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Quantum Rewinding Tutorial Part 1:

Motivation and Early Quantum Rewinding Techniques

Based on:
• “Quantum Proofs of Knowledge” by Dominique Unruh (2012)
• “Computationally Binding Quantum Commitments” by Dominique Unruh (2016)
• “Zero Knowledge Against Quantum Attacks” by John Watrous (2005)
• “Quantum Arthur Merlin Games” by Chris Marriott and John Watrous (2005)
• “Traité des substitutions et des équations algébriques” by Camille Jordan (1870)

Fermi Ma 
(Simons & Berkeley)

Alex Lombardi
(MIT → Simons & Berkeley)
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Today’s Goal:
We want classical cryptography 
secure against quantum attacks

(post-quantum cryptography)
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How do cryptographers prove security?
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Reduction=Crypto Security 
Proof +(Assumed)

Hard Problem

How do cryptographers prove security?
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Reduction+

Ex: one-way function, factoring, discrete log, etc.
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Reduction+(Assumed)
Hard Problem=Crypto Security 

Proof

Efficient 𝐴 wins security game
→ efficient 𝐴′ solves hard problem

Key point: problem must be hard for quantum computers!
Fortunately, we have (plausibly) quantum-hard problems.

How do cryptographers prove security?
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Reduction+

Key point: problem must be hard for quantum computers!
Fortunately, we have (plausibly) quantum-hard problems.

Quantum-Hard
Problem=Crypto Security 

Proof

Efficient 𝐴 wins security game
→ efficient 𝐴′ solves hard problem

Ex: learning with errors (LWE), isogenies, OWF

How do cryptographers prove security?
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Reduction+

Done?

Quantum-Hard
Problem=Crypto Security 

Proof

Efficient 𝐴 wins security game
→ efficient 𝐴′ solves hard problem

Key point: problem must be hard for quantum computers!
Fortunately, we have (plausibly) quantum-hard problems.

Ex: learning with errors (LWE), isogenies, OWF

How do cryptographers prove security?
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Conjecture
Classical security reduction + quantum-hard problem

→ post-quantum security?
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Conjecture
Classical security reduction + quantum-hard problem

→ post-quantum security?
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→ post-quantum security?
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Prover Verifier[BCMVV18] 
Protocol

No!
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Conjecture
Classical security reduction + quantum-hard problem

→ post-quantum security?

• Efficient classical P cannot make V accept assuming LWE
• Efficient quantum P can convince V to accept.

accept/reject

Prover Verifier[BCMVV18] 
Protocol

No!
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Conjecture
Classical security reduction + quantum-hard problem

→ post-quantum security?

• Efficient classical P cannot make V accept assuming LWE.
• Efficient quantum P can convince V to accept.

accept/reject

Prover Verifier

In [BCMVV18] this is presented as a proof of quantumness.

[BCMVV18] 
Protocol

No!
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Takeaway
Quantum computers can break classically secure crypto 
without solving the underlying hard problem!
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How is this possible? 
Classical security of [BCMVV18] relies on rewinding
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[BCMVV18] Reduction

How is this possible? 
Classical security of [BCMVV18] relies on rewinding
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without solving the underlying hard problem!
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𝑎 [BCMVV18] Reduction

How is this possible? 
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without solving the underlying hard problem!
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𝑎
𝑟

[BCMVV18] Reduction

How is this possible? 
Classical security of [BCMVV18] relies on rewinding

Takeaway
Quantum computers can break classically secure crypto 
without solving the underlying hard problem!
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𝑎
𝑟

[BCMVV18] Reduction

𝑧

How is this possible? 
Classical security of [BCMVV18] relies on rewinding

Takeaway
Quantum computers can break classically secure crypto 
without solving the underlying hard problem!
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𝑎
𝑟

[BCMVV18] Reduction
1) Record (𝑎, 𝑟, 𝑧)

𝑧

How is this possible? 
Classical security of [BCMVV18] relies on rewinding

Takeaway
Quantum computers can break classically secure crypto 
without solving the underlying hard problem!
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𝑎 [BCMVV18] Reduction
1) Record (𝑎, 𝑟, 𝑧)
2) Rewind

rewind

How is this possible? 
Classical security of [BCMVV18] relies on rewinding

Takeaway
Quantum computers can break classically secure crypto 
without solving the underlying hard problem!
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𝑎
𝑟′

[BCMVV18] Reduction
1) Record (𝑎, 𝑟, 𝑧)
2) Rewind

rewind

How is this possible? 
Classical security of [BCMVV18] relies on rewinding

Takeaway
Quantum computers can break classically secure crypto 
without solving the underlying hard problem!
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𝑎
𝑟′

[BCMVV18] Reduction
1) Record (𝑎, 𝑟, 𝑧)
2) Rewind

rewind
𝑧′

How is this possible? 
Classical security of [BCMVV18] relies on rewinding

Takeaway
Quantum computers can break classically secure crypto 
without solving the underlying hard problem!
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𝑎
𝑟′

[BCMVV18] Reduction
1) Record (𝑎, 𝑟, 𝑧)
2) Rewind
3) Record (𝑎, 𝑟!, 𝑧!)

rewind
𝑧′

How is this possible? 
Classical security of [BCMVV18] relies on rewinding

Takeaway
Quantum computers can break classically secure crypto 
without solving the underlying hard problem!
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𝑎
𝑟′

[BCMVV18] Reduction
1) Record (𝑎, 𝑟, 𝑧)
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𝑎
𝑟′

[BCMVV18] Reduction
1) Record (𝑎, 𝑟, 𝑧)
2) Rewind
3) Record (𝑎, 𝑟!, 𝑧!)

rewind
𝑧′

break 
LWE

How is this possible? 
Classical security of [BCMVV18] relies on rewinding

Reduction doesn’t work for quantum adversaries because 
measuring the response can disturb the adversary’s state.

Takeaway
Quantum computers can break classically secure crypto 
without solving the underlying hard problem!
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𝑎
𝑟′
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[BCMVV18] is “quantum broken”

More generally, rewinding-based security proofs are not safe!
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[BCMVV18] is “quantum broken”

But rewinding is one of the most common 
techniques in cryptography…

More generally, rewinding-based security proofs are not safe!



35

Question for today:
When is quantum rewinding possible?

accept/reject

Prover Verifier
Claim: 𝑥 ∈ 3SAT
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Soundness: Malicious 𝑃 can’t 
trick 𝑉 into accepting a false 
claim.

Zero Knowledge [GMR85]: 
View of malicious 𝑉 can be 
efficiently simulated without 𝑃.

accept/reject

Prover Verifier
Claim: 𝑥 ∈ 3SAT

Question for today:
When is quantum rewinding possible?
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Preliminaries: Quantum Adversary Model

(Non-Uniform) Quantum Adversary consists of efficiently computable 
and invertible 𝑈 along with a measurement in the standard basis

𝜓

𝑈

Out

(One-shot case) equivalent to efficient quantum circuit.

0 !"#|𝑥⟩𝑥

𝑦

Interactive adversary will be stateful.
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This Talk

1) Blum’s protocol for graph Hamiltonicity

2) Post-Quantum Soundness of Blum

3) Post-Quantum Zero Knowledge of Blum
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This Talk

1) Blum’s protocol for graph Hamiltonicity

2) Post-Quantum Soundness of Blum

3) Post-Quantum Zero Knowledge of Blum
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Prover Verifier

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Blum’s Protocol for 
Hamiltonian Cycles
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Blum’s Protocol for 
Hamiltonian Cycles

Prover Verifier

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

𝑎

𝑏 𝑐

𝑑

𝑒Sample 𝜋 ← 𝑆).

Commit to the 
adjacency matrix 
of 𝜋(𝐺)
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Blum’s Protocol for 
Hamiltonian Cycles

𝑟

Prover Verifier
𝑎

𝑏 𝑐

𝑑

𝑒

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Sample 𝜋 ← 𝑆).

Commit to the 
adjacency matrix 
of 𝜋(𝐺)

Sample random 
𝑟 ← {0,1}
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Blum’s Protocol for 
Hamiltonian Cycles

𝑟

Prover Verifier

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

𝑎

𝑏 𝑐

𝑑

𝑒

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Sample 𝜋 ← 𝑆).

Commit to the 
adjacency matrix 
of 𝜋(𝐺)

Sample random 
𝑟 ← {0,1}
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Blum’s Protocol for 
Hamiltonian Cycles

𝑟

Prover Verifier

𝑎

𝑏 𝑐

𝑑

𝑒
(if 𝑟 = 1)(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

or

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Sample 𝜋 ← 𝑆).

Commit to the 
adjacency matrix 
of 𝜋(𝐺)

Sample random 
𝑟 ← {0,1}
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𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Soundness (intuition)

By binding, the first message 
determines a graph 𝐻 such that:
• 𝐻 is a permutation of 𝐺
• 𝐻 contains a Ham cycle
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𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Soundness (intuition)

By binding, the first message 
determines a graph 𝐻 such that:
• 𝐻 is a permutation of 𝐺
• 𝐻 contains a Ham cycle

Zero Knowledge (intuition)

First message reveals nothing since 
commitments are hiding.

Last message also reveals nothing:
• (𝑟 = 0) random permutation of 𝐺
• (𝑟 = 1) random cycle
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This Talk

✓1) Blum’s protocol for graph Hamiltonicity

2) Post-Quantum Soundness of Blum

3) Post-Quantum Zero Knowledge of Blum
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This Talk

1) Blum’s protocol for graph Hamiltonicity

2) Post-Quantum Soundness of Blum

3) Post-Quantum Zero Knowledge of Blum

✓

• Classical soundness
• Collapse-binding commitments
• Unruh’s rewinding lemma
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Soundness: If efficient classical 
P* convinces V with prob ,-+ 𝜀, 
then 𝐺 must have a Ham cycle.

Classical Soundness

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒



2-special soundness: Two valid 
transcripts → Ham cycle
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𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋, 𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1+

Ham cycle 
for original 𝐺

Soundness: If efficient classical 
P* convinces V with prob ,-+ 𝜀, 
then 𝐺 must have a Ham cycle.

Classical Soundness

𝑎

𝑏 𝑐

𝑑

𝑒

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒
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Rewinding argument: query P* 
once on 𝑟 = 0 and once on 𝑟 = 1

Probability at least Ω(𝜀) of two 
accepting responses.

Classical Soundness
Soundness: If efficient classical 
P* convinces V with prob ,-+ 𝜀, 
then 𝐺 must have a Ham cycle.

𝑐
0
𝑧.

rewind

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

1
𝑧,
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𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Post-Quantum Soundness
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𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Post-Quantum Soundness

Easy case: statistically binding 
commitments

Soundness holds against 
unbounded attackers (and 
hence quantum)
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Post-Quantum Soundness

𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Easy case: statistically binding 
commitments

Soundness holds against 
unbounded attackers (and 
hence quantum)

Interesting case: what if the 
commitments are only 
computationally binding?



56

Binding Against Quantum Attack 
Before we can analyze soundness, we need to answer a basic question:
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Before we can analyze soundness, we need to answer a basic question:

What does it mean for a commitment to be computationally binding?



58

Binding Against Quantum Attack 
Before we can analyze soundness, we need to answer a basic question:

What does it mean for a commitment to be computationally binding?

Commitment 
Syntax 𝑐 = Com/0(𝑚; 𝑑)

𝑐𝑘

𝑚, 𝑑

sender receiver

Accept if
𝑐 = Com/0(𝑚; 𝑑).
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Binding Against Quantum Attack 

Classical definition:
PPT adversary can’t output 𝑐 and valid 𝑚., 𝑑. , (𝑚,, 𝑑,) for 𝑚. ≠ 𝑚,.

Commitment 
Syntax 𝑐 = Com/0(𝑚; 𝑑)

𝑐𝑘

𝑚, 𝑑

sender receiver

Before we can analyze soundness, we need to answer a basic question:
What does it mean for a commitment to be computationally binding?

Accept if
𝑐 = Com/0(𝑚; 𝑑).
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Binding Against Quantum Attack 

Classical definition:
PPT adversary can’t output 𝑐 and valid 𝑚., 𝑑. , (𝑚,, 𝑑,) for 𝑚. ≠ 𝑚,.

Commitment 
Syntax 𝑐 = Com/0(𝑚; 𝑑)

𝑐𝑘

𝑚, 𝑑

sender receiver

Can we just replace PPT with QPT?

Before we can analyze soundness, we need to answer a basic question:
What does it mean for a commitment to be computationally binding?

Accept if
𝑐 = Com/0(𝑚; 𝑑).
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Binding Against Quantum Attack 

Classical definition:
PPT adversary can’t output 𝑐 and valid 𝑚., 𝑑. , (𝑚,, 𝑑,) for 𝑚. ≠ 𝑚,.

Commitment 
Syntax 𝑐 = Com/0(𝑚; 𝑑)

𝑐𝑘

𝑚, 𝑑

sender receiver

Accept if
𝑐 = Com/0(𝑚; 𝑑).

Can we just replace PPT with QPT?

[ARU14]: No!

Before we can analyze soundness, we need to answer a basic question:
What does it mean for a commitment to be computationally binding?
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Naïve post-quantum binding def: 
QPT attacker can’t output 𝑐 and valid 𝑚!, 𝑑! , (𝑚", 𝑑") for 𝑚! ≠ 𝑚".

What’s wrong with this definition?
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[ARU14]: Quantum attacker* might 
produce 𝑐, |𝜓⟩ such that:

• Can use |𝜓⟩ to open 𝑐 to any 𝑚
𝑐

malicious
sender

Naïve post-quantum binding def: 
QPT attacker can’t output 𝑐 and valid 𝑚!, 𝑑! , (𝑚", 𝑑") for 𝑚! ≠ 𝑚".

𝜓 ,𝑚

What’s wrong with this definition?
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[ARU14]: Quantum attacker* might 
produce 𝑐, |𝜓⟩ such that:

• Can use |𝜓⟩ to open 𝑐 to any 𝑚
𝑐

𝑚, 𝑑

malicious
sender

Naïve post-quantum binding def: 
QPT attacker can’t output 𝑐 and valid 𝑚!, 𝑑! , (𝑚", 𝑑") for 𝑚! ≠ 𝑚".

𝜓 ,𝑚

𝑑

What’s wrong with this definition?
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[ARU14]: Quantum attacker* might 
produce 𝑐, |𝜓⟩ such that:

• Can use |𝜓⟩ to open 𝑐 to any 𝑚
• But can only do this once!  

𝑐

𝑚, 𝑑

malicious
sender

Naïve post-quantum binding def: 
QPT attacker can’t output 𝑐 and valid 𝑚!, 𝑑! , (𝑚", 𝑑") for 𝑚! ≠ 𝑚".

𝜓 ,𝑚

𝑑

What’s wrong with this definition?
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[ARU14]: Quantum attacker* might 
produce 𝑐, |𝜓⟩ such that:

• Can use |𝜓⟩ to open 𝑐 to any 𝑚
• But can only do this once!  

𝑐

𝑚, 𝑑

malicious
sender

Naïve post-quantum binding def: 
QPT attacker can’t output 𝑐 and valid 𝑚!, 𝑑! , (𝑚", 𝑑") for 𝑚! ≠ 𝑚".

𝜓 ,𝑚

𝑑

What’s wrong with this definition?

*Caveat: assuming a quantum oracle
**Open: construct example without oracles
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A Better Definition: Collapse-Binding
Suppose commitment is perfectly binding.
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A Better Definition: Collapse-Binding
Suppose commitment is perfectly binding.

malicious
sender

𝑐, ∑ 𝑚 ' 𝑑 (
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A Better Definition: Collapse-Binding
Suppose commitment is perfectly binding.

malicious
sender

𝑐, ∑ 𝑚 ' 𝑑 (

• Run the verifier in superposition 
on 𝑀,𝐷 and measure its output 
(accept or reject)
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A Better Definition: Collapse-Binding
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A Better Definition: Collapse-Binding
Suppose commitment is perfectly binding.

Observation: If verification accepts, measuring 𝑀 cannot disturb the state.

Collapse-binding definition [Unruh16]
Commitment is computationally binding if, given 𝑀,𝐷, no efficient 
adversary can tell whether or not 𝑀 is measured.

malicious
sender

𝑐, ∑ 𝑚 ' 𝑑 (

• Run the verifier in superposition 
on 𝑀,𝐷 and measure its output 
(accept or reject)
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Collapse-binding definition [Unruh16]
Commitment is computationally binding if, given 𝑀,𝐷, no efficient 
adversary can tell whether or not 𝑀 is measured.

Why this definition?
• Rules out [ARU14]-style attacks where committer can open an arbitrary 

message
• Compatible with rewinding
• Composable
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Collapse-binding definition [Unruh16]
Commitment is computationally binding if, given 𝑀,𝐷, no efficient 
adversary can tell whether or not 𝑀 is measured.

Why this definition?
• Rules out [ARU14]-style attacks where committer can open an arbitrary 

message
• Compatible with rewinding
• Composable

Do collapse-binding commitments exist? Yes, assuming LWE.

This will be the notion of binding used throughout today
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What does collapse-binding have to do with soundness? 



𝑐
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𝑐
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Collapsing says: 𝑧 measurement* is undetectable!

𝑐
𝑟

Rule: before measuring 𝑧, first measure (Π1, Id − Π1)
and only measure 𝒛 if outcome is 1 (Π1)!

𝑧 = measurement outcome of 𝑈1 𝜓 0 !"#

Let Π1 = 𝑈1
2 Π34567𝑈1.

|𝜓⟩

Lazy measurement of prover responses 

𝑧/⊥
Lazy

Thus, we can forget about measuring 𝑧 and pretend we only measure Π1, 𝐼 − Π1

“check if the prover 
would answer correctly”
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Claim [Unruh]: If efficient quantum P* convinces V with prob ,-+ 𝜀, then 
𝐺 must have a Ham cycle.
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Claim [Unruh]: If efficient quantum P* convinces V with prob ,-+ 𝜀, then 
𝐺 must have a Ham cycle.*
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*Requires a slight modification to the protocol adding some extra commitments

9
10

Today:
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Claim [Today]: If efficient quantum P* convinces V with prob 8,. , then 𝐺
must have a Ham cycle.*

Suppose P* convinces V with prob 𝑝 = 1 − 𝛿
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Claim [Today]: If efficient quantum P* convinces V with prob 8,. , then 𝐺
must have a Ham cycle.*

𝑐
𝑟
𝑧/⊥

rewind

𝑠
𝑧9/⊥

Lazy

Suppose P* convinces V with prob 𝑝 = 1 − 𝛿
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Claim [Today]: If efficient quantum P* convinces V with prob 8,. , then 𝐺
must have a Ham cycle.*

𝑐
𝑟
𝑧/⊥

rewind

𝑠
𝑧9/⊥

Lazy

Suppose P* convinces V with prob 𝑝 = 1 − 𝛿

Let Π1 = 𝑈1
2 Π34567𝑈1. “check if the prover would answer correctly”



89

Claim [Today]: If efficient quantum P* convinces V with prob 8,. , then 𝐺
must have a Ham cycle.*

𝑐
𝑟
𝑧/⊥

rewind

𝑠
𝑧9/⊥

Lazy

Suppose P* convinces V with prob 𝑝 = 1 − 𝛿

Π:Π1 𝜓⟩‖- ≥ 1 − 2 𝛿 − 2𝛿𝔼
𝑟, 𝑠

Info-theoretic Claim:

Let Π1 = 𝑈1
2 Π34567𝑈1. “check if the prover would answer correctly”
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Claim [Today]: If efficient quantum P* convinces V with prob 8,. , then 𝐺
must have a Ham cycle.*

𝑐
𝑟
𝑧/⊥

rewind

𝑠
𝑧9/⊥

Lazy

Π:Π1 𝜓⟩‖- ≥ 1 − 2 𝛿 − 2𝛿𝔼
𝑟, 𝑠

Info-theoretic Claim:

Proof: Gentle Measurement Lemma

Suppose P* convinces V with prob 𝑝 = 1 − 𝛿

Let Π1 = 𝑈1
2 Π34567𝑈1. “check if the prover would answer correctly”
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Claim [Today]: If efficient quantum P* convinces V with prob 8,. , then 𝐺
must have a Ham cycle.*

𝑐
𝑟
𝑧/⊥

rewind

𝑠
𝑧9/⊥

Lazy

Obtain witness with decent probability by invoking:

1. (Collapsing) just need to analyze binary outcome measurements.

2. (Gentle measurement) random Π1, Π: both accept with good probability.

3. (Special soundness) two transcripts reconstruct witness.

Suppose P* convinces V with prob 𝑝 = 1 − 𝛿
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Claim [Today]: If efficient quantum P* convinces V with prob 8,. , then 𝐺
must have a Ham cycle.*

Suppose P* convinces V with prob 𝑝 = 1 − 𝛿

𝑐
𝑟
𝑧/⊥

rewind

𝑠
𝑧9/⊥

Lazy

Let Π1 = 𝑈1
2 Π34567𝑈1. “check if the prover would answer correctly”

Stronger Info-theoretic Claim [Unruh]: Π:Π1 𝜓⟩‖- ≥ 𝑝;𝔼
𝑟, 𝑠
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Claim [Today]: If efficient quantum P* convinces V with prob 8,. , then 𝐺
must have a Ham cycle.*

Suppose P* convinces V with prob 𝑝 = 1 − 𝛿

𝑐
𝑟
𝑧/⊥

rewind

𝑠
𝑧9/⊥

Lazy

Let Π1 = 𝑈1
2 Π34567𝑈1. “check if the prover would answer correctly”

Stronger Info-theoretic Claim [Unruh]: Π:Π1 𝜓⟩‖- ≥ 𝑝;𝔼
𝑟, 𝑠

Open: is there a simple proof that Blum has soundness error ½?
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2) Post-Quantum Soundness of Blum

3) Post-Quantum Zero Knowledge of Blum
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This Talk

✓

✓

1) Blum’s protocol for graph Hamiltonicity

2) Post-Quantum Soundness of Blum

3) Post-Quantum Zero Knowledge of Blum
• Classical zero knowledge
• Watrous rewinding with alternating measurements 
• Analysis: Jordan’s lemma
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𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

Classical Zero Knowledge

Key Property: can simulate honest 
verifier that sends random bit
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Key Property: can simulate honest 
verifier that sends random bit
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𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

HVSim:

1) Sample 𝑟9 ← 0,1

2) Generate transcript (𝑐, 𝑟9, 𝑧):

Classical Zero Knowledge

Key Property: can simulate honest 
verifier that sends random bit
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𝑟
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𝑑
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𝑒
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𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

HVSim:

1) Sample 𝑟9 ← 0,1

2) Generate transcript (𝑐, 𝑟9, 𝑧):
• If 𝑟9 = 0, generate 𝑐, 𝑧 using a 

random permutation of 𝐺

Classical Zero Knowledge

Key Property: can simulate honest 
verifier that sends random bit
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𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
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0
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Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

HVSim:

1) Sample 𝑟9 ← 0,1

2) Generate transcript (𝑐, 𝑟9, 𝑧):
• If 𝑟9 = 0, generate 𝑐, 𝑧 using a 

random permutation of 𝐺
• If 𝑟9 = 1, generate 𝑐, 𝑧 using a 

random cycle graph

Classical Zero Knowledge

Key Property: can simulate honest 
verifier that sends random bit
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𝑟

(if 𝑟 = 0)

𝑎

𝑏 𝑐

𝑑

𝑒

1

1 1 1

1

1
1
0 0

0
𝜋,

P V

Blum’s Protocol for Hamiltonian Cycle

𝑎

𝑏 𝑐

𝑑

𝑒

1 1 1

1

1

𝑎

𝑏 𝑐

𝑑

𝑒

(if 𝑟 = 1)

𝐺 = 𝑎

𝑏 𝑐

𝑑
𝑒

HVSim:

1) Sample 𝑟9 ← 0,1

2) Generate transcript (𝑐, 𝑟9, 𝑧):
• If 𝑟9 = 0, generate 𝑐, 𝑧 using a 

random permutation of 𝐺
• If 𝑟9 = 1, generate 𝑐, 𝑧 using a 

random cycle graph

By hiding, 𝑐, 𝑟9, 𝑧 ← HVSim
looks like honest-verifier view.

Classical Zero Knowledge

Key Property: can simulate honest 
verifier that sends random bit
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HVSim can simulate an honest verifier view, but ZK requires simulating a 
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Classical Zero Knowledge
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HVSim can simulate an honest verifier view, but ZK requires simulating a 
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Guess(𝑉∗):

Classical Zero Knowledge

𝑉∗

Observation: can simulate malicious 𝑉∗ w/ prob ≈ 1/2 by guessing 𝑟.
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HVSim can simulate an honest verifier view, but ZK requires simulating a 
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Guess(𝑉∗):

1) Sample 𝑐, 𝑟9, 𝑧 ← HVSim

Classical Zero Knowledge
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HVSim can simulate an honest verifier view, but ZK requires simulating a 
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Guess(𝑉∗):

1) Sample 𝑐, 𝑟9, 𝑧 ← HVSim
𝑐
𝑟

Classical Zero Knowledge

𝑉∗

Observation: can simulate malicious 𝑉∗ w/ prob ≈ 1/2 by guessing 𝑟.



107

HVSim can simulate an honest verifier view, but ZK requires simulating a 
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Guess(𝑉∗):

1) Sample 𝑐, 𝑟9, 𝑧 ← HVSim

2) If 𝑟 = 𝑟9, output 𝑐, 𝑟9, 𝑧 . 
Otherwise, output ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)

Classical Zero Knowledge

𝑉∗

Observation: can simulate malicious 𝑉∗ w/ prob ≈ 1/2 by guessing 𝑟.
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HVSim can simulate an honest verifier view, but ZK requires simulating a 
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Guess(𝑉∗):

1) Sample 𝑐, 𝑟9, 𝑧 ← HVSim

2) If 𝑟 = 𝑟9, output 𝑐, 𝑟9, 𝑧 . 
Otherwise, output ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)

Since 𝑐 is hiding, Pr 𝑟 = 𝑟9 ≈ 1/2

Classical Zero Knowledge

𝑉∗

Observation: can simulate malicious 𝑉∗ w/ prob ≈ 1/2 by guessing 𝑟.
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Classical Zero Knowledge
HVSim can simulate an honest verifier view, but ZK requires simulating a 
malicious 𝑉∗ that picks 𝑟 adaptively based on the first message 𝑐.

Observation: can simulate malicious 𝑉∗ w/ prob ≈ 1/2 by guessing 𝑟.

This leads to the complete ZK simulator:

Guess(𝑉∗):

1) Sample 𝑐, 𝑟9, 𝑧 ← HVSim

2) If 𝑟 = 𝑟9, output 𝑐, 𝑟9, 𝑧 . 
Otherwise, output ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)

If 𝑟 ≠ 𝑟′ rewind 
and try again

Since 𝑐 is hiding, Pr 𝑟 = 𝑟9 ≈ 1/2

Sim(𝑉∗)

𝑉∗
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Guess(𝑉∗):

1) Sample 𝑐, 𝑟9, 𝑧 ← HVSim

2) If 𝑟 = 𝑟9, output 𝑐, 𝑟9, 𝑧 . 
Otherwise, output ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)

If 𝑟 ≠ 𝑟′ rewind 
and try again

Since 𝑐 is hiding, Pr 𝑟 = 𝑟9 ≈ 1/2

Sim(𝑉∗)

𝑉∗

Unfortunately, this simulator won’t suffice for post-quantum ZK! If a 
malicious 𝑉∗ has an unknown initial state 𝜓 running Guess(𝑉∗, |𝜓⟩)
may irreversibly disturb it.
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Guess(𝑉∗):

1) Sample 𝑐, 𝑟9, 𝑧 ← HVSim

2) If 𝑟 = 𝑟9, output 𝑐, 𝑟9, 𝑧 . 
Otherwise, output ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)

If 𝑟 ≠ 𝑟′ rewind 
and try again

Since 𝑐 is hiding, Pr 𝑟 = 𝑟9 ≈ 1/2

Sim(𝑉∗)

𝑉∗

Unfortunately, this simulator won’t suffice for post-quantum ZK! If a 
malicious 𝑉∗ has an unknown initial state 𝜓 running Guess(𝑉∗, |𝜓⟩)
may irreversibly disturb it.
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Guess(𝑉∗):

1) Sample 𝑐, 𝑟9, 𝑧 ← HVSim

2) If 𝑟 = 𝑟9, output 𝑐, 𝑟9, 𝑧 . 
Otherwise, output ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)

If 𝑟 ≠ 𝑟′ rewind 
and try again

Since 𝑐 is hiding, Pr 𝑟 = 𝑟9 ≈ 1/2

Sim(𝑉∗)

𝑉∗

Unfortunately, this simulator won’t suffice for post-quantum ZK! If a 
malicious 𝑉∗ has an unknown initial state 𝜓 running Guess(𝑉∗, |𝜓⟩)
may irreversibly disturb it.

But there is a different simulator due to [Watrous05] that works.
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[Watrous05]: If commitment scheme is hiding, then 
the Blum protocol is post-quantum ZK.
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Post-Quantum ZK of Blum [Watrous05]

Guess(𝑉∗, |𝜓⟩):
1) Sample 𝑐, 𝑟9, 𝑧 ← HVSim
2) If 𝑟 = 𝑟9, output 𝑐, 𝑟, 𝑧 . Otherwise ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)
𝑉∗(|𝜓⟩)

If commitments are hiding, can still simulate with probability 1/2.
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Post-Quantum ZK of Blum [Watrous05]

Guess(𝑉∗, |𝜓⟩):
1) Sample 𝑐, 𝑟9, 𝑧 ← HVSim
2) If 𝑟 = 𝑟9, output 𝑐, 𝑟, 𝑧 . Otherwise ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)
𝑉∗(|𝜓⟩)

If commitments are hiding, can still simulate with probability 1/2.

We’ll write this process as a quantum circuit on |𝜓⟩.



116

Post-Quantum ZK of Blum [Watrous05]

Guess(𝑉∗, |𝜓⟩):
1) Sample 𝑐, 𝑟9, 𝑧 ← HVSim
2) If 𝑟 = 𝑟9, output 𝑐, 𝑟, 𝑧 . Otherwise ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)
𝑉∗(|𝜓⟩)

𝜓 ) 0 =

𝑈>

𝑉 𝑅

HVSim (workspace + output)
Verifier’s view 

(state + transcript)

0 ?@

𝐶𝑍

0 =!

𝑅9

0 A

𝐻

𝐶, 𝑅, 𝑍, 𝑅′
correspond 
to 𝑐, 𝑟, 𝑧, 𝑟9

• Computing 𝑈> 𝜓 |0⟩ and checking if 𝑅 = 𝑅9 is the same as 
running Guess(𝑉∗, |𝜓⟩).
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Post-Quantum ZK of Blum [Watrous05]
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• Computing 𝑈> 𝜓 |0⟩ and checking if 𝑅 = 𝑅9 is the same as 
running Guess(𝑉∗, |𝜓⟩).
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Post-Quantum ZK of Blum [Watrous05]
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• Computing 𝑈> 𝜓 |0⟩ and checking if 𝑅 = 𝑅9 is the same as 
running Guess(𝑉∗, |𝜓⟩).

Define projector Π> ≔ 𝑈>
2Π=B=!𝑈>. 

Intuition: (Π> , 𝕀 − Π>) measures whether simulation succeeds.
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Post-Quantum ZK of Blum [Watrous05]

𝜓 ) 0 =

𝑈>
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HVSim (workspace + output)
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𝐻

𝐶, 𝑅, 𝑍, 𝑅′
correspond 
to 𝑐, 𝑟, 𝑧, 𝑟9

• Computing 𝑈> 𝜓 |0⟩ and checking if 𝑅 = 𝑅9 is the same as 
running Guess(𝑉∗, |𝜓⟩).

Define projector Π> ≔ 𝑈>
2Π=B=!𝑈>. 

Intuition: (Π> , 𝕀 − Π>) measures whether simulation succeeds.

Our goal: Produce the state Π" 𝜓 # 0 $%&.
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Post-Quantum ZK of Blum [Watrous05]
Define projector Π> ≔ 𝑈>

2Π=B=!𝑈>. 
Intuition: (Π> , 𝕀 − Π>) measures whether simulation succeeds.

Our goal: Produce the state Π" 𝜓 # 0 $%&.

Rough Intuition: 

• Each (Π> , 𝕀 − Π>) measurement is one simulation attempt.

• Applying (Π> , 𝕀 − Π>) twice in a row gives the same outcome 
(no help).

• We’ll write down an𝑀. measurement to “reset” each attempt.
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The Post-Quantum ZK Simulator [MW05, W05]
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)
1) Initialize 𝜓 ) 0 CDE. Let Π. = |0⟩⟨0|CDE.
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

𝑀> 𝑀. 𝑀>

0 0 1 ✓

1) Initialize 𝜓 ) 0 CDE. Let Π. = |0⟩⟨0|CDE.
2) Alternate 𝑀> = (Π> , 𝕀 − Π>) and 𝑀. = (Π., 𝕀 − Π.) until 𝑀> → 1.



124

The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

0 CDE
𝑀> 𝑀. 𝑀> 𝑀. 𝑀>

0 1 0 0 1 ✓

𝜓 )

1) Initialize 𝜓 ) 0 CDE. Let Π. = |0⟩⟨0|CDE.
2) Alternate 𝑀> = (Π> , 𝕀 − Π>) and 𝑀. = (Π., 𝕀 − Π.) until 𝑀> → 1.
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

0 CDE
𝑀> 𝑀. 𝑀> 𝑀. 𝑀>

0 1 0 0 1 ✓

𝜓 )

1) Initialize 𝜓 ) 0 CDE. Let Π. = |0⟩⟨0|CDE.
2) Alternate 𝑀> = (Π> , 𝕀 − Π>) and 𝑀. = (Π., 𝕀 − Π.) until 𝑀> → 1.
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

0 CDE
𝑀> 𝑀. 𝑀> 𝑀. 𝑀>

0 1 0 0 1 ✓

𝜓 )

1) Initialize 𝜓 ) 0 CDE. Let Π. = |0⟩⟨0|CDE.
2) Alternate 𝑀> = (Π> , 𝕀 − Π>) and 𝑀. = (Π., 𝕀 − Π.) until 𝑀> → 1.
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

0 CDE
𝑀> 𝑀. 𝑀> 𝑀. 𝑀>

0 1 0 0 1 ✓

𝜓 )

1) Initialize 𝜓 ) 0 CDE. Let Π. = |0⟩⟨0|CDE.
2) Alternate 𝑀> = (Π> , 𝕀 − Π>) and 𝑀. = (Π., 𝕀 − Π.) until 𝑀> → 1.
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

0 CDE
𝑀> 𝑀. 𝑀> 𝑀. 𝑀>

0 1 0 0 1 ✓

𝜓 )

1) Initialize 𝜓 ) 0 CDE. Let Π. = |0⟩⟨0|CDE.
2) Alternate 𝑀> = (Π> , 𝕀 − Π>) and 𝑀. = (Π., 𝕀 − Π.) until 𝑀> → 1.
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

0 CDE
𝑀> 𝑀. 𝑀> 𝑀. 𝑀>

0 1 0 0 1 ✓

𝜓 )

1) Initialize 𝜓 ) 0 CDE. Let Π. = |0⟩⟨0|CDE.
2) Alternate 𝑀> = (Π> , 𝕀 − Π>) and 𝑀. = (Π., 𝕀 − Π.) until 𝑀> → 1.
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

Π> 𝜓 ) 0 CDE

(we’ll see why)
0 CDE

𝑀> 𝑀. 𝑀> 𝑀. 𝑀>

0 1 0 0 1 ✓

𝜓 )

1) Initialize 𝜓 ) 0 CDE. Let Π. = |0⟩⟨0|CDE.
2) Alternate 𝑀> = (Π> , 𝕀 − Π>) and 𝑀. = (Π., 𝕀 − Π.) until 𝑀> → 1.
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

Π> 𝜓 ) 0 CDE

(we’ll see why)
0 CDE

𝑀> 𝑀. 𝑀> 𝑀. 𝑀>

0 1 0 0 1 ✓

𝜓 )

1) Initialize 𝜓 ) 0 CDE. Let Π. = |0⟩⟨0|CDE.
2) Alternate 𝑀> = (Π> , 𝕀 − Π>) and 𝑀. = (Π., 𝕀 − Π.) until 𝑀> → 1.
3) Generate verifier’s view (apply 𝑈>).
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

Π> 𝜓 ) 0 CDE

(we’ll see why)
0 CDE

𝑀> 𝑀. 𝑀> 𝑀. 𝑀>

0 1 0 0 1 ✓

𝜓 )

But why does this simulator work? Need to resolve:

1) Initialize 𝜓 ) 0 CDE. Let Π. = |0⟩⟨0|CDE.
2) Alternate 𝑀> = (Π> , 𝕀 − Π>) and 𝑀. = (Π., 𝕀 − Π.) until 𝑀> → 1.
3) Generate verifier’s view (apply 𝑈>).
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The Post-Quantum ZK Simulator [MW05, W05]

Sim(𝑉∗, |𝜓⟩)

Π> 𝜓 ) 0 CDE

(we’ll see why)
0 CDE

𝑀> 𝑀. 𝑀> 𝑀. 𝑀>

0 1 0 0 1 ✓

𝜓 )

1) Initialize 𝜓 ) 0 CDE. Let Π. = |0⟩⟨0|CDE.
2) Alternate 𝑀> = (Π> , 𝕀 − Π>) and 𝑀. = (Π., 𝕀 − Π.) until 𝑀> → 1.
3) Generate verifier’s view (apply 𝑈>).

But why does this simulator work? Need to resolve:
• Efficiency: How long (if ever) until 𝑀> → 1?
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The Post-Quantum ZK Simulator [MW05, W05]

1) Initialize 𝜓 ) 0 CDE. Let Π. = |0⟩⟨0|CDE.
2) Alternate 𝑀> = (Π> , 𝕀 − Π>) and 𝑀. = (Π., 𝕀 − Π.) until 𝑀> → 1.
3) Generate verifier’s view (apply 𝑈>).

Sim(𝑉∗, |𝜓⟩)

Π> 𝜓 ) 0 CDE

(we’ll see why)
0 CDE

𝑀> 𝑀. 𝑀> 𝑀. 𝑀>

0 1 0 0 1 ✓

𝜓 )

But why does this simulator work? Need to resolve:
• Efficiency: How long (if ever) until 𝑀> → 1?

• Simulation: After 𝑀> → 1, why is the state is Π> 𝜓 ) 0 CDE?
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Understanding Alternating Measurements [MW05]
What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π-

Π.

|𝑣⟩

𝜃

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π.𝕀 − Π-
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π-

Π.

|𝑣⟩

𝜃

When we alternate measurements, 
we jump between four states

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π.𝕀 − Π-
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π-

Π.

|𝑣⟩

𝜃

When we alternate measurements, 
we jump between four states

|𝑤⟩

|𝑤/⟩|𝑣/⟩

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π.𝕀 − Π-
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π-

Π.

|𝑣⟩

𝜃

When we alternate measurements, 
we jump between four states

|𝑤⟩

|𝑤/⟩|𝑣/⟩

𝑝

𝑝 ≔ ΠF 𝑣⟩‖-
= 𝑐𝑜𝑠-(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π.𝕀 − Π-
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π-

Π.

|𝑣⟩

𝜃

When we alternate measurements, 
we jump between four states

|𝑤⟩

|𝑤/⟩|𝑣/⟩
𝑝

𝑝|𝑣⟩

|𝑣H⟩

|𝑤⟩

|𝑤H⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣H⟩

1 − 𝑝
1 − 𝑝 …

𝑝

𝑝 ≔ ΠF 𝑣⟩‖-
= 𝑐𝑜𝑠-(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π.𝕀 − Π-



141

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π-

Π.

|𝑣⟩

𝜃

When we alternate measurements, 
we jump between four states

𝑝

𝑝

𝑝|𝑣⟩

|𝑣H⟩

|𝑤⟩

|𝑤H⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣H⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠF 𝑣⟩‖-
= 𝑐𝑜𝑠-(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π.𝕀 − Π-
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π-

Π.

|𝑣⟩

𝜃

When we alternate measurements, 
we jump between four states

𝑝

𝑝

𝑝|𝑣⟩

|𝑣H⟩

|𝑤⟩

|𝑤H⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣H⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠF 𝑣⟩‖-
= 𝑐𝑜𝑠-(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π.𝕀 − Π-
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π-

Π.
𝜃

When we alternate measurements, 
we jump between four states

𝑝

|𝑤/⟩

𝑝

𝑝|𝑣⟩

|𝑣H⟩

|𝑤⟩

|𝑤H⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣H⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠF 𝑣⟩‖-
= 𝑐𝑜𝑠-(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π.𝕀 − Π-
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π-

Π.
𝜃

When we alternate measurements, 
we jump between four states

𝑝

|𝑤/⟩

𝑝

𝑝|𝑣⟩

|𝑣H⟩

|𝑤⟩

|𝑤H⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣H⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠF 𝑣⟩‖-
= 𝑐𝑜𝑠-(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π.𝕀 − Π-
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π-

Π.
𝜃

When we alternate measurements, 
we jump between four states

𝑝

|𝑣/⟩
𝑝

𝑝|𝑣⟩

|𝑣H⟩

|𝑤⟩

|𝑤H⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣H⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠF 𝑣⟩‖-
= 𝑐𝑜𝑠-(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π.𝕀 − Π-
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π-

Π.
𝜃

When we alternate measurements, 
we jump between four states

𝑝

|𝑣/⟩
𝑝

𝑝|𝑣⟩

|𝑣H⟩

|𝑤⟩

|𝑤H⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣H⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠF 𝑣⟩‖-
= 𝑐𝑜𝑠-(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π.𝕀 − Π-



147

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π-

Π.
𝜃

When we alternate measurements, 
we jump between four states

𝑝

|𝑤/⟩

𝑝

𝑝|𝑣⟩

|𝑣H⟩

|𝑤⟩

|𝑤H⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣H⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠF 𝑣⟩‖-
= 𝑐𝑜𝑠-(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π.𝕀 − Π-
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What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π-

Π.
𝜃

When we alternate measurements, 
we jump between four states

𝑝

|𝑤/⟩

𝑝

𝑝|𝑣⟩

|𝑣H⟩

|𝑤⟩

|𝑤H⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣H⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠF 𝑣⟩‖-
= 𝑐𝑜𝑠-(𝜃)

𝕀 − Π.𝕀 − Π-
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π-

Π.

|𝑣⟩

𝜃

When we alternate measurements, 
we jump between four states

𝑝

𝑝

𝑝|𝑣⟩

|𝑣H⟩

|𝑤⟩

|𝑤H⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣H⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠF 𝑣⟩‖-
= 𝑐𝑜𝑠-(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π.𝕀 − Π-
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π-

Π.

|𝑣⟩

𝜃

When we alternate measurements, 
we jump between four states

𝑝

𝑝

𝑝|𝑣⟩

|𝑣H⟩

|𝑤⟩

|𝑤H⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣H⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠF 𝑣⟩‖-
= 𝑐𝑜𝑠-(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π.𝕀 − Π-



151

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π-

Π.
𝜃

When we alternate measurements, 
we jump between four states

𝑝

|𝑤⟩

𝑝

𝑝|𝑣⟩

|𝑣H⟩

|𝑤⟩

|𝑤H⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣H⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠF 𝑣⟩‖-
= 𝑐𝑜𝑠-(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

𝕀 − Π.𝕀 − Π-
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D When we alternate measurements, 
we jump between four states

Π-

Π.

|𝑣⟩

𝜃 |𝑤⟩

|𝑤/⟩|𝑣/⟩

𝑝

𝑝

𝑝|𝑣⟩

|𝑣H⟩

|𝑤⟩

|𝑤H⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣H⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠF 𝑣⟩‖-
= 𝑐𝑜𝑠-(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

Claim 1: (Π$, 𝕀 − Π$) accepts in 
𝜆/𝑝 steps with prob 1 − 2%&(().

𝕀 − Π.𝕀 − Π-



153

Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D When we alternate measurements, 
we jump between four states

Π-

Π.

𝕀 − Π.𝕀 − Π-

|𝑣⟩

𝜃 |𝑤⟩

|𝑤/⟩|𝑣/⟩

𝑝

𝑝

𝑝|𝑣⟩

|𝑣H⟩

|𝑤⟩

|𝑤H⟩

1 − 𝑝
1 − 𝑝

𝑝

𝑝 |𝑣⟩

|𝑣H⟩

1 − 𝑝
1 − 𝑝 …

𝑝 ≔ ΠF 𝑣⟩‖-
= 𝑐𝑜𝑠-(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

Claim 1: (Π$, 𝕀 − Π$) accepts in 
𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$)
accepts, state is 𝑤 ∝ Π$|𝑣⟩.
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Understanding Alternating Measurements [MW05]

Easy case: Π#, Π$ live in 2D

Π-

Π.

I − Π.I − Π-

|𝑣⟩

𝜃 |𝑤⟩

|𝑤/⟩|𝑣/⟩

These are the guarantees we 
want, but Π', Π" don’t live in 2D!

Claim 1: (Π$, 𝕀 − Π$) accepts in 
𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$)
accepts, state is 𝑤 ∝ Π$|𝑣⟩.𝑝

𝑝 ≔ ΠF 𝑣⟩‖-
= 𝑐𝑜𝑠-(𝜃)

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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If Π#, Π$ live in two dimensions:

Claim 1: (Π$, 𝕀 − Π$) accepts in 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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Do these claims extend to higher dimensions?

If Π#, Π$ live in two dimensions:

Claim 1: (Π$, 𝕀 − Π$) accepts in 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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Do these claims extend to higher dimensions?

• For general Π$, Π( : no!

If Π#, Π$ live in two dimensions:

Claim 1: (Π$, 𝕀 − Π$) accepts in 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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Do these claims extend to higher dimensions?

If Π#, Π$ live in two dimensions:

Claim 1: (Π$, 𝕀 − Π$) accepts in 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

• For general Π$, Π( : no! 
• For Π', Π" : yes!
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Extremely Useful Tool
Jordan’s Lemma: For any Π#, Π$ , we can decompose space into 2-dim 
invariant subspaces {𝑆*} where Π#, Π$ are rank-one projectors in each 𝑆*.
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𝜃0

Π1

Π2

Π1

Π2
Π-
Π2𝜃3

𝜃4

Jordan’s Lemma: For any Π#, Π$ , we can decompose space into 2-dim 
invariant subspaces {𝑆*} where Π#, Π$ are rank-one projectors in each 𝑆*.

𝑝5 = cos3(𝜃5)

Subspace 𝑆, Subspace 𝑆- Subspace 𝑆;

Extremely Useful Tool
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𝜃0

Π1

Π2

Π1

Π2
Π-
Π2𝜃3

𝜃4

Jordan’s Lemma: For any Π#, Π$ , we can decompose space into 2-dim 
invariant subspaces {𝑆*} where Π#, Π$ are rank-one projectors in each 𝑆*.

𝑝5 = cos3(𝜃5)

Subspace 𝑆, Subspace 𝑆- Subspace 𝑆;

To analyze our simulator, it will be helpful to understand the Jordan 
subspace decomposition for Π6, Π7 .

Extremely Useful Tool
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Key Fact: for any 𝜙 ∈ image(Π6), we have Π7 𝜙⟩‖3 ≈ 1/2.
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Key Fact: for any 𝜙 ∈ image(Π6), we have Π7 𝜙⟩‖3 ≈ 1/2.

Why? This is an immediate consequence of hiding. 
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1) Since Π! = |0⟩⟨0|#+, , can write 𝜙 = 𝜓 - 0 #+,.

Why? This is an immediate consequence of hiding. 

Key Fact: for any 𝜙 ∈ image(Π6), we have Π7 𝜙⟩‖3 ≈ 1/2.
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1) Since Π! = |0⟩⟨0|#+, , can write 𝜙 = 𝜓 - 0 #+,.
2) Π. 𝜓 - 0 #+,

/ is the probability Guess(𝑉∗, |𝜓⟩) succeeds: 

Why? This is an immediate consequence of hiding. 

Key Fact: for any 𝜙 ∈ image(Π6), we have Π7 𝜙⟩‖3 ≈ 1/2.
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1) Since Π! = |0⟩⟨0|#+, , can write 𝜙 = 𝜓 - 0 #+,.
2) Π. 𝜓 - 0 #+,

/ is the probability Guess(𝑉∗, |𝜓⟩) succeeds: 

Guess(𝑉∗, |𝜓⟩):
1) Sample 𝑐, 𝑟9, 𝑧 ← HVSim
2) If 𝑟 = 𝑟9, output 𝑐, 𝑟, 𝑧 . Otherwise ⊥.

𝑐
𝑟
𝑧

(if 𝑟 = 𝑟′)
𝑉∗, |𝜓⟩

Why? This is an immediate consequence of hiding. 

Key Fact: for any 𝜙 ∈ image(Π6), we have Π7 𝜙⟩‖3 ≈ 1/2.
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Key Fact: for any 𝜙 ∈ image(Π6), we have Π7 𝜙‖3 ≈ 1/2.

Equivalently, 𝑝5 ≈ 1/2 in every Jordan subspace 𝑆5 (so 𝜃5 ≈ 𝜋/4).
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Key Fact: for any 𝜙 ∈ image(Π6), we have Π7 𝜙‖3 ≈ 1/2.

Π6

Π7𝜃3

Π6

Π7𝜃0

Π6

Π7𝜃4
𝑝5 = cos3(𝜃5)

Equivalently, 𝑝5 ≈ 1/2 in every Jordan subspace 𝑆5 (so 𝜃5 ≈ 𝜋/4).
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Key Fact: for any 𝜙 ∈ image(Π6), we have Π7 𝜙‖3 ≈ 1/2.

Π6

Π7𝜃3

Π6

Π7𝜃0

Π6

Π7𝜃4
𝑝5 = cos3(𝜃5)

We can now extend the 2-D analysis to our simulator!

Equivalently, 𝑝5 ≈ 1/2 in every Jordan subspace 𝑆5 (so 𝜃5 ≈ 𝜋/4).
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Previously, we claimed the following for Π-, Π. in 2-D: 

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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Previously, we claimed the following for Π-, Π. in 2-D: 

Claim 1: (Π$, 𝕀 − Π$) accepts in 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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These claims extend to high-dim if all (Π#, Π$)-Jordan 
subspaces have roughly equal 𝑝*.

Previously, we claimed the following for Π-, Π. in 2-D: 

Claim 1: (Π$, 𝕀 − Π$) accepts in 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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If all (Π-, Π.)-Jordan subspaces have 𝑝5 ≈ 𝑝, then:

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?

If all (Π-, Π.)-Jordan subspaces have 𝑝5 ≈ 𝑝, then:
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Intuition for Claim 1: the 2-D runtime analysis extends to higher 
dimensions because the Π#, Π$ measurements act independently 
on each Jordan subspace.

If all (Π-, Π.)-Jordan subspaces have 𝑝5 ≈ 𝑝, then:

Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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If all (Π-, Π.)-Jordan subspaces have 𝑝5 ≈ 𝑝, then:

Intuition for Claim 2:
• Consider 𝑣 = ∑* 𝛼*|𝑣*⟩. In each 𝑆* , the state after (Π$, 𝕀 − Π$)

accepts is ∝ Π$|𝑣*⟩ by our analysis of the 2-D case.

Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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If all (Π-, Π.)-Jordan subspaces have 𝑝5 ≈ 𝑝, then:

Intuition for Claim 2:
• Consider 𝑣 = ∑* 𝛼*|𝑣*⟩. In each 𝑆* , the state after (Π$, 𝕀 − Π$)

accepts is ∝ Π$|𝑣*⟩ by our analysis of the 2-D case.
• Alternating measurement results only depend on 𝑝* , but since 

all 𝑝* ≈ 𝑝, the measurement outcomes give no signal about 𝑗.

Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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Intuition for Claim 2:
• Consider 𝑣 = ∑* 𝛼*|𝑣*⟩. In each 𝑆* , the state after (Π$, 𝕀 − Π$)

accepts is ∝ Π$|𝑣*⟩ by our analysis of the 2-D case.
• Alternating measurement results only depend on 𝑝* , but since 

all 𝑝* ≈ 𝑝, the measurement outcomes give no signal about 𝑗.
• So the final state is ∝ ∑* 𝛼*Π$ 𝑣* = Π$ 𝑣 .

If all (Π-, Π.)-Jordan subspaces have 𝑝5 ≈ 𝑝, then:

Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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Since Π! and Π. satisfy 𝑝* ≈ 1/2 in all Jordan subspaces, we can 
set Π# = Π! and Π$ = Π. to analyze the alternating measurements 
simulator:

If all (Π-, Π.)-Jordan subspaces have 𝑝5 ≈ 𝑝, then:

Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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Since Π! and Π. satisfy 𝑝* ≈ 1/2 in all Jordan subspaces, we can 
set Π# = Π! and Π$ = Π. to analyze the alternating measurements 
simulator:
• By Claim 1, the simulator is efficient.
• By Claim 2, when 𝑀. → 1, the state is ∝ Π. 𝜓 |0⟩ as desired.

If all (Π-, Π.)-Jordan subspaces have 𝑝5 ≈ 𝑝, then:

Claim 1: (Π$, 𝕀 − Π$) accepts in ≈ 𝜆/𝑝 steps with prob 1 − 2%&(().

Claim 2: When (Π$, 𝕀 − Π$) accepts, state is 𝑤 ∝ Π$|𝑣⟩.

What happens if we start at 𝑣 ∈ image(Π#) and alternate the 
measurements Π#, 𝕀 − Π# and Π$, 𝕀 − Π$ ?
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Recap

Soundness:
• Collapse-binding commitments enable “lazy” measurement
• Unruh’s rewinding: if protocol is collapsing, can extract two

accepting transcripts from a successful adversary
Zero Knowledge:

• Key tool: obtain a quantum analogue of the classical “repeated-
guessing” simulator using alternating projectors.

• Analyze alternating projectors via Jordan’s lemma

We showed that Blum’s protocol is post-quantum sound and ZK.



182

The next two talks

Part 2: Unruh’s rewinding applies to protocols where security 
requires extracting two transcripts. 

What if we need more transcripts?

Part 3: Watrous’ rewinding applies to protocols where 
simulation entails guessing the verifier’s challenge. 

What if guessing is impossible?



Thank You!

Questions?
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