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• One of the central goals of science is to learn how the physical world operates.


• By performing experiments, humans can receive information about the physical world, and 
process information to form predictive models.
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• To accelerate and automate scientific development, it is important to understand how to 
design better algorithms to learn from experiments.


• A burgeoning field in QI considers the task of learning from quantum experiments.
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• Basic setting and examples


• Key ideas: 
       Part I — Designing good learning algorithms 
       Part II — Proving no good learning algorithms exist


• Outlook and open questions

Outline



• Basic setting and examples


• Key ideas: 
       Part I — Designing good learning algorithms 
       Part II — Proving no good learning algorithms exist


• Outlook and open questions

Outline



• There is an unknown quantum object (states, processes, entire phase diagram, …).


• Learn that object from experiments. So it becomes (approximately) known.


• How many experiments are needed? (Sample and query complexity)
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Learning from 
quantum experiments

Quantum machine learning

Quantum benchmarking

Variational quantum 
algorithmsQuantum sensing

Machine learning for physics

Overview

Noise characterization

Goal: Provide a learning-theoretic foundation for various applications



• There is an unknown -qubit quantum state described by .


• Learn a classical description  by performing measurements on copies of .


• After learning, we want  under trace norm .

n ρ ∈ ℂ2n×2n

̂ρ ρ

̂ρ ≈ ρ ∥⋅∥1

Example 1: Quantum state tomography

Unknown quantum state
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• There is an unknown -qubit Pauli channel .
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n 𝒫

𝒫̂ 𝒫

𝒫̂ ≈ 𝒫
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• There is an unknown  mapping parameter  to the ground state of .


• Learn  by preparing ground states under different ’s, and measuring the states.


• After learning, we want  for most of .

f(x) x H(x)

̂f x

̂f(x) ≈ f(x) x

Example 4: Predicting ground states

Unknown phase diagram
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Motivations:

• Machine learning for 

quantum chemistry/physics


• Speed up computation with ML



• Almost all problems contain some aspects about learning an unknown object.

Type your problem here

Unknown [           ]



• What quantum circuits/algorithms can we learn? (QML & VQA)


• What aspects of an unknown quantum machine is learnable? (Benchmarking & Noise)


• How to learn a good quantum sensor given an unknown quantum machine? (Sensing)


• Can a learning algorithm discover “new physics”? (ML for physics)


• The list goes on …

More problems

SensingQuantum ML

Benchmarking

VQA ML for physics

Noise
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• Part I focuses on upper bounds (how to design good learning algorithms).


• Part II focuses on lower bounds (how to show that no good algorithms exist).

Key Ideas

v.s.
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     Algorithmic side: randomized experiments + data processing

     Analysis side: geometric analysis + concentration inequality



A dive into shadow tomography

Recall the task of shadow tomography:


• There is an unknown -qubit quantum state described by .


• Learn  by performing measurements on copies of .


• After learning, we want  for observables .

n ρ ∈ ℂ2n×2n

̂ρ ρ

Tr(O ̂ρ) ≈ Tr(Oρ) O1, …, OM

     Algorithmic side: randomized experiments + data processing

     Analysis side: geometric analysis + concentration inequality
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For example:

• , then naively we need  measurements.

• This theorem shows that we only need  measurements.


Furthermore, we don’t need to know  in advance.

M = 106, B = 1 106/ϵ2

6 log(10)/ϵ2

O1, …, OM

Theorem (Huang et al.; 2020)
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1. Given  the procedure learns a classical representation of

       an unknown quantum state  from

                                    measurements.

2.  Subsequently, given any  with 

       the procedure can use the classical representation to predict 

                           where  , for all .

B, ϵ > 0,
ρ

N = 𝒪(B log(M)/ϵ2)
O1, …, OM B ≥ max∥Oi∥2

2,
̂o1, …, ̂oM,

| ̂oi − tr(Oiρ)| < ϵ i
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Other applications

• Cross platform verification [1, 2]

• Characterizing topological order [3, 4]

• Probing entanglement entropy [5, 6]

• Diagnosing quantum chaos [7]

• Learning quantum noise [8, 9]

See more examples in the review [10].
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     Algorithmic side: randomized experiments + data processing
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Why randomized experiments?

A. In many cases, they are asymptotically optimal! Adaptively choosing experiments 
based on new information seems better, but often don’t [1, 2, 3].


B. Randomization turns bad scenarios into low-probability events.


C. If information is distributed evenly, random sampling quickly converges.
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v.s.

Part I
Part II

• Part II focuses on lower bounds (showing no good algorithms exist).

Key Ideas
Mostly focus on


Conventional Experiments



Conventional Experiments

Classical

Computation

Physical

Measurements

Classical

Memory

Receive, process, and store

classical informationWhat scientists currently do in the lab



Quantum-enhanced Experiments

Quantum

Computation

Transduce from 
quantum sensors

Quantum

Memory

What future experiments could be like Receive, process, and store

quantum information



v.s.

Part I
Part II

• Proving lower bounds for conventional experiments (classical agents) helps us 
understand the potential quantum advantage in learning from experiments.

Key Ideas



Mathematical Framework

Quantum-enhanced experiments

Transduce from 
quantum sensors

Quantum 
computation

Quantum 
memory

Conventional experiments

Physical 
measurements

Classical 
computation

Classical 
memory

• We consider a simple task of learning about an unknown physical system  (density matrix).


• Assume that a physical source that could generate a single copy of  at a time.

ρ

ρ

Related framework has been considered in [Bubeck, Chen, Li, FOCS’20], [Huang, Kueng, Preskill, PRL’21], [Aharonov, Cotler, Qi, ’21]
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Algorithms without quantum memory Algorithms with quantum memory

• Main difference: 
  Having quantum memory for entangling quantum information from past and future experiments.


• We can then analyze the possible protocols/algorithms to study their learning ability.



Quantum advantage

in predicting properties

Theorem

Classical agent needs  experiments to predict observable from the set, but 
quantum agent only need  experiments to predict all  observables.

Ω(2n)
𝒪(n) 4n

• The classical/quantum agent learns a classical model of the -qubit state .


• Subsequently, one can use the classical model to predict  for an 
observable  chosen from .

n ρ

|Tr(Pρ) |
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Uncertainty principle significantly hinders the learning ability of classical agent, 
but surprisingly not the ability of a quantum agent.



Quantum advantage

in predicting properties

Exponential quantum advantage is present even when the state  is 
a classical distribution over product states (no entanglement!).
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Proof Sketch: Tree representation

• Consider the lower bound  for classical agents; See [HKP21] for upper bound .


• We consider a graphical representation for the memory state of the classical agent.
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[CCHL21] Chen, Cotler, Huang, Li. Exponential separations between learning with and without quantum memory, FOCS 2021.
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Many-vs-one distinguishing task

PA PB

• If the classical agent succeeds in the prediction task, then he/she must succeeds in 
a corresponding distinguishing task.



Quantum advantage

in predicting properties

• The classical/quantum agent learns a classical model of the -qubit state .


• Subsequently, one can use the classical model to predict  for an 
observable  chosen from .
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Other examples

• Estimating  [1]

• Quantum state tomography [2]

• Classifying symmetry [3]

• Quantum state certification [4]

• Quantum PCA [5]

• Learning Pauli channel [6]

Tr(ρσ)
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Current proof techniques vary rather substantially for different tasks.
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Quantum machine learning

Quantum benchmarking

Variational quantum 
algorithmsQuantum sensing

Machine learning for physics

Outlook

Noise characterization

A lot of problems in these fields are yet to be studied rigorously.



• Can we perform shadow tomography on broader classes of observables 
computationally efficiently? 
We only know how to do it efficiently for low-weight and Pauli observables.


• What classes of quantum dynamics/circuits are efficiently learnable? 
Many natural classes are either not efficiently learnable quantumly or efficiently learnable 
classically (e.g., local Hamiltonian evolution). Is there something in between?


• Could we efficiently learn if there are non-local quantum noise? 
Fault-tolerant quantum computers require local noise. Can we experimentally test this?

Open questions


