Learning from quantum experiments

Presenter: Hsin-Yuan (Robert) Huang Caltech

Motivation

- One of the central goals of science is to learn how the physical world operates.
- process information to form predictive models.

Examples of scientific disciplines

• By performing experiments, humans can receive information about the physical world, and

A cartoon depiction of learning

Motivation

- design better algorithms to learn from experiments.
- A burgeoning field in QI considers the task of learning from quantum experiments.

Examples of scientific disciplines

• To accelerate and automate scientific development, it is important to understand how to

A cartoon depiction of learning

- Basic setting and examples
- Key ideas: Part I — Designing good learning algorithms
- Outlook and open questions

Outline

Part II — Proving no good learning algorithms exist

Basic setting and examples

• Key ideas: Part I — Designing good learning algorithms

Outlook and open questions

Outline

Part II — Proving no good learning algorithms exist

- There is an unknown quantum object (states, processes, entire phase diagram, ...).
- Learn that object from experiments. So it becomes (approximately) known.

Unknown quantum object

Basic setting

- There is an unknown quantum object (states, processes, entire phase diagram, ...).
- Learn that object from experiments. So it becomes (approximately) known.
- How many experiments are needed? (Sample and query complexity)

Unknown quantum object

Basic setting

Quantum benchmarking

Quantum sensing

Learning from quantum experiments

Goal: Provide a learning-theoretic foundation for various applications

Overview

Machine learning for physics

Noise characterization

Variational quantum algorithms

Example 1: Quantum state tomography

- There is an unknown *n*-qubit quantum state described by $\rho \in \mathbb{C}^{2^n \times 2^n}$.
- Learn a classical description $\hat{\rho}$ by performing measurements on copies of ρ .
- After learning, we want $\hat{\rho} \approx \rho$ under trace norm $\|\cdot\|_1$.

Motivations:

• The most basic quantum learning problem

Unknown quantum state

References:

[1] Leonhardt, Ulf. "Quantum-state tomography and discrete Wigner function." Physical review letters 74.21 (1995): 4101.

[2] Gross, David, et al. "Quantum state tomography via compressed sensing." *Physical review letters* 105.15 (2010): 150401.

[3] O'Donnell, Ryan, and John Wright. "Efficient quantum tomography." Proceedings of the forty-eighth annual ACM symposium on Theory of Computing. 2016.

[4] Haah, Jeongwan, et al. "Sample-optimal tomography of quantum states." IEEE Transactions on Information Theory 63.9 (2017): 5628-5641.

Example 1: Quantum state tomography

- There is an unknown *n*-qubit quantum state described by $\rho \in \mathbb{C}^{2^n \times 2^n}$.
- Learn a classical description $\hat{\rho}$ by performing measurements on copies of ρ .
- After learning, we want $\hat{\rho} \approx \rho$ under trace norm $\|\cdot\|_1$.

Motivations:

- The most basic quantum learning problem
- Benchmark quantum systems

Unknown quantum state

References:

[1] Leonhardt, Ulf. "Quantum-state tomography and discrete Wigner function." Physical review letters 74.21 (1995): 4101.

[2] Gross, David, et al. "Quantum state tomography via compressed sensing." *Physical review letters* 105.15 (2010): 150401.

[3] O'Donnell, Ryan, and John Wright. "Efficient quantum tomography." Proceedings of the forty-eighth annual ACM symposium on Theory of Computing. 2016.

[4] Haah, Jeongwan, et al. "Sample-optimal tomography of quantum states." IEEE Transactions on Information Theory 63.9 (2017): 5628-5641.

Example 1: Quantum state tomography

- There is an unknown *n*-qubit quantum state described by $\rho \in \mathbb{C}^{2^n \times 2^n}$.
- Learn a classical description $\hat{\rho}$ by performing measurements on copies of ρ .
- After learning, we want $\hat{\rho} \approx \rho$ under trace norm $\|\cdot\|_1$.

Motivations:

- The most basic quantum learning problem
- Benchmark quantum systems

Unknown quantum state

Complexity is exponential in n

References:

[1] Leonhardt, Ulf. "Quantum-state tomography and discrete Wigner function." Physical review letters 74.21 (1995): 4101.

[2] Gross, David, et al. "Quantum state tomography via compressed sensing." *Physical review letters* 105.15 (2010): 150401.

[3] O'Donnell, Ryan, and John Wright. "Efficient quantum tomography." Proceedings of the forty-eighth annual ACM symposium on Theory of Computing. 2016.

[4] Haah, Jeongwan, et al. "Sample-optimal tomography of quantum states." IEEE Transactions on Information Theory 63.9 (2017): 5628-5641.

- There is an unknown *n*-qubit quantum state described by $\rho \in \mathbb{C}^{2^n \times 2^n}$.
- Learn a classical description $\hat{\rho}$ by performing measurements on copies of ρ .
- After learning, we want $Tr(O_i\hat{\rho}) \approx Tr(O_i\rho)$ for observables O_1, \ldots, O_M .

Unknown quantum state

References:

[1] Aaronson, Scott. "Shadow tomography of quantum states." SIAM Journal on Computing 49.5 (2019): STOC18-368.

[2] Bădescu, Costin, and Ryan O'Donnell. "Improved quantum data analysis." Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 2021.

- There is an unknown *n*-qubit quantum state described by $\rho \in \mathbb{C}^{2^n \times 2^n}$.
- Learn a classical description $\hat{\rho}$ by performing measurements on copies of ρ .
- After learning, we want $Tr(O_i\hat{\rho}) \approx Tr(O_i\rho)$ for observables O_1, \ldots, O_M .

Motivations:

• 2nd most basic quantum learning problem

Unknown quantum state

References:

[1] Aaronson, Scott. "Shadow tomography of quantum states." SIAM Journal on Computing 49.5 (2019): STOC18-368.

[2] Bădescu, Costin, and Ryan O'Donnell. "Improved quantum data analysis." Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 2021.

- There is an unknown *n*-qubit quantum state described by $\rho \in \mathbb{C}^{2^n \times 2^n}$.
- Learn a classical description $\hat{\rho}$ by performing measurements on copies of ρ .
- After learning, we want $Tr(O_i\hat{\rho}) \approx Tr(O_i\rho)$ for observables O_1, \ldots, O_M .

Motivations:

- 2nd most basic quantum learning problem
- Benchmark quantum systems w/ good scaling in *n*

Unknown quantum state

References:

[1] Aaronson, Scott. "Shadow tomography of quantum states." SIAM Journal on Computing 49.5 (2019): STOC18-368.

[2] Bădescu, Costin, and Ryan O'Donnell. "Improved quantum data analysis." Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 2021.

- There is an unknown *n*-qubit quantum state described by $\rho \in \mathbb{C}^{2^n \times 2^n}$.
- Learn a classical description $\hat{\rho}$ by performing measurements on copies of ρ .
- After learning, we want $Tr(O_i\hat{\rho}) \approx Tr(O_i\rho)$ for observables O_1, \ldots, O_M .

Motivations:

- 2nd most basic quantum learning problem
- Benchmark quantum systems w/ good scaling in *n*
- A basic primitive in hybrid quantum/classical algorithms

Unknown quantum state

References:

[1] Aaronson, Scott. "Shadow tomography of quantum states." SIAM Journal on Computing 49.5 (2019): STOC18-368.

[2] Bădescu, Costin, and Ryan O'Donnell. "Improved quantum data analysis." Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 2021.

- There is an unknown *n*-qubit quantum state described by $\rho \in \mathbb{C}^{2^n \times 2^n}$.
- Learn a classical description $\hat{\rho}$ by performing measurements on copies of ρ .
- After learning, we want $\text{Tr}(O_i\hat{\rho}) \approx \text{Tr}(O_i\rho)$ for observables O_1, \ldots, O_M .

Motivations:

- 2nd most basic quantum learning problem
- Benchmark quantum systems w/ good scaling in *n*
- A basic primitive in hybrid quantum/classical algorithms

Unknown quantum state

Complexity is linear or independent in *n*

References:

[1] Aaronson, Scott. "Shadow tomography of quantum states." SIAM Journal on Computing 49.5 (2019): STOC18-368.

[2] Bădescu, Costin, and Ryan O'Donnell. "Improved quantum data analysis." Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 2021.

Example 3: Pauli channel tomography

- There is an unknown *n*-qubit Pauli channel \mathcal{P} .
- After learning, we want $\hat{\mathscr{P}} \approx \mathscr{P}$ under diamond norm.

• Learn $\hat{\mathscr{P}}$ by preparing input states, evolving under \mathscr{P} , and measuring output states.

Unknown Pauli channel

References:

[1] Flammia, Steven T., and Joel J. Wallman. "Efficient estimation of Pauli channels." ACM Transactions on Quantum Computing 1.1 (2020): 1-32. [2] Harper, Robin, Steven T. Flammia, and Joel J. Wallman. "Efficient learning of quantum noise." Nature Physics 16.12 (2020): 1184-1188. [3] Flammia, Steven T., and Ryan O'Donnell. "Pauli error estimation via Population Recovery." Quantum 5 (2021): 549. [4] Chen, Senrui, et al. "Quantum advantages for pauli channel estimation." Physical Review A 105.3 (2022): 032435.

Example 3: Pauli channel tomography

- There is an unknown *n*-qubit Pauli channel \mathcal{P} .
- After learning, we want $\hat{\mathscr{P}} \approx \mathscr{P}$ under diamond norm.

Motivations:

- Characterize quantum noise
- Useful for quantum error correction, error mitigation

• Learn $\hat{\mathscr{P}}$ by preparing input states, evolving under \mathscr{P} , and measuring output states.

Unknown Pauli channel

References:

[1] Flammia, Steven T., and Joel J. Wallman. "Efficient estimation of Pauli channels." ACM Transactions on Quantum Computing 1.1 (2020): 1-32. [2] Harper, Robin, Steven T. Flammia, and Joel J. Wallman. "Efficient learning of quantum noise." Nature Physics 16.12 (2020): 1184-1188. [3] Flammia, Steven T., and Ryan O'Donnell. "Pauli error estimation via Population Recovery." Quantum 5 (2021): 549. [4] Chen, Senrui, et al. "Quantum advantages for pauli channel estimation." Physical Review A 105.3 (2022): 032435.

Example 3: Pauli channel tomography

- There is an unknown *n*-qubit Pauli channel \mathcal{P} .
- After learning, we want $\hat{\mathscr{P}} \approx \mathscr{P}$ under diamond norm.

Motivations:

- Characterize quantum noise
- Useful for quantum error correction, error mitigation

Unknown Pauli channel

• Learn $\hat{\mathscr{P}}$ by preparing input states, evolving under \mathscr{P} , and measuring output states.

Complexity varies under additional assumptions

References:

[1] Flammia, Steven T., and Joel J. Wallman. "Efficient estimation of Pauli channels." ACM Transactions on Quantum Computing 1.1 (2020): 1-32. [2] Harper, Robin, Steven T. Flammia, and Joel J. Wallman. "Efficient learning of quantum noise." Nature Physics 16.12 (2020): 1184-1188. [3] Flammia, Steven T., and Ryan O'Donnell. "Pauli error estimation via Population Recovery." Quantum 5 (2021): 549. [4] Chen, Senrui, et al. "Quantum advantages for pauli channel estimation." Physical Review A 105.3 (2022): 032435.

Example 4: Predicting ground states

- There is an unknown f(x) mapping parameter x to the ground state of H(x).
- After learning, we want $\hat{f}(x) \approx f(x)$ for most of x.

Unknown phase diagram

• Learn \hat{f} by preparing ground states under different x's, and measuring the states.

References:

[1] Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum manybody problem with artificial neural networks." *Science* 355.6325 (2017): 602-606.

[2] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." International conference on machine learning. PMLR, 2017. [3] Qiao, Zhuoran, et al. "OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features." The Journal of chemical physics 153.12 (2020): 124111.

[4] Huang, Hsin-Yuan, et al. "Provably efficient machine learning for quantum many-body problems." arXiv preprint arXiv:2106.12627 (2021).

Example 4: Predicting ground states

- There is an unknown f(x) mapping parameter x to the ground state of H(x).
- After learning, we want $\hat{f}(x) \approx f(x)$ for most of x.

Motivations:

- Machine learning for quantum chemistry/physics
- Speed up computation with ML

• Learn \hat{f} by preparing ground states under different x's, and measuring the states.

Unknown phase diagram

References:

[1] Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum manybody problem with artificial neural networks." *Science* 355.6325 (2017): 602-606.

[2] Gilmer, Justin, et al. "Neural message passing for quantum" chemistry." International conference on machine learning. PMLR, 2017. [3] Qiao, Zhuoran, et al. "OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features." The Journal of chemical physics 153.12 (2020): 124111.

[4] Huang, Hsin-Yuan, et al. "Provably efficient machine learning for quantum many-body problems." arXiv preprint arXiv:2106.12627 (2021).

Type your problem here

• Almost all problems contain some aspects about learning an unknown object.

More problems

- What quantum circuits/algorithms can we learn? (QML & VQA)
- What aspects of an unknown quantum machine is learnable? (Benchmarking & Noise)
- How to learn a good quantum sensor given an unknown quantum machine? (Sensing)
- Can a learning algorithm discover "new physics"? (ML for physics)
- The list goes on ...

Basic setting and examples

• Key ideas: Part I — Designing good learning algorithms

Outlook and open questions

Outline

Part II — Proving no good learning algorithms exist

• Basic setting and examples

• Key ideas: Part I — Designing good learning algorithms Part II — Proving no good learning algorithms exist

Outlook and open questions

Outline

- Part I focuses on upper bounds (how to design good learning algorithms).
- Part II focuses on lower bounds (how to show that no good algorithms exist).

Part I

Key Ideas

Algorithmic side: randomized experiments + data processing Analysis side: geometric analysis + concentration inequality

Part I

Key Ideas

Algorithmic side: randomized experiments + data processing Analysis side: geometric analysis + concentration inequality

Recall the task of shadow tomography:

- There is an unknown *n*-qubit quantum state described by $\rho \in \mathbb{C}^{2^n \times 2^n}$.
- Learn $\hat{\rho}$ by performing measurements on copies of ρ .
- After learning, we want $Tr(O\hat{\rho}) \approx Tr(O\rho)$ for observables $O_1, ..., O_M$.

Randomized experiment:

- Sample a random Clifford U_i to rotate the quantum state ρ .
- Measure the state in the computational basis $|b_i\rangle \in \{0,1\}^n$.

the quantum state ρ . al basis $|b_i\rangle \in \{0,1\}^n$.

Randomized experiment:

- Sample a random Clifford U_i to rotate the quantum state ρ .
- Measure the state in the computational basis $|b_i\rangle \in \{0,1\}^n$.

Data processing:

• Construct
$$\hat{\rho}_i = \left[(2^n + 1) U_i^{\dagger} | b_i \rangle \langle b_i | U_i - L_i^{\dagger} \rangle \right]$$

the quantum state ρ . al basis $|b_i\rangle \in \{0,1\}^n$.

I for each experiment.

Randomized experiment:

- Sample a random Clifford U_i to rotate the quantum state ρ .
- Measure the state in the computational basis $|b_i\rangle \in \{0,1\}^n$.

Data processing:

• Construct
$$\hat{\rho}_i = \left[(2^n + 1) U_i^{\dagger} | b_i \rangle \langle b_i | U_i - D_i^{\dagger} \rangle \right]$$

Geometric analysis:

I for each experiment.

Randomized experiment:

- Sample a random Clifford U_i to rotate the quantum state ρ .
- Measure the state in the computational basis $|b_i\rangle \in \{0,1\}^n$.

Data processing:

• Construct
$$\hat{\rho}_i = \left[(2^n + 1) U_i^{\dagger} | b_i \rangle \langle b_i | U_i - D_i^{\dagger} \rangle \right]$$

Geometric analysis:

Concentration bound:

I for each experiment.

• For O_1, \ldots, O_M with $Tr(O^2) = O(1)$, we can predict $Tr(O_i\rho)$ after $O(\log(M))$ measurements.

Theorem (Huang et al.; 2020)

- 1. Given $B, \epsilon > 0$, the procedure learns a classical representation of an unknown quantum state ρ from $N = \mathcal{O}(B \log(M)/\epsilon^2)$ measurements. the procedure can use the classical representation to predict $\hat{o}_1, \ldots, \hat{o}_M$, where $|\hat{o}_i - \operatorname{tr}(O_i\rho)| < \epsilon$, for all *i*.
- 2. Subsequently, given any O_1, \ldots, O_M with $B \ge \max \|O_i\|_2^2$,

For example:

- $M = 10^6$, B = 1, then naively we need $10^6/\epsilon^2$ measurements.
- This theorem shows that we only need $6\log(10)/\epsilon^2$ measurements.

Furthermore, we don't need to know O_1, \ldots, O_M in advance.

Theorem (Huang et al.; 2020)

- 1. Given $B, \epsilon > 0$, the procedure learns a classical representation of an unknown quantum state ρ from
- 2. Subsequently, given any O_1, \ldots, O_M with $B \ge \max ||O_i||_2^2$, where $|\hat{o}_i - \operatorname{tr}(O_i\rho)| < \epsilon$, for all *i*.

For example:

- $M = 10^6$, B = 1, then naively we need $10^6/\epsilon^2$ measurements. • This theorem shows that we only need $6\log(10)/\epsilon^2$ measurements.

Furthermore, we don't need to know O_1, \ldots, O_M in advance.

Application: Quantum fidelity $|\psi\rangle\langle\psi|$

Theorem (Huang et al.; 2020)

- 1. Given $B, \epsilon > 0$, the procedure learns a classical representation of an unknown quantum state ρ from
- 2. Subsequently, given any O_1, \ldots, O_M with $B \ge \max \|O_i\|_2^2$, where $|\hat{o}_i - \operatorname{tr}(O_i\rho)| < \epsilon$, for all *i*.

For example:

- $M = 10^6$, B = 1, then naively we need $10^6/\epsilon^2$ measurements.
- This theorem shows that we only need $6\log(10)/\epsilon^2$ measurements.

Furthermore, we don't need to know O_1, \ldots, O_M in advance.

Theorem (Huang et al.; 2020)

- 1. Given $B, \epsilon > 0$, the procedure learns a classical representation of an unknown quantum state ρ from
- 2. Subsequently, given any O_1, \ldots, O_M with $B \ge \max \|O_i\|_{\text{shadow}}^2$, where $|\hat{o}_i - \operatorname{tr}(O_i \rho)| < \epsilon$, for all *i*.

For example:

- $M = 10^6$, B = 1, then naively we need $10^6/\epsilon^2$ measurements.
- This theorem shows that we only need $6\log(10)/\epsilon^2$ measurements.

Furthermore, we don't need to know O_1, \ldots, O_M in advance.

Other applications

Algorithmic side: randomized experiments + data processing Analysis side: geometric analysis + concentration inequality

- Cross platform verification [1, 2]
- Characterizing topological order [3, 4]
- Probing entanglement entropy [5, 6]
- Diagnosing quantum chaos [7]
- Learning quantum noise [8, 9] See more examples in the review [10].

References:

[1] Elben, Andreas, et al. "Cross-platform verification of intermediate scale quantum devices." Physical review letters 124.1 (2020): 010504.

[2] Anshu, Anurag, Zeph Landau, and Yunchao Liu. "Distributed quantum inner product estimation." arXiv preprint arXiv:2111.03273 (2021).

[3] Elben, Andreas, et al. "Many-body topological invariants from randomized measurements in synthetic quantum matter." Science advances 6.15 (2020).

[4] Huang, Hsin-Yuan, et al. "Provably efficient machine learning for quantum many-body problems." arXiv preprint arXiv:2106.12627 (2021).

[5] Brydges, Tiff, et al. "Probing Rényi entanglement entropy via randomized measurements." Science 364.6437 (2019): 260-263.

[6] Elben, Andreas, et al. "Mixed-state entanglement from local randomized measurements." Physical Review Letters 125.20 (2020): 200501.

[7] Vermersch, Benoît, et al. "Probing scrambling using statistical correlations between randomized measurements." *Physical Review X* 9.2 (2019): 021061.

[8] Flammia, Steven T., and Joel J. Wallman. "Efficient estimation of Pauli channels." ACM Transactions on Quantum Computing 1.1 (2020): 1-32.

[9] Helsen, Jonas, et al. "Estimating gate-set properties from random sequences." arXiv preprint arXiv:2110.13178 (2021).

[10] Elben, Andreas, et al. "The randomized measurement toolbox." arXiv preprint arXiv:2203.11374 (2022)

Why randomized experiments?

- A. In many cases, they are asymptotically optimal! Adaptively choosing experiments based on new information seems better, but often don't [1, 2, 3].
- B. Randomization turns bad scenarios into low-probability events.
- C. If information is distributed evenly, random sampling quickly converges.

References:

[1] Chen, Sitan, et al. "Exponential separations between Foundations of Computer Science (FOCS). IEEE, 2022.
[2] Anshu, Anurag, Zeph Landau, and Yunchao Liu. "Dis
[3] Chen, Sitan, et al. "Tight Bounds for State Tomograp

- [1] Chen, Sitan, et al. "Exponential separations between learning with and without quantum memory." 2021 IEEE 62nd Annual Symposium on
- [2] Anshu, Anurag, Zeph Landau, and Yunchao Liu. "Distributed quantum inner product estimation." arXiv preprint arXiv:2111.03273 (2021).
 [3] Chen, Sitan, et al. "Tight Bounds for State Tomography with Incoherent Measurements." arXiv preprint arXiv:2206.05265 (2022)

• Basic setting and examples

• Key ideas: Part I — Designing good learning algorithms Part II — Proving no good learning algorithms exist

Outlook and open questions

Outline

- Basic setting and examples
- Key ideas: Part I — Designing good learning algorithms
- Outlook and open questions

Outline

Part II — Proving no good learning algorithms exist

• Part II focuses on lower bounds (showing no good algorithms exist).

Part I

Key Ideas

Mostly focus on **Conventional Experiments**

Conventional Experiments

What scientists currently do in the lab

Classical Memory

Receive, process, and store classical information

Receiving

¢ · · · · · |

Physical Measurements

Classical Computation

Processina

Quantum-enhanced Experiments

What future experiments could be like

Quantum Memory

884-----

Storing

Receive, process, and store quantum information

Transduce from quantum sensors

Processing

Proving lower bounds for conventional experiments (classical agents) helps us understand the potential quantum advantage in learning from experiments.

Part |

Key Ideas

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

Related framework has been considered in [Bubeck, Chen, Li, FOCS'20], [Huang, Kueng, Preskill, PRL'21], [Aharonov, Cotler, Qi, '21]

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

storing data from all POVM

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

Store in quantum memory

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

Store in quantum memory

Store in quantum memory

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

Quantum memory storing all copies of ρ

Process all quantum data with quantum computation

Predict properties of the physical system ρ

Main difference:

Having quantum memory for entangling quantum information from past and future experiments.

We can then analyze the possible protocols/algorithms to study their learning ability.

Algorithms without quantum memory

Algorithms with quantum memory

- The classical/quantum agent learns a classical model of the *n*-qubit state ρ .
- Subsequently, one can use the classical model to predict $|Tr(P\rho)|$ for an observable *P* chosen from $\{I, X, Y, Z\}^{\otimes n}$.

Theorem

quantum agent only need $\mathcal{O}(n)$ experiments to predict all 4^n observables.

Classical agent needs $\Omega(2^n)$ experiments to predict observable from the set, but

- The classical/quantum agent learns a classical model of the *n*-qubit state ρ .
- Subsequently, one can use the classical model to predict $|Tr(P\rho)|$ for an observable *P* chosen from $\{I, X, Y, Z\}^{\otimes n}$.

Theorem

quantum agent only need $\mathcal{O}(n)$ experiments to predict all 4^n observables.

- Classical agent needs $\Omega(2^n)$ experiments to predict observable from the set, but
 - Uncertainty principle significantly hinders the learning ability of classical agent, but surprisingly not the ability of a quantum agent.

- The classical/quantum agent learns a classical model of the *n*-qubit state ρ .
- Subsequently, one can use the classical model to predict $|Tr(P\rho)|$ for an observable *P* chosen from $\{I, X, Y, Z\}^{\otimes n}$.

Theorem

quantum agent only need $\mathcal{O}(n)$ experiments to predict all 4^n observables.

Classical agent needs $\Omega(2^n)$ experiments to predict observable from the set, but

Exponential quantum advantage is present even when the state ρ is a classical distribution over product states (no entanglement!).

- Consider the lower bound $\Omega(2^n)$ for classical agents; See [HKP21] for upper bound $\mathcal{O}(n)$.
- We consider a graphical representation for the memory state of the classical agent.

- Consider the lower bound $\Omega(2^n)$ for classical agents; See [HKP21] for upper bound $\mathcal{O}(n)$.
- We consider a graphical representation for the memory state of the classical agent.

- Consider the lower bound $\Omega(2^n)$ for classical agents; See [HKP21] for upper bound $\mathcal{O}(n)$.
- We consider a graphical representation for the memory state of the classical agent.

Probability distribution (bottom layer) sufficiently different \equiv Classical agent can distinguish ρ_A and ρ_B

- Consider the lower bound $\Omega(2^n)$ for classical agents; See [HKP21] for upper bound $\mathcal{O}(n)$.
- We consider a graphical representation for the memory state of the classical agent.

Probability distribution (bottom layer) sufficiently different \equiv Classical agent can distinguish ρ_A and ρ_B More experiments done \equiv Deeper the tree \equiv More distinct the distribution

Many-vs-one distinguishing task

a corresponding distinguishing task.

Partially-revealed many-versus-one distinguishing task

If the classical agent succeeds in the prediction task, then he/she must succeeds in

- The classical/quantum agent learns a classical model of the *n*-qubit state ρ .
- Subsequently, one can use the classical model to predict $|Tr(P\rho)|$ for an observable *P* chosen from $\{I, X, Y, Z\}^{\otimes n}$.

Theorem

quantum agent only need $\mathcal{O}(n)$ experiments to predict all 4^n observables.

Classical agent needs $\Omega(2^n)$ experiments to predict observable from the set, but

Other examples

Current proof techniques vary rather substantially for different tasks.

- Estimating $Tr(\rho\sigma)$ [1]
- Quantum state tomography [2]
- Classifying symmetry [3]
- Quantum state certification [4]
- Quantum PCA [5]
- Learning Pauli channel [6]

References:

[1] Anshu, Anurag, Zeph Landau, and Yunchao Liu. "Distributed quantum inner product estimation." arXiv preprint arXiv:2111.03273 (2021).

[2] Chen, Sitan, et al. "Tight Bounds for State Tomography with Incoherent Measurements." arXiv preprint *arXiv:2206.05265* (2022)

[3] Chen, Sitan, et al. "Exponential separations between learning with and without quantum memory." 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2022.

[4] Chen, Sitan, et al. "Tight Bounds for Quantum State Certification with Incoherent Measurements." *arXiv preprint arXiv:2204.07155* (2022).

[5] Huang, Hsin-Yuan et al. "Quantum advantage in learning from

experiments." Science (New York, N.Y.) vol. 376,6598 (2022): 1182-1186.

[6] Chen, Senrui, et al. "Quantum advantages for pauli channel estimation." *Physical Review A* 105.3 (2022): 032435.

- Basic setting and examples
- Key ideas: Part I — Designing good learning algorithms
- Outlook and open questions

Outline

Part II — Proving no good learning algorithms exist

- Basic setting and examples
- Key ideas: Part I — Designing good learning algorithms
- Outlook and open questions

Outline

Part II — Proving no good learning algorithms exist

Quantum benchmarking

Quantum machine learning

Quantum sensing

Outlook

We know a little bit about what we can learn efficiently.

A lot of problems in these fields are yet to be studied rigorously.

Quantum benchmarking

Quantum machine learning

Quantum sensing

Outlook

Open questions

- Can we perform shadow tomography on broader classes of observables computationally efficiently?
 We only know how to do it efficiently for low-weight and Pauli observables.
- What classes of quantum dynamics/circuits are efficiently learnable? Many natural classes are either not efficiently learnable quantumly or efficiently learnable classically (e.g., local Hamiltonian evolution). Is there something in between?
- Could we efficiently learn if there are non-local quantum noise? Fault-tolerant quantum computers require local noise. Can we experimentally test this?