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Quantum 
Benchmarking: 
design algorithms to 
learn about noise in 
quantum devices



Why benchmarking?

• We need to know what the noise look like in order to
• Further reduce the noise and build better quantum computers
• Perform error mitigation in near-term experiments
• Design suitable error correcting codes for FTQC

• Current status:
• We have mature methods to estimate total error on a single gate (RB)
• Single-qubit gates are good (10!"~10!# error)
• 2-qubit gates are noisy (10!$ error)

• Perform benchmarking → obtain knowledge about noise → use the
knowledge to reduce noise



What is noise?

What we want What happened in experiment

Some other operation



What is noise?

What we want What happened in experiment

Λ

Λ is unknown
Λ − 𝐼𝑑 is total error

We have mature methods 
to estimate total error on 
a single gate (RB)

Learn more information on 2 qubits (Part I) 

Learn total error on more qubits (Part II) 



Challenges in benchmarking

• A general quantum channel is too complicated
• Use Pauli twirling for Clifford circuits

General quantum channel Pauli noisePauli
twirling

Can simplify the noise to a Pauli channel {𝑝%}, 𝑎 ∈ 𝐼, 𝑋, 𝑌, 𝑍 & without changing 
the logic of the circuit 



An outstanding issue

• Focus on a single CNOT gate
• We know the total error 1 − 𝑝!! = 𝑝!" + 𝑝!# +⋯+ 𝑝$$
• Next: only need to learn this 16-dimensional distribution

• Even this is not doable!
• seems to be a fundamental issue

• Part I of this talk: a precise understanding of what information 
about noise is learnable for Clifford gates

Λ
Pauli
Λ



Challenges in benchmarking

• Scalable benchmarking: for large system size (20+ qubits), we want to
efficiently estimate the total error on the entire system
• Previously this is only known for Clifford gates

• Part II of this talk: scalable benchmarking of non-Clifford gates
• Pauli twirling doesn’t work in general, but here we still achieve some effective 

twirling
• Still think of noise as Pauli channel, want to learn the total error 1 − 𝑝'⨂"



Why is the total error interesting?

• It is non-trivial: cannot just add up 
the total error on each gate
• Because errors can be correlated 

across gates
• Total error can provide deep insights 

into the noise model
• Claim: Google’s data suggests the

noise in their device was
uncorrelated
• We will understand this better by 

thinking about total error

Λ



Outline

• Always think about noise as a Pauli channel {𝑝%}, 𝑎 ∈ 𝐼, 𝑋, 𝑌, 𝑍 &

• Part I of this talk: a precise understanding of what information 
about noise is learnable for Clifford gates
• Understand CNOT gate

• Part II of this talk: scalable benchmarking of non-Clifford gates to 
learn total error
• Understand Google’s claim



Part I: Clifford benchmarking



Overview

Λ
Pauli

General CPTP noise Pauli noiseRandomized 
compiling Λ

This talk:
All learnable information:
𝑝!", 𝑝"#, 𝑝"$, 𝑝##, 𝑝#$, 𝑝$!, 𝑝$",
𝑝!# + 𝑝$#, 𝑝!$ + 𝑝$#, 𝑝!# + 𝑝$$,
𝑝"! + 𝑝"", 𝑝"" + 𝑝#!, 𝑝"! + 𝑝#"
(13 equations)

CNOT has 13 learnable degrees of freedom 
+ 2 unlearnable degrees of freedom

Goal: learn the 16-dimensional probability distribution {𝑝%}, 𝑎 ∈ {𝐼, 𝑋, 𝑌, 𝑍}$

What we already have:
Total error 1 − 𝑝!!

= 𝑝!" + 𝑝!# +⋯+ 𝑝$$

What we want:
𝑝!", 𝑝!#, 𝑝!$, …, 𝑝$$

Current status:
Can learn some errors, not all



What’s the issue?

• Intrinsic symmetry in a quantum system: gauge freedom
• Example: consider a trivial system with noisy state preparation and 

measurement
• We prepare | ⟩0 , measure, see 1 with probability 5%
• It could be the case that all 5% noise comes from state preparation (SP)
• It could be the case that all 5% noise comes from measurement (M)
• It could be the case that 2% comes from M, 3% comes from SP…

Can’t tell 
the 
difference

5% SP, 0% M 0% SP, 5% M

Can move from one point to another along the manifold without changing 
experiment outcomes, such an operation is called gauge transformation



Our noise model

• Noise model: initial states {𝜌-}, POVM {𝐸.}, gates {𝐺/} are all subject to 
unknown quantum noise
• Standard assumption: single-qubit gates are perfect, total error is sufficiently 

small

• The gauge transformation can be written as
• 𝜌- ↦ℳ(𝜌-), 𝐸. ↦ 𝐸. ∘ℳ01, 𝐺/ ↦ℳ ∘ 𝐺/ ∘ℳ01

• This does not change measurement outcome statistics; therefore, two 
different noise models that are related by gauge transformation are
indistinguishable by any quantum experiment



Learnable part:
Invariant under any gauge transformation;
Can be learned by an algorithm

Unlearnable part:
Variant under some gauge transformation;
Cannot be learned by any algorithm



Trivial example

• The noise model has two degrees of freedom {SP, M}
• Learnable part = SP + M, invariant along the manifold

• Our goal: complete this classification for general gate noise

5% SP, 0% M 0% SP, 5% M



Main idea

• The main idea of benchmarking: initial state and measurement only
appear once in an experiment, but can apply a gate many times
• Exploit this asymmetry to obtain information about gate noise

|0⟩

|0⟩

|0⟩

|0⟩ • Observe different statistics in
the two experiments

• The difference is only caused by
gates

• Use this to obtain information 
about gate noise



Formalizing this idea for Pauli noise

• Consider a 𝑛-qubit Pauli noise channel {𝑝%} acting on a 𝑛-qubit Clifford
• Λ: 𝜌 ↦ ∑%∈ !,",#,$ ! 𝑝%𝑃%𝜌𝑃%
• Goal: learn the 4& dimensional distribution {𝑝%}

• Idea: we will work in the Fourier domain 𝜆%
• Λ 𝑃% = 𝜆%𝑃%, 𝜆% = ∑+(−1) %,+ 𝑝+ called Pauli fidelities
• Next: learn Pauli fidelities (eigenvalues) {𝜆%} → reconstruct {𝑝%}

Λ



Cycle benchmarking

• Cycle benchmarking [Erhard et al’19]: learning Pauli fidelities is the
natural way to think about benchmarking

𝐶′′

𝐶′′

|0⟩

|0⟩

𝐶′

𝐶′

CNOT
𝐼𝑋 ↔ 𝐼𝑋
𝑋𝑍 ↔ 𝑌𝑌
𝐼𝑍 ↔ 𝑍𝑍

Λ 𝑃% = 𝜆%𝑃%

Λ Λ Λ

𝐼𝑋
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Cycle benchmarking

• Cycle benchmarking [Erhard et al’19]: learning Pauli fidelities is the
natural way to think about benchmarking
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In experiments, prepare +1 eigenstate of 𝐼𝑋, estimate 𝐼𝑋 observable at
the end, average over random Pauli
𝔼 𝐼𝑋 = 𝐴'/ 9 𝜆'/0 → perform experiment at different 𝑑 → learn 𝜆'/



Cycle benchmarking

• Cycle benchmarking [Erhard et al’19]: learning Pauli fidelities is the
natural way to think about benchmarking

𝐶′′

𝐶′′

|0⟩

|0⟩

𝐶′

𝐶′

CNOT
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Λ Λ Λ

𝜆'/$ 9 𝐼𝑋

The original cycle benchmarking algorithm learns some specific Pauli 
fidelities and can be used to learn the total Pauli error



Overview of results

• We augment CB with a trick to learn more information
• 𝜆"#, 𝜆$", 𝜆#$, 𝜆$#, 𝜆%%, 𝜆#%, 𝜆%$, 𝜆"$ 𝜆$$, 𝜆"$𝜆$%, 𝜆"%𝜆$$,𝜆#"𝜆##, 𝜆#"𝜆%#, 𝜆%"𝜆##
• Anything beyond this is unlearnable

• This comes from the main result: classification of learnability using a 
graph representation



Building the pattern transfer graph

• Pattern transfer graph: a way to represent the mapping between Pauli 
operators by the Clifford 

01 11

1000
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Overview of results

• We augment CB with a trick to learn more information
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• Anything beyond this is unlearnable

01 11

10
00

𝜆!", 𝜆"!, 𝜆##,
𝜆!#, 𝜆#"

𝜆#!

𝜆!"

𝜆!!

𝜆!#, 𝜆!$

𝜆#$, 𝜆##

𝜆"",
𝜆$"

𝜆"!,
𝜆$!

This comes from the main result: 
classification of learnability using a graph 
representation
• The noise model lives on a graph; the 

cycles in the graph are learnable, cuts are 
unlearnable

• Corollary: CB + trick is optimal



Cycle benchmarking with trick
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Using this single-qubit rotation trick, we can learn 𝜆/3 (as well as 𝜆44)
11 𝜆!"



Cycle benchmarking with trick

𝐶′′

𝐶′′

|0⟩

|0⟩

𝐶′

𝐶′

CNOT
𝐼𝑋 ↔ 𝐼𝑋
𝑋𝑍 ↔ 𝑌𝑌
𝐼𝑍 ↔ 𝑍𝑍

Λ 𝑃% = 𝜆%𝑃%

Λ Λ

𝐼𝑍

01 11
𝜆!#

𝜆##



Cycle benchmarking with trick

𝐶′′

𝐶′′

|0⟩

|0⟩

𝐶′

𝐶′

CNOT
𝐼𝑋 ↔ 𝐼𝑋
𝑋𝑍 ↔ 𝑌𝑌
𝐼𝑍 ↔ 𝑍𝑍

Λ 𝑃% = 𝜆%𝑃%

Λ Λ

𝐼𝑍

01 11
𝜆!#

𝜆##



Cycle benchmarking with trick

𝐶′′

𝐶′′

|0⟩

|0⟩

𝐶′

𝐶′

CNOT
𝐼𝑋 ↔ 𝐼𝑋
𝑋𝑍 ↔ 𝑌𝑌
𝐼𝑍 ↔ 𝑍𝑍

Λ 𝑃% = 𝜆%𝑃%

Λ Λ

𝜆'3 9 𝐼𝑍

01 11
𝜆!#

𝜆##



Cycle benchmarking with trick

𝐶′′

𝐶′′

|0⟩

|0⟩

𝐶′

𝐶′

CNOT
𝐼𝑋 ↔ 𝐼𝑋
𝑋𝑍 ↔ 𝑌𝑌
𝐼𝑍 ↔ 𝑍𝑍

Λ 𝑃% = 𝜆%𝑃%

Λ Λ

𝜆'3 9 𝑍𝑍

Can we use single-qubit gates to rotate 𝑍𝑍 back to 𝐼𝑍? No!

01 11
𝜆!#

𝜆##



Cycle benchmarking with trick

𝐶′′

𝐶′′

|0⟩

|0⟩

𝐶′

𝐶′

CNOT
𝐼𝑋 ↔ 𝐼𝑋
𝑋𝑍 ↔ 𝑌𝑌
𝐼𝑍 ↔ 𝑍𝑍

Λ 𝑃% = 𝜆%𝑃%

Λ Λ

𝜆'3 9 𝑍𝑍

𝐼

𝐼

𝐼

𝐼

Can we use single-qubit gates to rotate 𝑍𝑍 back to 𝐼𝑍? No!

01 11
𝜆!#

𝜆##



Cycle benchmarking with trick

𝐶′′

𝐶′′

|0⟩

|0⟩

𝐶′

𝐶′

CNOT
𝐼𝑋 ↔ 𝐼𝑋
𝑋𝑍 ↔ 𝑌𝑌
𝐼𝑍 ↔ 𝑍𝑍

Λ 𝑃% = 𝜆%𝑃%

Λ Λ

𝜆33𝜆'3 9 𝑍𝑍

𝐼

𝐼

𝐼

𝐼

Can we use single-qubit gates to rotate 𝑍𝑍 back to 𝐼𝑍? No!

01 11
𝜆!#

𝜆##



Cycle benchmarking with trick

𝐶′′

𝐶′′

|0⟩

|0⟩

𝐶′

𝐶′

CNOT
𝐼𝑋 ↔ 𝐼𝑋
𝑋𝑍 ↔ 𝑌𝑌
𝐼𝑍 ↔ 𝑍𝑍

Λ 𝑃% = 𝜆%𝑃%

Λ Λ

𝜆33𝜆'3 9 𝐼𝑍

𝐼

𝐼

𝐼

𝐼
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What’s the difference in this example?
Pauli weight pattern: 𝐼 ↔ 0, 𝑋, 𝑌, 𝑍 ↔ 1 changes from 01 to 11 01 11

𝜆!#

𝜆##



Cycle benchmarking with trick

𝐶′′

𝐶′′

|0⟩

|0⟩

𝐶′

𝐶′

CNOT
𝐼𝑋 ↔ 𝐼𝑋
𝑋𝑍 ↔ 𝑌𝑌
𝐼𝑍 ↔ 𝑍𝑍

Λ 𝑃% = 𝜆%𝑃%

Λ Λ

𝜆33𝜆'3 9 𝐼𝑍

𝐼

𝐼

𝐼

𝐼

The trajectory of the Pauli operator forms a cycle
𝐼𝑍 → 𝑍𝑍 → 𝐼𝑍 → 𝑍𝑍 → ⋯

And we can learn the product of Pauli fidelities along the cycle 𝜆33𝜆'3

𝐼𝑍 𝜆'3 9 𝑍𝑍

01 11
𝜆!#

𝜆##



Pattern transfer graph

• For a 𝑛-qubit Clifford, the graph has 2& vertices, 4& edges
• The vertices correspond to the Pauli weight pattern
• We don’t need to record X/Y/Z in vertices because we can freely rotate among

them using the single-qubit rotation trick

01 11

10

00

𝜆!", 𝜆"!, 𝜆##,
𝜆!#, 𝜆#"

𝜆#!

𝜆!"

𝜆!!

𝜆!#, 𝜆!$

𝜆#$, 𝜆##

𝜆"",
𝜆$"

𝜆"!,
𝜆$!

Observation: we can learn the product
of Pauli fidelities along every cycle in the
graph using cycle benchmarking

“So, every cycle is learnable… what’s the
dual of a cycle in a graph?”



The learnability of Pauli noise

• Theorem: in the pattern transfer graph,
• The product of Pauli fidelities along every cycle is learnable
• Proof: cycle benchmarking

• The product of Pauli fidelities along every cut is unlearnable
• Proof: construct a gauge transformation for every cut

• This achieves a complete classification of learnability
• Informally: cycles and cuts span the entire graph space
• graph space = orthogonal direct sum of cycle space and cut space



The learnability of Pauli noise

• Theorem: in the pattern transfer graph,
• The product of Pauli fidelities along every cycle is learnable
• Proof: cycle benchmarking

• The product of Pauli fidelities along every cut is unlearnable
• Proof: construct a gauge transformation for every cut

• This achieves a complete classification of learnability
• Every function of the noise model can be decomposed as 𝑓 = |𝑓 67689 + |𝑓 6:;
• 𝑓 is learnable if and only if |𝑓 6:; = 0



The learnability of Pauli noise: example

01 11

10

𝜆!", 𝜆"!, 𝜆##,
𝜆!#, 𝜆#"

𝜆#!

𝜆!"

𝜆!#, 𝜆!$

𝜆#$, 𝜆##

𝜆"",
𝜆$"

𝜆"!,
𝜆$!

Learnable information
(Cycle space)
𝜆'/

Unlearnable information
(Cut space)



The learnability of Pauli noise: example

01 11

10

𝜆!", 𝜆"!, 𝜆##,
𝜆!#, 𝜆#"

𝜆#!

𝜆!"

𝜆!#, 𝜆!$

𝜆#$, 𝜆##

𝜆"",
𝜆$"

𝜆"!,
𝜆$!

Learnable information
(Cycle space)
𝜆'/, 𝜆3'

Unlearnable information
(Cut space)



The learnability of Pauli noise: example

01 11

10

𝜆!", 𝜆"!, 𝜆##,
𝜆!#, 𝜆#"

𝜆#!

𝜆!"

𝜆!#, 𝜆!$

𝜆#$, 𝜆##

𝜆"",
𝜆$"

𝜆"!,
𝜆$!

Learnable information
(Cycle space)
𝜆'/, 𝜆3',
𝜆/3, 𝜆3/, 𝜆44, 𝜆/4, 𝜆43

Unlearnable information
(Cut space)



The learnability of Pauli noise: example

01 11

10

𝜆!", 𝜆"!, 𝜆##,
𝜆!#, 𝜆#"

𝜆#!

𝜆!"

𝜆!#, 𝜆!$

𝜆#$, 𝜆##

𝜆"",
𝜆$"

𝜆"!,
𝜆$!

Learnable information
(Cycle space)
𝜆'/, 𝜆3',
𝜆/3, 𝜆3/, 𝜆44, 𝜆/4, 𝜆43
𝜆'3𝜆33, 𝜆'3𝜆34, 𝜆'4𝜆33

Unlearnable information
(Cut space)



The learnability of Pauli noise: example

01 11

10

𝜆!", 𝜆"!, 𝜆##,
𝜆!#, 𝜆#"

𝜆#!

𝜆!"

𝜆!#, 𝜆!$

𝜆#$, 𝜆##

𝜆"",
𝜆$"

𝜆"!,
𝜆$!

Learnable information
(Cycle space)
𝜆'/, 𝜆3',
𝜆/3, 𝜆3/, 𝜆44, 𝜆/4, 𝜆43
𝜆'3𝜆33, 𝜆'3𝜆34, 𝜆'4𝜆33
𝜆/'𝜆//, 𝜆/'𝜆4/, 𝜆4'𝜆//

Unlearnable information
(Cut space)



The learnability of Pauli noise: example

01 11

10

𝜆!", 𝜆"!, 𝜆##,
𝜆!#, 𝜆#"

𝜆#!

𝜆!"

𝜆!#, 𝜆!$

𝜆#$, 𝜆##

𝜆"",
𝜆$"

𝜆"!,
𝜆$!

Learnable information
(Cycle space)
𝜆'/, 𝜆3',
𝜆/3, 𝜆3/, 𝜆44, 𝜆/4, 𝜆43
𝜆'3𝜆33, 𝜆'3𝜆34, 𝜆'4𝜆33
𝜆/'𝜆//, 𝜆/'𝜆4/, 𝜆4'𝜆//

Unlearnable information
(Cut space)

A𝜆'3𝜆'4
𝜆34𝜆33

Recall: a function is unlearnable means that it is variant under some 
gauge transformation



The learnability of Pauli noise: example

01 11

10

𝜆!", 𝜆"!, 𝜆##,
𝜆!#, 𝜆#"

𝜆#!

𝜆!"

𝜆!#, 𝜆!$

𝜆#$, 𝜆##

𝜆"",
𝜆$"

𝜆"!,
𝜆$!

Learnable information
(Cycle space)
𝜆'/, 𝜆3',
𝜆/3, 𝜆3/, 𝜆44, 𝜆/4, 𝜆43
𝜆'3𝜆33, 𝜆'3𝜆34, 𝜆'4𝜆33
𝜆/'𝜆//, 𝜆/'𝜆4/, 𝜆4'𝜆//

Unlearnable information
(Cut space)

A𝜆'3𝜆'4
𝜆34𝜆33
A𝜆/'𝜆4'
𝜆//𝜆4/



The learnability of Pauli noise: example

01 11

10

𝜆!", 𝜆"!, 𝜆##,
𝜆!#, 𝜆#"

𝜆#!

𝜆!"

𝜆!#, 𝜆!$

𝜆#$, 𝜆##

𝜆"",
𝜆$"

𝜆"!,
𝜆$!

Learnable information
(Cycle space)
𝜆'/, 𝜆3',
𝜆/3, 𝜆3/, 𝜆44, 𝜆/4, 𝜆43
𝜆'3𝜆33, 𝜆'3𝜆34, 𝜆'4𝜆33
𝜆/'𝜆//, 𝜆/'𝜆4/, 𝜆4'𝜆//

Unlearnable information
(Cut space)

A𝜆'3𝜆'4
𝜆34𝜆33
A𝜆/'𝜆4'
𝜆//𝜆4/

CNOT has 15 = 13 learnable degrees of freedom + 2 unlearnable degrees of freedom



The learnability of Pauli noise: example

01 11

10

𝜆!", 𝜆"!, 𝜆##,
𝜆!#, 𝜆#"

𝜆#!

𝜆!"

𝜆!#, 𝜆!$

𝜆#$, 𝜆##

𝜆"",
𝜆$"

𝜆"!,
𝜆$!

Learnable information
(Cycle space)
𝜆'/, 𝜆3',
𝜆/3, 𝜆3/, 𝜆44, 𝜆/4, 𝜆43
𝜆'3𝜆33, 𝜆'3𝜆34, 𝜆'4𝜆33
𝜆/'𝜆//, 𝜆/'𝜆4/, 𝜆4'𝜆//

Unlearnable information
(Cut space)

A𝜆'3𝜆'4
𝜆34𝜆33
A𝜆/'𝜆4'
𝜆//𝜆4/

Finally: the learnability of Pauli errors can be determined from 
the cycle space via a Fourier transformation

All learnable information:
𝑝!", 𝑝"#, 𝑝"$, 𝑝##, 𝑝#$, 𝑝$!, 𝑝$",
𝑝!# + 𝑝$#, 𝑝!$ + 𝑝$#, 𝑝!# + 𝑝$$,
𝑝"! + 𝑝"", 𝑝"" + 𝑝#!, 𝑝"! + 𝑝#"
(13 equations)



Learnable information = Cycle space
Dimension = 4! − 2! + 𝑐

Unlearnable information = Cut space
Dimension = 2! − 𝑐



The learnability of Pauli noise

• Theorem: in the pattern transfer graph,
• The product of Pauli fidelities along every cycle is learnable
• Proof: cycle benchmarking

• The product of Pauli fidelities along every cut is unlearnable
• Proof: construct a gauge transformation for every cut

• Corollary: cycle benchmarking learns all learnable information
• This is because learnable information forms a cycle space

• Main remaining question: how to resolve unlearnability?
• Must make additional assumptions about noise model (time permits)



Part II: Non-Clifford benchmarking



Why do we care about non-Clifford
benchmarking?
• Non-Clifford two-qubit gates are ubiquitous in current

implementations of near-term quantum algorithms
• Use “native” two-qubit gates on hardware to maximize fidelity

• iSWAP used in “Hartree-Fock on a superconducting qubit quantum 
computer” [Science 369, 1084-1089 (2020)]
• SYC used in “Quantum approximate optimization of non-planar graph 

problems on a planar superconducting processor” [Nat. Phys. 17, 
332-336 (2021)]



Challenge: crosstalk and correlated errors

𝑋 𝑋

𝑋 with probability 1%
𝑋 with probability 1%

RB: 1%

Total error = 2%

RB: 1%

𝑋 𝑋

𝑋𝑋 with probability 1%

RB: 1%

Total error = 1%

RB: 1%

This talk: algorithm for estimating the total error in a layer of non-Clifford gates



Scalable noise benchmarking methods

Cycle benchmarking [Erhard et al’19]

Green: random Pauli gate

Principle: structure of the Clifford and 
Pauli group
Works for Clifford 2-qubit gates

Challenge: the special structure in 
the Fourier domain disappears… how
to do scalable benchmarking of
arbitrary non-Clifford gates?



Scalable noise benchmarking methods

Cycle benchmarking [Erhard et al’19] RCS benchmarking [This talk]

Blue: Haar random single qubit gateGreen: random Pauli gate

Principle: structure of the Clifford and 
Pauli group
Works for Clifford 2-qubit gates

Principle: scrambling effect of random 
quantum circuits
Works for any 2-qubit gates



Motivation: Google’s quantum supremacy 
experiment [Arute et al’19]

Linear cross entropy: m measurement samples,

𝑋𝐸𝐵 =
2(

𝑚
9
)*+

,

𝑝(𝑥)) − 1

Used as a proxy of the fidelity of their experiment

Claim 1: they have achieved quantum supremacy

Claim 2: the noise in their device was uncorrelated



Motivation: Google’s quantum supremacy 
experiment [Arute et al’19]

“digital error model” (multiplying individual gate 
fidelities) 𝐹-. = ∏)*+

, (1 − 𝑒))

For independent events A, B, P(AB)=P(A)P(B)

“Maybe the errors in our device is uncorrelated? In
this case, fidelity=P(no error)= ∏P(no error on gate i).
Let’s plot both XEB and 𝐹-.. If they agree with each
other, this suggests that the hypothesis (that noise
was uncorrelated) is correct, which would be great
news!”



Motivation: Google’s quantum supremacy 
experiment [Arute et al’19]

Can we understand this observation and 
claim from the theoretical perspective?

Could this observation be the hint of a 
scalable noise benchmarking algorithm for 
non-Clifford gates?

Observation: the linear cross entropy agrees with 
the “digital error model” (multiplying individual 
gate fidelities)

Claim: this coincidence indicated that the noise in 
Google’s device is uncorrelated across each 2-qubit 
gate



Overview of RCS benchmarking

• Result: 𝑋𝐸𝐵 ≈ 𝑒0@A , where 𝑡 is the total amount of noise in an
arbitrary noise model acting on each layer of gates
• Therefore, 𝑡 can be learned by measuring XEB

• Corollary: with correlated noise, XEB would deviate from the digital
error model 𝐹BC
• Evidence that supports Google’s claim



Theory of RCS benchmarking

• Consider arbitrary 𝑛-qubit Pauli noise channel acting on a layer of 2-
qubit gates, the goal is to estimate total error 𝑡 = ∑%D!! 𝑝%
• We show that the average fidelity of random circuits at depth 𝑑 scales

as 𝔼𝐹 ≈ 𝑒0@A

• In experiments, estimate average fidelity by measuring XEB → get 𝑡



Exponential decay of average fidelity

• For a random circuit 𝐶, the ideal output state is ⟩|𝜓 = 𝐶| ⟩0&

• Experiment implementation of 𝐶 creates a mixed state 𝜌
• The fidelity of 𝐶 is given by 𝐹 = 𝜓 𝜌 𝜓

• Theorem: 𝔼𝐹 ≈ 𝑒0@A when the total error 𝑡 is upper bounded by a
small constant
• Proof idea: maps 𝔼𝐹 into the partition function of a classical spin

model, then bound the partition function



RCS benchmarking

Select a few depths, at each
depth, sample a few random
circuits

Estimate the fidelity of each
circuit via XEB, compute the
average 𝔼𝐹

Fit exponential decay 𝔼𝐹 =
𝐴𝑒!<0, obtain 𝑡



Fidelity estimation via cross entropy

• Why not directly measure fidelity?
• Problem: fidelity is hard to estimate
• Direct fidelity estimation (DFE) has exponential sample complexity 𝑂(2&/𝜀$)

in the worst case

• Intuition from Google’s experiment: for random circuits, linear cross
entropy appears to be a sample-efficient estimator of fidelity
• 𝑂(1/𝜀$) samples suffice

• Recently, theoretical evidence of XEB=fidelity (when total error is 
small) has been obtained by [Dalzell, Hunter-Jones, Brandão’21] [Gao 
et al’21]



RCS benchmarking

Select a few depths, at each
depth, sample a few random
circuits

Estimate the fidelity of each
circuit via XEB, compute the
average 𝔼𝐹

Fit exponential decay 𝔼𝐹 =
𝐴𝑒!<0, obtain 𝑡

⃪ Use linear cross entropy as a
proxy for fidelity

𝑡: the effective noise rate on a layer of arbitrary two-qubit gates



Google’s quantum supremacy experiment 
[Arute et al’19]

Can we understand this observation and 
claim from the theoretical perspective?

Could this observation be the hint of a 
scalable noise benchmarking algorithm for 
non-Clifford gates?✅

Observation: the linear cross entropy agrees with
the “digital error model” (multiplying individual 
gate fidelities)

Claim: this coincidence indicated that the noise in 
Google’s device is uncorrelated across each 2-qubit 
gate



Google’s quantum supremacy experiment 
[Arute et al’19]

Can we understand this observation and 
claim from the theoretical perspective?

Observation: the linear cross entropy (fidelity)
agrees with 𝐹-. = ∏)*+

, (1 − 𝑒))

Claim: The noise is uncorrelated across each 2-
qubit gate



Correlated errors in fidelity estimation

𝑋 𝑋

𝑋 with probability 1%
𝑋 with probability 1%

RB: 1%

Total error = 2%
• Contributes 2% to cross entropy

and fidelity
• Contributes 2% to 𝐹-.

RB: 1%

𝑋 𝑋

𝑋𝑋 with probability 1%

RB: 1%

Total error = 1%
• Contributes 1% to cross entropy

and fidelity
• Contributes 2% to 𝐹-.

RB: 1%

𝐹=> overestimates correlated noise



Correlated errors in fidelity estimation



Google’s quantum supremacy experiment 
[Arute et al’19]

Can we understand this observation and 
claim from the theoretical perspective?✅

Observation: the linear cross entropy (fidelity)
agrees with 𝐹-. = ∏)*+

, (1 − 𝑒))

Claim: The noise is uncorrelated across each 2-
qubit gate



Conclusion

• We develop a sample-efficient algorithm to estimate the total amount 
of noise, including all crosstalks, on a layer of non-Clifford two-qubit 
gates
• Can’t scale beyond 50 qubits

• As an application, our result provides formal evidence to support 
Google’s claim that the coincidence between linear cross entropy and
the digital error model indicated that the noise in their device was 
uncorrelated



Summary

• For Clifford gates, the cycle space of the pattern transfer graph 
determines which part of the noise model is learnable
• Cycle benchmarking learns all learnable information

• We also discuss ways to resolve unlearnability (time permits)

• For non-Clifford gates, we show how to learn total error by 
introducing RCS as a powerful new tool
• A practical application of quantum supremacy experiments

• Can RCS learn more information about noise? [Kim et al’21]
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How to resolve unlearnability?

• We know that unlearnability comes from gauge freedom
• 𝜌- ↦ℳ(𝜌-), 𝐸. ↦ 𝐸. ∘ℳ01, 𝐺/ ↦ℳ ∘ 𝐺/ ∘ℳ01

• Idea 1: unlearnability does not apply if the initial state is perfect
• Experiments (time permits), conclude that SP noise is not small



How to resolve unlearnability?

• We know that unlearnability comes from gauge freedom
• 𝜌- ↦ℳ(𝜌-), 𝐸. ↦ 𝐸. ∘ℳ01, 𝐺/ ↦ℳ ∘ 𝐺/ ∘ℳ01

• Idea 1: unlearnability does not apply if the initial state is perfect
• Experiments (time permits), conclude that SP noise is not small

• Idea 2: use quantum non-demolition (QND) measurements



|0⟩

|0⟩

Current experiments:

|0⟩

|0⟩

Future experiments: breaking the symmetry between state preparation and measurement



How to resolve unlearnability?

• We know that unlearnability comes from gauge freedom
• 𝜌- ↦ℳ(𝜌-), 𝐸. ↦ 𝐸. ∘ℳ01, 𝐺/ ↦ℳ ∘ 𝐺/ ∘ℳ01

• Idea 1: unlearnability does not apply if the initial state is perfect
• Experiments (time permits), conclude that SP noise is not small

• Idea 2: use quantum non-demolition (QND) measurements
• Idea 3: parameterize the noise model using underlying physics
• E.g. Hamiltonians and Lindbladians
• Could have much less than 4& parameters



Experiments on IBM Quantum hardware

All learnable information:
𝑝!", 𝑝"#, 𝑝"$, 𝑝##, 𝑝#$, 𝑝$!, 𝑝$",
𝑝!# + 𝑝$#, 𝑝!$ + 𝑝$#, 𝑝!# + 𝑝$$,
𝑝"! + 𝑝"", 𝑝"" + 𝑝#!, 𝑝"! + 𝑝#"
(13 equations)



The result (assuming perfect
initial state) is unphysical

Conclusion: state preparation
noise is at least 0.6%


