𝜋.,( 𝐺({𝐺.,*, 𝐺.,(}

𝑟 ← 0,1 - 𝑟

𝑟. = 1: 𝜋.,0∗ ∘ 𝜋1(

(ensure malicious verifier 
“knows” isomorphism 

between 𝐻 and 𝐺+)

Graph non-isomorphism protocol [GMW86]

Aside: [GMW86] also gives GI protocol, which is ZK by Watrous  



7

𝑃(𝐺*, 𝐺() 𝑉(𝐺*, 𝐺()
𝐻 𝐻 ≔ 𝜋 𝐺+𝜋 ∈, 𝑆-, 𝑏 ← {0,1}

𝑏

𝑟. = 0: 𝜋.,*, 𝜋.,(

𝐺.,*, 𝐺.,( = 𝜋.,* 𝐺* , 𝜋.,( 𝐺({𝐺.,*, 𝐺.,(}

𝑟 ← 0,1 - 𝑟

𝑟. = 1: 𝜋.,0∗ ∘ 𝜋1(

(ensure malicious verifier 
“knows” isomorphism 

between 𝐻 and 𝐺+)

Is it post-quantum ZK?

GNI protocol is classically (statistically) zero knowledge.

Graph non-isomorphism protocol [GMW86]
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Intuition: 
If 𝐺*, 𝐺( are not isomorphic, any 𝐻

defines “correct” 𝑏

Classical Sim: rewind 𝑉∗ to extract 𝑏

Graph non-isomorphism protocol [GMW86]
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Sim: 
• Run 𝑉∗ once. If 𝑃 does not reject, rewind 
𝑉∗ (on different 𝑟) until it succeeds again

• Sub-protocol is special sound → extract 
and output 𝑏

Runtime: if 𝑉∗ is 𝜀-convincing,

• Sim does nothing with probability 1 − 𝜀
• Sim rewinds 1/𝜀 times (in expectation) with probability 𝜀
• Expected # of Sim rewinds is 𝜀 ⋅ 1/𝜀 = 1

Graph non-isomorphism protocol [GMW86]
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Sim: 
• Run 𝑉∗ once. If 𝑃 does not reject, rewind 
𝑉∗ (on different 𝑟) until it succeeds again

• Sub-protocol is special sound → extract 
and output 𝑏

ZK of this protocol essentially equivalent to a soundness property of the sub-protocol.

Want to be able to find 𝑏 (in expected poly time) without changing 𝑉’s state.

Takeaway: 

Graph non-isomorphism protocol [GMW86]
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Outline

1) Show how to extract with probability 1 in expected polynomial time.

2) How to extract in a way that preserves the adversary’s state.
• This more or less directly implies ZK simulation

3) Serious modelling issue: how to formalize expected polynomial 
time ZK simulation
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Outline

1) Show how to extract with probability 1 in expected polynomial time.

2) How to extract in a way that preserves the adversary’s state.
• This more or less directly implies ZK simulation

3) Serious modelling issue: how to formalize expected polynomial 
time ZK simulation
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1) Show how to extract with probability 1 in expected polynomial time.
• Defining “guaranteed extraction”
• Rewinding with abstract singular vector algorithms [GSLW19].
• New rewinding meta-algorithm

2) How to extract in a way that preserves the adversary’s state.
• This more or less directly implies ZK simulation

3) Serious modelling issue: how to formalize expected polynomial 
time ZK simulation

Outline



Guaranteed Extraction
A 3-message protocol has guaranteed extraction for a relation 
𝑅 𝑥,𝑤 if it has an extraction procedure of the following form:
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𝑃∗ Ext

|𝜓⟩

𝑎

∑ |𝑟⟩

∑ 𝛼(,* 𝑟 𝑧 (*) Measure 𝑉(𝑎, 𝑟, 𝑧)
If 0, stop.
If 1, output a string 𝑤

• If (*) does not abort, then 𝑅(𝑥, 𝑤) holds with 1 − negl λ probability
• Ext runs in expected poly-time

Where:



Achieving Guaranteed Extraction
Theorem [LMS22]:
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Any 3-message protocol satisfying the following two conditions has 
guaranteed extraction for 𝑅(𝑥, 𝑤):

• 𝑘-Special Soundness: 𝑘 accepting pairs (𝑟+ , 𝑧+) (for fixed 𝑎) → valid 𝑤.
• Collapsing: (Partial) prover responses z are (computationally) unique

Conditions of this form hold for typical protocols (care required)



Achieving Guaranteed Extraction
Theorem [LMS22]:
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Any 3-message protocol satisfying the following two conditions has 
guaranteed extraction for 𝑅(𝑥, 𝑤):

• 𝑘-Special Soundness: 𝑘 accepting pairs (𝑟+ , 𝑧+) (for fixed 𝑎) → valid 𝑤.
• Collapsing: (Partial) prover responses z are (computationally) unique

Q: Does CMSZ solve this problem?
A: If only life were so easy
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• + ! ≔
"
!
∑#∈! |𝑟⟩ (uniform superposition of challenges)

• Π%&& ≔ ∑# |𝑟⟩⟨𝑟|! ⊗Π#.
• Π'()* ≔ + ⟨+|! ⊗ 𝕀.

Start with prover state |𝜓⟩ that is 𝛾-successful

Recap of [CMSZ21] Extraction

𝜓 + ! = ∑" 𝛼"|𝑣"⟩ in the Π#$%&, Π'(( Jordan basis 

Step 1: MW alternating projectors outputs a value 𝑝

Step 2: Try to generate an accepting transcript on random 𝑟

Step 3: Repair state 𝜓) to (almost) maintain invariant

Invariant: 𝜙 = ∑" 𝛼")|𝑣"⟩where 𝑝" ≥ 𝑝 whp.
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Recap of [CMSZ21] Extraction

Step 3: Repair state 𝜓) to (almost) maintain invariant

Invariant: 𝜙 = ∑" 𝛼")|𝑣"⟩where 𝑝" ≥ 𝑝 almost surely.

• Append a workspace register 𝑊 for running MW
• Π+∗ ≔ ``running MW unitary would result in a value ≥ 𝑝 − 𝜀.
• Π#,.∗ ≔ Π#,.⊗ 0 ⟨0|/. Π#,. checks whether 𝑃(𝑟) makes 𝑉 output 𝑏.

Alternate M*
∗ , M,,.

∗ measurements until M*
∗ → 1

𝜓, 0 - is the result of M(
∗ applied to state satisfying invariant.

𝑂(1) alternations suffice in expectation to get back.
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Recap of [CMSZ21] Extraction

First, let’s make this procedure guarantee an output.
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• + ! ≔
"
!
∑#∈! |𝑟⟩ (uniform superposition of challenges)

• Π%&& ≔ ∑# |𝑟⟩⟨𝑟|! ⊗Π#.
• Π'()* ≔ + ⟨+|! ⊗ 𝕀.

Start with prover state |𝜓⟩ that is 𝛾-successful

Recap of [CMSZ21] Extraction

𝜓 + ! = ∑" 𝛼"|𝑣"⟩ in the Π#$%&, Π'(( Jordan basis 

Step 1: MW alternating projectors outputs a value 𝑝

How long? Given accuracy parameter 𝜀, run in 1/𝜀/ time

Guaranteed extraction asks for a guarantee for all provers. 
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Start with prover state |𝜓⟩ that is 𝛾-successful

Naïve Guaranteed Extraction

Step 0: Apply M!"" to 𝜓 |+#⟩ (check if prover success). 

If 1, continue. 

Step 1: MW alternating projectors outputs a value 𝑝

Π!"" 𝜓 + # = ∑$ 𝑝$𝛼$|𝑤$⟩ in the Π%&'(, Π!"" Jordan basis 

How long? Until your numerator is at least 𝜆

Expected runtime ∑$ 𝛼$
)
𝑝$ ⋅

*
+0
= 𝜆
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So, what is the overall running time?
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Naïve Guaranteed Extraction

Step 3: Repair state 𝜓, to (almost) maintain invariant

Repair runtime: 𝑂(1) Π+∗ measurement

Π+∗ corresponds to MW estimate to 𝜀 = 𝑝) accuracy.

Why? Need to repair 𝑘/𝑝 times, start at 𝑝.

Complexity of Π+∗ =
.
/1
= .

+2
.

Thus, total runtime of the extractor is 0
+
⋅ .
+2
= .

+3
if you start at 𝑝.
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Naïve Guaranteed Extraction

Thus, total runtime of the extractor is 0
+
⋅ .
+2
= .

+3
if you start at 𝑝.

Q: What is 𝑝?

Π!"" 𝜓 + # = ∑$ 𝑝$𝛼$|𝑤$⟩ in the Π%&'(, Π!"" Jordan basis 

A: Arbitrary nonzero number???

Expected running time is ∑$ 𝛼$)𝑝$ ⋅
.
+0
3 = ∞



Any 3-message protocol satisfying 𝑘-Special Soundness and collapsing 
has guaranteed extraction for 𝑅(𝑥, 𝑤):

Achieving Guaranteed Extraction
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Proof Idea:
Classical Rewinding Runtime

• With probability 𝜀, rewind 𝑘/𝜀 times

• Total work 𝜀 ⋅ 𝑘/𝜀 ⋅ 1 = 𝑘

Quantum Rewinding Runtime

• With probability 𝜀, rewind and 
repair 𝑘/𝜀 times

• Total work 𝜀 ⋅ 𝑘/𝜀 ⋅ 1/𝜀/ = ∞

Theorem [LMS22]:



Any 3-message protocol satisfying 𝑘-Special Soundness and collapsing 
has guaranteed extraction for 𝑅(𝑥, 𝑤):

Achieving Guaranteed Extraction
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Proof Idea:
Classical Rewinding Runtime

• With probability 𝜀, rewind 𝑘/𝜀 times

• Total work 𝜀 ⋅ 𝑘/𝜀 ⋅ 1 = 𝑘

Theorem [LMS22]:

Our Rewinding Runtime

• With probability 𝜀, rewind and 
repair 𝑘 times

• Total work 𝜀 ⋅ 𝑘 ⋅ 1/𝜀 = 𝑘
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Key Ideas

1. Alternating projectors is secretly three algorithms at the same time.
• Given 𝜙 = ∑0 𝛼0|𝑣0⟩ (in the Π1, Π2 Jordan basis), approximately 

measure 𝑝0 (constant multiplicative accuracy). 
(initial estimation)
• Given 𝜙 = ∑0 𝛼0|𝑣0⟩, accept if 𝑝0 ≥ 𝑝 and reject if 𝑝0 ≤ 𝑝(1 − 𝜖)
(implementation of Π3∗ )
• Given 𝜙 = ∑0 𝛼0|𝑣0⟩, find a state in im(Π2).
(repair procedure)
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Key Ideas

1. Alternating projectors is secretly three algorithms at the same time.
• We can describe a rewinding algorithm making black-box use of 

procedures for these three tasks.
• All three can be done faster than alternating projectors!
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Key Ideas
1. Alternating projectors is secretly three algorithms at the same time.
• Given 𝜙 = ∑0 𝛼0|𝑣0⟩ (in the Π1, Π2 Jordan basis), approximately 

measure 𝑝0 (constant multiplicative accuracy). 

(Variable-Accuracy) Phase Estimation ( &
3!

time using many QFTs)

• Given 𝜙 = ∑0 𝛼0|𝑣0⟩, accept if 𝑝0 ≥ 𝑝 and reject if 𝑝0 ≤ 𝑝(1 − 𝜖)

Gap Phase Estimation ( &
4 3

time using QFT)

• Given 𝜙 = ∑0 𝛼0|𝑣0⟩, find a state in im(Π2).

Singular Vector Transform ( &
3!

time using Est + Grover-type algorithm)



33

+ variable-runtime modifications
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Faster Guaranteed Extraction

Total runtime of the extractor is 0
+
⋅ .
+1
= .

+4
if you start at 𝑝.

Expected running time is ∑$ 𝛼$)𝑝$ ⋅
.
+0
4 = ∞
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Key Ideas

1. Alternating projectors is secretly three algorithms at the same time.

2. This rewinding template is doomed…
• We need 𝑘/𝑝 transcripts if we start at eigenvalue 𝑝.
• Repair… probably takes more than 𝑂(1) total time
• So… ∑0 𝛼05𝑝0 ⋅ 𝑘/𝑝0 ⋅ 𝑡 𝑝0 = ∞
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Key Ideas

1. Alternating projectors is secretly three algorithms at the same time.

2. This rewinding template is doomed…

3. Our rewinding is too classical!
• Instead of hoping that 𝑃∗ answers 𝑟 correctly, let’s force 𝑃∗ to 

answer correctly! 
• Amplify im(Π6789) → im(Π:;;)
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The [CMSZ21] Extraction Templateinitial state

|S⟩
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Estimate

The [CMSZ21] Extraction Templateinitial state

|S⟩
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Estimate

𝑝

The [CMSZ21] Extraction Templateinitial state

|S⟩
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success prob ≈ 𝑝

𝑟&

Repair

|S&⟩

|S&′⟩

Estimate

𝑝

The [CMSZ21] Extraction Templateinitial state

𝑽

|S⟩

𝑧&/⊥



𝑟5
|S5⟩

42

success prob ≈ 𝑝

𝑟&

Repair |S5′⟩

…

Repair

|S&⟩

|S&′⟩

Estimate

𝑝

The [CMSZ21] Extraction Template

success prob ≈ 𝑝

initial state

𝑽 𝑽

|S⟩

𝑧&/⊥ 𝑧5/⊥
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Our Extractor

|S⟩
1) Use joint state of 
challenge-adversary.
2) Transform ensures
we only measure 
accepting (𝑟, 𝑧).
3) Fast (variable 
runtime) algorithms + 
difficult analysis: repair 
takes 1/𝑝 time.
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Our Extractor superposition 
of challenges

+< ⊗ |S⟩
1) Use joint state of 
challenge-adversary.
2) Transform ensures
we only measure 
accepting (𝑟, 𝑧).
3) Fast (variable 
runtime) algorithms + 
difficult analysis: repair 
takes 1/𝑝 time.
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Our Extractor superposition 
of challenges

+< ⊗ |S⟩

Estimate

1) Use joint state of 
challenge-adversary.
2) Transform ensures
we only measure 
accepting (𝑟, 𝑧).
3) Fast (variable 
runtime) algorithms + 
difficult analysis: repair 
takes 1/𝑝 time.

𝑝



46

Our Extractor superposition 
of challenges

+< ⊗ |S⟩

Estimate

QSVT

W
(

𝛼( 𝑟 ⊗ |S(⟩

|S3⟩ guaranteed 
to succeed on 𝑟

superposition of 
accepting executions 

1) Use joint state of 
challenge-adversary.
2) QSVT ensures we 
only measure accepting 
(𝑟, 𝑧).
3) Fast (variable 
runtime) algorithms + 
difficult analysis: repair 
takes 1/𝑝 time.

𝑝
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Our Extractor superposition 
of challenges

+< ⊗ |S⟩

Estimate

QSVT

W
(

𝛼( 𝑟 ⊗ |S(⟩

(𝑟(, 𝑧()

1) Use joint state of 
challenge-adversary.
2) QSVT ensures we 
only measure accepting 
(𝑟, 𝑧).
3) Fast (variable 
runtime) algorithms + 
difficult analysis: repair 
takes 1/𝑝 time.

𝑝
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Our Extractor superposition 
of challenges

+< ⊗ |S⟩

Estimate

QSVT

W
(

𝛼( 𝑟 ⊗ |S(⟩

(𝑟(, 𝑧()

Repair

1) Use joint state of 
challenge-adversary.
2) QSVT ensures we 
only measure accepting 
(𝑟, 𝑧).
3) Fast (variable 
runtime) algorithms + 
difficult analysis: repair 
takes 1/𝑝 time.

𝑝
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Our Extractor superposition 
of challenges

+< ⊗ |S⟩

Estimate

QSVT

W
(

𝛼( 𝑟 ⊗ |S(⟩

(𝑟(, 𝑧()

Repair

+< ⊗ |S(&)⟩

success prob 
≥ 𝑝 − 𝜀

1) Use joint state of 
challenge-adversary.
2) QSVT ensures we 
only measure accepting 
(𝑟, 𝑧).
3) Fast (variable 
runtime) algorithms + 
difficult analysis: repair 
takes 1/𝑝 time.

𝑝
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Our Extractor superposition 
of challenges

+< ⊗ |S⟩

Estimate

QSVT

W
(

𝛼( 𝑟 ⊗ |S(⟩

(𝑟(, 𝑧()

Repair

+< ⊗ |S(&)⟩

W
(

𝛼( 𝑟 ⊗ |S(
(&)⟩

(𝑟4, 𝑧4)

Repair

…
QSVT

1) Use joint state of 
challenge-adversary.
2) QSVT ensures we 
only measure accepting 
(𝑟, 𝑧).
3) Fast (variable 
runtime) algorithms + 
difficult analysis: repair 
takes 1/𝑝 time.

𝑝

success prob 
≥ 𝑝 − 𝜀
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Our Extractor superposition 
of challenges

+< ⊗ |S⟩

Estimate

QSVT

W
(

𝛼( 𝑟 ⊗ |S(⟩

(𝑟(, 𝑧()

Repair

+< ⊗ |S(&)⟩

W
(

𝛼( 𝑟 ⊗ |S(
(&)⟩

(𝑟4, 𝑧4)

Repair

…
QSVT

1) Use joint state of 
challenge-adversary.
2) QSVT ensures we 
only measure accepting 
(𝑟, 𝑧).
3) Fast algorithms + 
careful analysis + 
miracle: repair takes 
1/𝑝 time.

𝑝

success prob 
≥ 𝑝 − 𝜀
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Our Extractor superposition 
of challenges

+< ⊗ |S⟩

Estimate

QSVT

W
(

𝛼( 𝑟 ⊗ |S(⟩

(𝑟(, 𝑧()

Repair

+< ⊗ |S(&)⟩

W
(

𝛼( 𝑟 ⊗ |S(
(&)⟩

(𝑟4, 𝑧4)

Repair

…
QSVT

Why does Repair work?

• In [CMSZ], “Return to 
subspace principle”

• If |S(3)⟩ was disturbed 
only a small amount, 
then Repair will return 
|S(, ⟩ to the 𝑝-subspace 
quickly

• But measurement of 𝑟
is a huge disturbance…

𝑝

success prob 
≥ 𝑝 − 𝜀
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Our Extractor superposition 
of challenges

+< ⊗ |S⟩

Estimate

QSVT

W
(

𝛼( 𝑟 ⊗ |S(⟩

(𝑟(, 𝑧()

Repair

+< ⊗ |S(&)⟩

W
(

𝛼( 𝑟 ⊗ |S(
(&)⟩

(𝑟4, 𝑧4)

Repair

…

Our Analysis:
1) Measuring (𝑟+ , 𝑧+)
looks disturbing, but:
2) There exists a good
X𝑆 such that S&, could 

have been obtained 
from a log 1/𝑝
disturbance to X𝑆 .
3) Fast repair succeeds 
after  1/ 𝑝 calls to 
Estimate.

QSVT

𝑝

success prob 
≥ 𝑝 − 𝜀
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Not shown: very insidious problem with the runtime

Solution: calculate how long repair should take before 
disturbing the state.
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Outline

1) Show how to extract with probability 1 in expected polynomial time.

2) How to extract in a way that preserves the adversary’s state.
• This more or less directly implies ZK simulation

3) Serious modelling issue: how to formalize expected polynomial 
time ZK simulation



State-Preserving Extraction

A protocol has state-preserving extraction if it has an extraction 
procedure SPExt1∗ → 𝜏,𝑤, 𝜓 ) such that:

56

• The probability that 𝜏 is accepting but 𝑤 is invalid is negligible.

• SPExt runs in expected polynomial time.

• 𝜏, 𝜓 ) is computationally indistinguishable from real 𝑃∗ view

Dual notion to post-quantum ZK.
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(Informally) Whenever the extractor 
outputs a (computationally) unique string

Lemma:  Guaranteed extraction → state-preserving 
extraction for nice protocols.

Example to have in mind: commit-and-prove protocols



Reduction to Guaranteed Extraction

SPExt Sketch:

1. Run the guaranteed extractor coherently
2. Measure (𝑎, 𝑏) and (if 𝑏 = 1) measure 𝑤
3. Uncompute (1)
4. Run 𝑃∗ forwards to get 𝑟, 𝑧

𝑤 measurement in (2) is undetectable, so (1) and (3) “cancel out.”

58



Putting everything together

1) GNI 3-message subprotocol has guaranteed extraction

2) So it has state-preserving extraction

3) So the GNI protocol is post-quantum ZK!
59
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Outline

1) Show how to extract with probability 1 in expected polynomial time.

2) How to extract in a way that preserves the adversary’s state.
• This more or less directly implies ZK simulation

3) Serious modelling issue: how to formalize expected polynomial 
time ZK simulation



What is our simulator doing?

SPExt Sketch:
1. Run the guaranteed extractor coherently
2. Measure (𝑎, 𝑏) and (if 𝑏 = 1) measure 𝑤
3. Uncompute (1)
4. Run 𝑃∗ forwards to get 𝑟, 𝑧

(1) and (3) think of the guaranteed extractor as a unitary 𝑈 + measurement, 
and apply 𝑈 (step 1) and 𝑈? (step 3).

Is this expected polynomial time?  What is expected polynomial time??
61
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What is Expected Quantum Polynomial Time?



Register Function Initialization

State Machine

Workspace

Input/Output

63

Variable-Runtime Quantum Turing Machines
[Deutsch85, Ozawa98]

|𝑞2⟩𝒬

𝒲 |0⟩

𝒜 |𝜓⟩

The “transition function” of a QTM is defined so that if 𝒬 contains 
the “halting state” 𝑞3 , no additional computation is done.



Register Function Initialization

State Machine

Workspace

Input/Output

64

|𝑞2⟩𝒬

𝒲 |0⟩

𝒜 |𝜓⟩

Observation [M97, O98a, LP98,O98b]: 
1) The runtime of a QTM is always effectively measured
2) Computation paths with different running times do not interfere 

Variable-Runtime Quantum Turing Machines
[Deutsch85, Ozawa98]
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Measured-Runtime Expected Poly Time (EQPTM)

ℬ records the runtime; we require polynomial expected value. 
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EQPTM is a bad model for ZK simulation

ZK: the view of every (malicious) verifier can be simulated in EPT
• However, different verifiers will have different simulator *runtime 

distributions*
• Computation paths with different running times do not interfere
• This means that an EQPT@ simulator will break a superposition of two 

verifiers with different runtime distributions.

Theorem [Chia-Chung-Liu-Yamakawa, FOCS ‘21]
Quantum EQPT5 black-box simulation for constant-round protocols is impossible
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What is the definition of classical ZK? 

Sim Output = )
!

𝑎! 𝑀 ! 𝑥, st

Theorem [Barak-Lindell ‘02]: Constant-round black-box ZK is impossible with 
fixed polynomial-time simulation. 

Solution [GMR85,GMW86,GK96,FS90]: expected polynomial-time simulation 

N
!

𝑎! ⋅ 𝑡 = poly 𝜆 In this “branch”, 𝑀(𝑥, 𝑠𝑡) runs in time t.
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Coherent-Runtime Expected Poly Time (EQPT!)

Output = )
!

𝛼! 𝑈 ! "
𝐶 𝑈 ! ⋅ Π ! |𝜓⟩

In this ``branch,’’ both U and U? run for t steps. N
!

𝛼! " ⋅ 𝑡 = poly 𝜆

Allows implementing projective measurements from EQPT@ procedures.  

On this state, running 𝑈
for 𝑡 steps will reach end.
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Make use of 𝑈# to uncompute the runtime. 

(𝑈 is a coherent EQPT5 computation) 

Coherent-Runtime Expected Poly Time (EQPT!)
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• Usefulness: Captures all of our ZK simulators

• Approximability: Can be truncated to time poly(λ, 1/ε) with ε error.

• Doesn’t solve hard problems: If a computational assumption (e.g. 
LWE) is broken by EQPT; then it is broken by BQP.

We propose EQPT; to be the “right” quantum analogue of classical EPT simulation.

For the purposes of ZK simulation, EQPT; is as good as classical EPT:

Coherent-Runtime Expected Poly Time (EQPT!)



Recap
• ZK Simulation by State-Preserving Extraction
• Guaranteed extraction + collapsing → state-preserving extraction

• Extraction with (fast) singular vector algorithms
• Jordan singular value estimation + singular vector transform
• Amplify prover state onto accepting transcript, measure transcript, 

and then repair. Appeal to pseudoinverse state to bound runtime.

• Coherent-runtime expected quantum polynomial time simulation



Final Thoughts
• Very open: conditions under which a cryptographic security property is 

generically post-quantum.

• Singular vector algorithms are good tools for crypto security proofs

• Crypto also formulates interesting quantum algorithmic problems!

• Collapsing is an extremely important security notion
• When are quantum phenomena collapsing? Current tools are limited

• What quantum computational models accurately characterize 
cryptographic security properties?



Thank you!
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