Unclonable Quantum Cryptography

Mark Zhandry (NTT Research & Princeton University)

Quantum No-Cloning

Need no-cloning + computational security

<u>This Talk</u> Survey landscape of computational no-cloning

Other impacts of quantum not discussed

Improved assumptions for crypto [Bartusek-Coladangelo-Khurana-Ma'21, Grilo-Lin-Song-Vaikuntanathan'21]

Proof challenges Rewinding: [Graaf'97, Watrous'08, Unruh'12, Chiesa-Ma-Spooner-Z'21] Random oracle model: [Boneh-Dagdelen-Fischlin-Lehmann-Schaffner-Z'11]

Superposition attacks [Kuwakado-Morii'10, Damgård-Funder-Nielsen-Salvail'11, Z'12]

(Public key) quantum money

Copy protection

Revocable cryptography

Public Key Quantum Money

Our Focus: "Mini-schemes"

Most schemes = candidates

[Aaronson'09]: random stabilizer states

[Farhi-Gosset-Hassidim-Lutomirski-Shor'10]: knots

[Aaronson-Christiano'12]: polynomials hiding subspaces

[Kane'18]: Modular forms

[Z'19]: quadradic systems of equations

[Kane-Sharif-Silverberg'21]: Quaternion Algebras

- [Lutomirski-Aaronson-Farhi-
- Gosset-Hassidim-Kelner-Shor'10]
- Pittle published cryptanalysis effort
- [Pena-Faugère-Perret'14, Christiano-Sattath'16]
- ? [Bilyk-Doliskani-Gong'22] analysis
- **X** [Roberts'21]
- **?** No published cryptanalysis effort

Central Challenge 1:

P should be widely believed, studied, easy to think about, etc

P should be **classical** problem with post-quantum hardness

Central Challenge 1:

Central Challenge 2:

No-cloning comes from information-theory

How to combine?

Three known strategies to justify security

= short vector

Three known strategies to justify security

Thm [AC'12]: Secure in black box model

Thm [Z'19]: Subspace hiding → Secure quantum money **Proof:** (Obf(A), Obf(A[⊥])) → (Obf(S), Obf(T)) $S \supseteq A, T \supseteq A^{⊥}$ Verification of adversary's state still wrt A,A[⊥] → Now information-theoretic no-cloning Open Question 2: Post-quantum ShO from standard assumptions

Detour: The Obfuscation Landscape

Ad Hoc Obfuscation

for(v A((u A((e A((r-2?0:(V A(1[U])), "C")

), system("stty raw -echo min 0", frad(1,78114,1,e,16(e), "b"), 7Å"); 11=.(x = et+); (yx.485, zec(k19))=4 \$1 \$6 \$1 \$1 \$6 \$2 \$2 \$5 \$3 \$0, zer(>5)?=?y=zer(x = et+); (yx.485, zec(k19))=4 \$1 \$1 \$1 \$6 \$2 \$2 \$2 \$3 \$0, zer(>5)?=?y=zer(x = zer(x = zer(x

Mathematical Obfuscation

Central object in theoretical cryptography

Thm [Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang'01]: Some programs cannot be obfuscated

Indistinguishability obfuscation (iO):

No meaningful obfuscation guarantee on its own

Thm [Goldwasser-Rothblum'07]: If P can be obfuscated, iO obfuscates P

[Garg-Gentry-Halevi-Raykova-Sahai-Waters'13,...]: iO bfuscation for specific programs applications

Known unobfuscatable programs

All (Classical) Programs

Provably obfuscatable programs

Open Question 3: Find More Nonevasive, non-cryptographic programs that can be obfuscated Constructions compile on all (classical) programs, security on non-counter-example programs may be plausible

Main takeaways regarding iO:

- Somewhat compelling pre-quantum iO
- Good candidates for post-quantum iO, but uncertain
- Good understanding about guarantees of iO for some cryptographic or evasive programs
- Minimal understanding for non-crypto/evasive programs

Back to Quantum...

(Public key) quantum money 🗸

Copy protection

Revocable cryptography

Microsof	ft Office Activation Wizard	x
Microso Activatio	oft Office Professional Plus 2016	ce
Follow	these steps to activate your software over the telephone.	
Step 1:	Select the country/region you are calling from and call the Product Activation Center using any of the telephone numbers provided.	
	United Kingdom 🗨	
	Mobile or Toll: (44) (203) 147 4930 Toll-Free: (0) (800) 018 8354	
Step 2:	When prompted, provide this Installation ID: 4196076 2037705 9336500 3309242 1012711 3669762 4644166 1495676 420	52483
Step 3:	Enter your Confirmation ID here:	
	A B C D E F G H	
C	ony Protoction	h
L	opy Flotection	I
	Privacy State	ment
He	elp <u>B</u> ack <u>N</u> ext <u>C</u> ance	el

A classical possibility: Watermarking Software

Note: impossible for learnable functions, frequently also for evasive functions

Positive results for cryptographic functionalities [Cohen-Holmgren-Nishimaki-Vaikuntanathan-Wichs'15,...] Traitor tracing ≈ watermarking for decryption functions

What's known?

Thm [Aaronson'09]: Exists relative to quantum oracle

Thm [Aaronson-Liu-Liu-Z-Zhang'20]: Exists relative to **classical** oracle

Thm [Ananth-La Placa'20]: Impossible for some non-learnable functions

Thm [Coladangelo-Majenz-Poremba'20]: Random oracles
→ CP for some evasive functions with *some* security

Thm [Coladangelo-Liu-Liu-Z'21, Culf-Vidick'21]: iO \rightarrow CP for PRFs, decryption, signature tokens

Special Case: Unclonable Encryption [Gottesman'03, Broadbent-Lord'19] В **C**₁ m Only one can learn A anything about m **C**₂

Observation: 1-time, symmetric key \approx CP for point functions

c = CP(
$$x \rightarrow if(x==k)$$
 output m)

Thm [Broadbent-Lord'19]:

- Statistical **weak "unpredictability"** security in the onetime, symmetric key setting
- Improved, but still weak, security using random oracles

Conjugate Coding [Weisner'70] $k = (k_1, k_2) \in \{0, 1\}^{2n}$ $c = \mathsf{H}^{k_2}\mathsf{NOT}^{k_1}|m
angle$

Thm [Broadbent-Lord'19]: No split adversaries can simultaneously predict random **m** with probability > 0.85356ⁿ

Easy for each adversary to learn different parts of message

For each i, both parties learn m_i unambiguously with probability $\frac{1}{2}$ Different attack can learn each m_i ambiguously with prob 0.85355

Idea [Broadbent-Lord'19]: Extract with random oracle

$$x \leftarrow \{0, 1\}^{\ell}$$
$$c = (\mathsf{H}^{k_2} \mathsf{NOT}^{k_1} | x \rangle, O(x) \oplus m)$$

Thm [Broadbent-Lord'19]: Better security

Thm [Majenz-Schaffner-Tahmasbi'21]: cannot be proven optimally secure under usual techniques

Thm [Ananth-Kaleoglu-Li-Liu-Z'22]: no statistical security for deterministic (unitary) schemes

Contrast with ordinary encryption, where statistical deterministic encryption is trivial

Thm [Ananth-Kaleoglu-Li-Liu-Z'22]: RO + random coins \rightarrow secure scheme

$$k = A$$

$$c = (|A_{s,s'}\rangle, H(s,s') \oplus m), s, s' \leftarrow \$$$

$$|A_{s,s'}\rangle = \sum_{x \in A} \omega^{x \cdot s'} |x + s\rangle$$

Open Question 4: Unclonable encryption/ CP for point functions without oracles

Relaxation: Copy detection

Adversary may copy, but copies will be detectable

Thm [Ananth-La Placa'20]: quantum money + other tools
→ copy detection for certain evasive functions

(Public key) quantum money 🗸

Copy protection

Revocable cryptography

Revocable Cryptography

Thm [Ananth-La Placa'20]: Standard tools \rightarrow SSL for certain evasive functions

Encryption with Certified Deletion [Broadbent-Islam'19]

Not hard observation: Unclonable Enc can be used to construct Enc w/ Certified Deletion

Thm [Broadbent-Islam'19]: Statistical, one-time, secret key

Thm [Hiroka-Morimae-Nishimaki-Yamakawa'21]: classical PKE \rightarrow public key, many time

Revocable Time-Released Crypto

Classical time-released crypto: [Rivest-Shamir-Wagner'96]

Thm [Unruh'13]: Classical TRE \rightarrow Revocable TRE

Construction idea:

Security proof not generic and non-trivial

(Public key) quantum money 🗸

Copy protection

Revocable cryptography 🧹

Unclonable Crypto with Classical Communication

* Its not! O is periodic

Correctness: Just need pre-image sets of O to be subspaces Collision-resistance: Need (at minimum) subspaces not all the same (Need P to check different subspace for each y)

[Brakerski-Christiano-Mahadev-Vazirani-Vidick'18]: Use trapdoor 2-to-1 function (aka Trapdoor Claw-Free func) from LWE

Any pair of points is a subspace!

Limitation: P needs secret trapdoor, so no public verification

Nevertheless, ideas used for many results

Open Question 5: Publicly verifiable money with classical communication from iO + LWE + Isogenies + LPN + ...

[Radian-Sattath'19]: private key case [Shmueli'21]: public key classical bank