Learning from

quantum experiments

Presenter: Hsin-Yuan (Robert) Huang
Caltech

Caltech

Motivation

- One of the central goals of science is to learn how the physical world operates.
- By performing experiments, humans can receive information about the physical world, and process information to form predictive models.

Examples of scientific disciplines

A cartoon depiction of learning

Motivation

- To accelerate and automate scientific development, it is important to understand how to design better algorithms to learn from experiments.
- A burgeoning field in Ol considers the task of learning from quantum experiments.

Examples of scientific disciplines

A cartoon depiction of learning

Outline

- Basic setting and examples
- Key ideas:

Part I — Designing good learning algorithms
Part II — Proving no good learning algorithms exist

- Outlook and open questions

Outline

- Basic setting and examples
- Key ideas:

Part I — Designing good learning algorithms Part II — Proving no good learning algorithms exist

- Outlook and open questions

Basic setting

- There is an unknown quantum object (states, processes, entire phase diagram, ...).
- Learn that object from experiments. So it becomes (approximately) known.

Unknown quantum object

Basic setting

- There is an unknown quantum object (states, processes, entire phase diagram, ...).
- Learn that object from experiments. So it becomes (approximately) known.
- How many experiments are needed? (Sample and query complexity)

Unknown quantum object

Overview

Goal: Provide a learning-theoretic foundation for various applications

Example 1: Quantum state tomography

- There is an unknown n-qubit quantum state described by $\rho \in \mathbb{C}^{2^{n} \times 2^{n}}$.
- Learn a classical description $\hat{\rho}$ by performing measurements on copies of ρ.
- After learning, we want $\hat{\rho} \approx \rho$ under trace norm $\|\cdot\|_{1}$.

Motivations:

- The most basic quantum learning problem

Unknown quantum state

References:

[1] Leonhardt, Ulf. "Quantum-state tomography and discrete Wigner function." Physical review letters 74.21 (1995): 4101
[2] Gross, David, et al. "Quantum state tomography via compressed sensing." Physical review letters 105.15 (2010): 150401.
[3] O'Donnell, Ryan, and John Wright. "Efficient quantum
tomography." Proceedings of the forty-eighth annual ACM symposium on Theory of Computing. 2016.
[4] Haah, Jeongwan, et al. "Sample-optimal tomography of quantum states." IEEE Transactions on Information Theory 63.9 (2017): 5628-5641.

Example 1: Quantum state tomography

- There is an unknown n-qubit quantum state described by $\rho \in \mathbb{C}^{2^{n} \times 2^{n}}$.
- Learn a classical description $\hat{\rho}$ by performing measurements on copies of ρ.
- After learning, we want $\hat{\rho} \approx \rho$ under trace norm $\|\cdot\|_{1}$.

Motivations:

- The most basic quantum learning problem
- Benchmark quantum systems

Unknown quantum state

[^0]References:

Example 1: Quantum state tomography

- There is an unknown n-qubit quantum state described by $\rho \in \mathbb{C}^{2^{n} \times 2^{n}}$.
- Learn a classical description $\hat{\rho}$ by performing measurements on copies of ρ.
- After learning, we want $\hat{\rho} \approx \rho$ under trace norm $\|\cdot\|_{1}$.

Motivations:

- The most basic quantum learning problem
- Benchmark quantum systems

Unknown quantum state

> Complexity is exponential in n

References:

[1] Leonhardt, Ulf. "Quantum-state tomography and discrete Wigner function." Physical review letters 74.21 (1995): 4101
[2] Gross, David, et al. "Quantum state tomography via compressed sensing." Physical review letters 105.15 (2010): 150401.
[3] O'Donnell, Ryan, and John Wright. "Efficient quantum
tomography." Proceedings of the forty-eighth annual ACM symposium on Theory of Computing. 2016.
[4] Haah, Jeongwan, et al. "Sample-optimal tomography of quantum states." IEEE Transactions on Information Theory 63.9 (2017): 5628-5641.

Example 2: Shadow tomography

- There is an unknown n-qubit quantum state described by $\rho \in \mathbb{C}^{2^{n} \times 2^{n}}$.
- Learn a classical description $\hat{\rho}$ by performing measurements on copies of ρ.
- After learning, we want $\operatorname{Tr}\left(O_{i} \hat{\rho}\right) \approx \operatorname{Tr}\left(O_{i} \rho\right)$ for observables O_{1}, \ldots, O_{M}.

Unknown quantum state

Example 2: Shadow tomography

- There is an unknown n-qubit quantum state described by $\rho \in \mathbb{C}^{2^{n} \times 2^{n}}$.
- Learn a classical description $\hat{\rho}$ by performing measurements on copies of ρ.
- After learning, we want $\operatorname{Tr}\left(O_{i} \hat{\rho}\right) \approx \operatorname{Tr}\left(O_{i} \rho\right)$ for observables O_{1}, \ldots, O_{M}.

Motivations:

- 2nd most basic quantum learning problem

Unknown quantum state

References:
[1] Aaronson, Scott. "Shadow tomography of quantum states." SIAM Journal on Computing 49.5 (2019): STOC18-368.
[2] Bădescu, Costin, and Ryan O'Donnell. "Improved quantum data
analysis." Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 2021.
[3] Huang, Hsin-Yuan, Richard Kueng, and John Preskill. "Predicting many properties of a quantum system from very few measurements. " Nature Physics 16.10 (2020): 1050-1057. [4] Cotler, Jordan, and Frank Wilczek. "Quantum overlapping tomography." Physical review letters 124.10 (2020): 100401.

Example 2: Shadow tomography

- There is an unknown n-qubit quantum state described by $\rho \in \mathbb{C}^{2^{n} \times 2^{n}}$.
- Learn a classical description $\hat{\rho}$ by performing measurements on copies of ρ.
- After learning, we want $\operatorname{Tr}\left(O_{i} \hat{\rho}\right) \approx \operatorname{Tr}\left(O_{i} \rho\right)$ for observables O_{1}, \ldots, O_{M}.

Motivations:

- 2nd most basic quantum learning problem
- Benchmark quantum systems w/ good scaling in n

Unknown quantum state

References:
[1] Aaronson, Scott. "Shadow tomography of quantum states." SIAM Journal on Computing 49.5 (2019): STOC18-368.
[2] Bădescu, Costin, and Ryan O'Donnell. "Improved quantum data
analysis." Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 2021.
[3] Huang, Hsin-Yuan, Richard Kueng, and John Preskill. "Predicting many properties of a quantum system from very few measurements. " Nature Physics 16.10 (2020): 1050-1057. [4] Cotler, Jordan, and Frank Wilczek. "Quantum overlapping tomography." Physical review letters 124.10 (2020): 100401.

Example 2: Shadow tomography

- There is an unknown n-qubit quantum state described by $\rho \in \mathbb{C}^{2^{n} \times 2^{n}}$.
- Learn a classical description $\hat{\rho}$ by performing measurements on copies of ρ.
- After learning, we want $\operatorname{Tr}\left(O_{i} \hat{\rho}\right) \approx \operatorname{Tr}\left(O_{i} \rho\right)$ for observables O_{1}, \ldots, O_{M}.

Motivations:

- 2nd most basic quantum learning problem
- Benchmark quantum systems w/ good scaling in n
- A basic primitive in hybrid quantum/classical algorithms

Unknown quantum state

References:
[1] Aaronson, Scott. "Shadow tomography of quantum states." SIAM Journal on Computing 49.5 (2019): STOC18-368.
[2] Bădescu, Costin, and Ryan O'Donnell. "Improved quantum data
analysis." Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 2021.
[3] Huang, Hsin-Yuan, Richard Kueng, and John Preskill. "Predicting many properties of a quantum system from very few measurements. " Nature Physics 16.10 (2020): 1050-1057. [4] Cotler, Jordan, and Frank Wilczek. "Quantum overlapping tomography." Physical review letters 124.10 (2020): 100401.

Example 2: Shadow tomography

- There is an unknown n-qubit quantum state described by $\rho \in \mathbb{C}^{2^{n} \times 2^{n}}$.
- Learn a classical description $\hat{\rho}$ by performing measurements on copies of ρ.
- After learning, we want $\operatorname{Tr}\left(O_{i} \hat{\rho}\right) \approx \operatorname{Tr}\left(O_{i} \rho\right)$ for observables O_{1}, \ldots, O_{M}.

Motivations:

- 2nd most basic quantum learning problem
- Benchmark quantum systems w/ good scaling in n
- A basic primitive in hybrid quantum/classical algorithms

Complexity is linear or independent in n

References:
[1] Aaronson, Scott. "Shadow tomography of quantum states." SIAM Journal on Computing 49.5 (2019): STOC18-368.
[2] Bădescu, Costin, and Ryan O'Donnell. "Improved quantum data
analysis." Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 2021.
[3] Huang, Hsin-Yuan, Richard Kueng, and John Preskill. "Predicting many properties of a quantum system from very few measurements. " Nature Physics 16.10 (2020): 1050-1057. [4] Cotler, Jordan, and Frank Wilczek. "Quantum overlapping tomography." Physical review letters 124.10 (2020): 100401.

Example 3: Pauli channel tomography

- There is an unknown n-qubit Pauli channel \mathscr{P}.
- Learn $\hat{\mathscr{P}}$ by preparing input states, evolving under \mathscr{P}, and measuring output states.
- After learning, we want $\hat{\mathscr{P}} \approx \mathscr{P}$ under diamond norm.

Unknown Pauli channel

Example 3: Pauli channel tomography

- There is an unknown n-qubit Pauli channel \mathscr{P}.
- Learn $\hat{\mathscr{P}}$ by preparing input states, evolving under \mathscr{P}, and measuring output states.
- After learning, we want $\hat{\mathscr{P}} \approx \mathscr{P}$ under diamond norm.

Motivations:

- Characterize quantum noise
- Useful for quantum error correction, error mitigation

Unknown Pauli channel

References:
[1] Flammia, Steven T., and Joel J. Wallman. "Efficient estimation of Pauli channels." ACM Transactions on Quantum Computing 1.1 (2020): 1-32. [2] Harper, Robin, Steven T. Flammia, and Joel J. Wallman. "Efficient learning of quantum noise. " Nature Physics 16.12 (2020): 1184-1188. [3] Flammia, Steven T., and Ryan O'Donnell. "Pauli error estimation via Population Recovery." Quantum 5 (2021): 549. [4] Chen, Senrui, et al. "Quantum advantages for pauli channel estimation." Physical Review A 105.3 (2022): 032435.

Example 3: Pauli channel tomography

- There is an unknown n-qubit Pauli channel \mathscr{P}.
- Learn $\hat{\mathscr{P}}$ by preparing input states, evolving under \mathscr{P}, and measuring output states.
- After learning, we want $\hat{\mathscr{P}} \approx \mathscr{P}$ under diamond norm.

Motivations:

- Characterize quantum noise
- Useful for quantum error correction, error mitigation

Unknown Pauli channel

Complexity varies under additional assumptions

References:

[1] Flammia, Steven T., and Joel J. Wallman. "Efficient estimation of Pauli channels." ACM Transactions on Quantum Computing 1.1 (2020): 1-32. [2] Harper, Robin, Steven T. Flammia, and Joel J. Wallman. "Efficient learning of quantum noise. " Nature Physics 16.12 (2020): 1184-1188. [3] Flammia, Steven T., and Ryan O'Donnell. "Pauli error estimation via Population Recovery." Quantum 5 (2021): 549. [4] Chen, Senrui, et al. "Quantum advantages for pauli channel estimation." Physical Review A 105.3 (2022): 032435.

Example 4: Predicting ground states

- There is an unknown $f(x)$ mapping parameter x to the ground state of $H(x)$.
- Learn \hat{f} by preparing ground states under different x^{\prime} s, and measuring the states.
- After learning, we want $\hat{f}(x) \approx f(x)$ for most of x.

Unknown phase diagram

References:

[1] Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum manybody problem with artificial neural networks." Science 355.6325 (2017): 602-606.
[2] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." International conference on machine learning. PMLR, 2017. [3] Qiao, Zhuoran, et al. "OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features." The Journal of chemical physics 153.12 (2020): 124111.
[4] Huang, Hsin-Yuan, et al. "Provably efficient machine learning for quantum many-body problems. " arXiv preprint arXiv:2106.12627 (2021).

Example 4: Predicting ground states

- There is an unknown $f(x)$ mapping parameter x to the ground state of $H(x)$.
- Learn \hat{f} by preparing ground states under different x^{\prime} s, and measuring the states.
- After learning, we want $\hat{f}(x) \approx f(x)$ for most of x.

Motivations:

- Machine learning for quantum chemistry/physics
- Speed up computation with ML

Unknown phase diagram

References:

[1] Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum manybody problem with artificial neural networks." Science 355.6325 (2017): 602-606.
[2] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." International conference on machine learning. PMLR, 2017. [3] Qiao, Zhuoran, et al. "OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features." The Journal of chemical physics 153.12 (2020): 124111.
[4] Huang, Hsin-Yuan, et al. "Provably efficient machine learning for quantum many-body problems. " arXiv preprint arXiv:2106.12627 (2021).

Type your problem here

- Almost all problems contain some aspects about learning an unknown object.

More problems

- What quantum circuits/algorithms can we learn? (OML \& VQA)
- What aspects of an unknown quantum machine is learnable? (Benchmarking \& Noise)
- How to learn a good quantum sensor given an unknown quantum machine? (Sensing)
- Can a learning algorithm discover "new physics"? (ML for physics)
- The list goes on ...

Outline

- Basic setting and examples
- Key ideas:

Part I — Designing good learning algorithms Part II — Proving no good learning algorithms exist

- Outlook and open questions

Outline

- Basic setting and examples
- Key ideas:

Part I — Designing good learning algorithms
Part II - Proving no good learning algorithms exist

- Outlook and open questions

Key Ideas

- Part I focuses on upper bounds (how to design good learning algorithms).
- Part II focuses on lower bounds (how to show that no good algorithms exist).

> Part II

Key Ideas

Algorithmic side: randomized experiments + data processing
Analysis side: geometric analysis + concentration inequality

A dive into shadow tomography

Algorithmic side: randomized experiments + data processing Analysis side: geometric analysis + concentration inequality

Recall the task of shadow tomography:

- There is an unknown n-qubit quantum state described by $\rho \in \mathbb{C}^{2^{n} \times 2^{n}}$.
- Learn $\hat{\rho}$ by performing measurements on copies of ρ.
- After learning, we want $\operatorname{Tr}(O \hat{\rho}) \approx \operatorname{Tr}(O \rho)$ for observables O_{1}, \ldots, O_{M}.

A dive into shadow tomography

Randomized experiment:

- Sample a random Clifford U_{i} to rotate the quantum state ρ.
- Measure the state in the computational basis $\left|b_{i}\right\rangle \in\{0,1\}^{n}$.

A dive into shadow tomography

Randomized experiment:

- Sample a random Clifford U_{i} to rotate the quantum state ρ.
- Measure the state in the computational basis $\left|b_{i}\right\rangle \in\{0,1\}^{n}$.

Data processing:

- Construct $\hat{\rho}_{i}=\left[\left(2^{n}+1\right) U_{i}^{\dagger}\left|b_{i} X b_{i}\right| U_{i}-I\right]$ for each experiment.

A dive into shadow tomography

Randomized experiment:

- Sample a random Clifford U_{i} to rotate the quantum state ρ.
- Measure the state in the computational basis $\left|b_{i}\right\rangle \in\{0,1\}^{n}$.

Data processing:

- Construct $\hat{\rho}_{i}=\left[\left(2^{n}+1\right) U_{i}^{\dagger}\left|b_{i}\right\rangle b_{i} \mid U_{i}-I\right]$ for each experiment.

Geometric analysis:

- The geometry of Clifford unitary says $\mathbb{E}\left[\operatorname{Tr}(O \hat{\rho})_{i}\right]=\operatorname{Tr}(O \rho)$ and $\operatorname{Var}\left[\operatorname{Tr}\left(O \hat{\rho}_{i}\right)\right] \leq 3 \operatorname{Tr}\left(O^{2}\right)$.

A dive into shadow tomography

Randomized experiment:

- Sample a random Clifford U_{i} to rotate the quantum state ρ.
- Measure the state in the computational basis $\left|b_{i}\right\rangle \in\{0,1\}^{n}$.

Data processing:

- Construct $\hat{\rho}_{i}=\left[\left(2^{n}+1\right) U_{i}^{\dagger}\left|b_{i} X b_{i}\right| U_{i}-I\right]$ for each experiment.

Geometric analysis:

- The geometry of Clifford unitary says $\mathbb{E}\left[\operatorname{Tr}(O \hat{\rho})_{i}\right]=\operatorname{Tr}(O \rho)$ and $\operatorname{Var}\left[\operatorname{Tr}\left(O \hat{\rho}_{i}\right)\right] \leq 3 \operatorname{Tr}\left(O^{2}\right)$.

Concentration bound:

- For O_{1}, \ldots, O_{M} with $\operatorname{Tr}\left(O^{2}\right)=\mathcal{O}(1)$, we can predict $\operatorname{Tr}\left(O_{i} \rho\right)$ after $\mathcal{O}(\log (M))$ measurements.

A dive into shadow tomography

Theorem (Huang et al.; 2020)

1. Given $B, \epsilon>0$, the procedure learns a classical representation of an unknown quantum state ρ from

$$
N=\mathcal{O}\left(B \log (M) / \epsilon^{2}\right) \text { measurements. }
$$

2. Subsequently, given any O_{1}, \ldots, O_{M} with $B \geq \max \left\|O_{i}\right\|_{2}^{2}$, the procedure can use the classical representation to predict $\hat{o}_{1}, \ldots, \hat{o}_{M}$, where $\left|\hat{o}_{i}-\operatorname{tr}\left(O_{i} \rho\right)\right|<\epsilon$, for all i.

For example:

- $M=10^{6}, B=1$, then naively we need $10^{6} / \epsilon^{2}$ measurements.
- This theorem shows that we only need $6 \log (10) / \epsilon^{2}$ measurements.

Furthermore, we don't need to know O_{1}, \ldots, O_{M} in advance.

A dive into shadow tomography

Theorem (Huang et al.; 2020)

1. Given $B, \epsilon>0$, the procedure learns a classical representation of an unknown quantum state ρ from

$$
N=\mathcal{O}\left(B \log (M) / \epsilon^{2}\right) \text { measurements. }
$$

Small for low-rank observables
2. Subsequently, given any O_{1}, \ldots, O_{M} with $B \geq \max \left\|O_{i}\right\|_{2}^{2}$,
the procedure can use the classical representation to predict $\hat{o}_{1}, \ldots, \hat{o}_{M}$, where $\left|\hat{o}_{i}-\operatorname{tr}\left(O_{i} \rho\right)\right|<\epsilon$, for all i.

For example:

- $M=10^{6}, B=1$, then naively we need $10^{6} / \epsilon^{2}$ measurements.
- This theorem shows that we only need $6 \log (10) / \epsilon^{2}$ measurements.

Application: Quantum fidelity $|\psi\rangle\langle\psi|$

Furthermore, we don't need to know O_{1}, \ldots, O_{M} in advance.

A dive into shadow tomography

Theorem (Huang et al.; 2020)

1. Given $B, \epsilon>0$, the procedure learns a classical representation of an unknown quantum state ρ from

$$
N=\mathcal{O}\left(B \log (M) / \epsilon^{2}\right) \text { measurements. }
$$

Application:
fidelity $|\psi\rangle\langle\psi|$
2. Subsequently, given any O_{1}, \ldots, O_{M} with $B \geq \max \left\|O_{i}\right\|_{2}^{2}$,
the procedure can use the classical representation to predict $\hat{o}_{1}, \ldots, \hat{o}_{M}$, where $\left|\hat{o}_{i}-\operatorname{tr}\left(O_{i} \rho\right)\right|<\epsilon$, for all i.

For example:

- $M=10^{6}, B=1$, then naively we need $10^{6} / \epsilon^{2}$ measurements.
- This theorem shows that we only need $6 \log (10) / \epsilon^{2}$ measurements.

Furthermore, we don't need to know O_{1}, \ldots, O_{M} in advance.

A dive into shadow tomography

Theorem (Huang et al.; 2020)

1. Given $B, \epsilon>0$, the procedure learns a classical representation of an unknown quantum state ρ from

$$
N=\mathcal{O}\left(B \log (M) / \epsilon^{2}\right) \text { measurements. }
$$

Depends on randomized experiments
2. Subsequently, given any O_{1}, \ldots, O_{M} with $B \geq \max \left\|O_{i}\right\|_{\text {shadow }}^{2}$ the procedure can use the classical representation to predict $\hat{o}_{1}, \ldots, \hat{o}_{M}$, where $\left|\hat{o}_{i}-\operatorname{tr}\left(O_{i} \rho\right)\right|<\epsilon$, for all i.

For example:

- $M=10^{6}, B=1$, then naively we need $10^{6} / \epsilon^{2}$ measurements.
- This theorem shows that we only need $6 \log (10) / \epsilon^{2}$ measurements.

Furthermore, we don't need to know O_{1}, \ldots, O_{M} in advance.

Other applications

Algorithmic side: randomized experiments + data processing
Analysis side: geometric analysis + concentration inequality

References:

- Cross platform verification [1, 2]
- Characterizing topological order [3, 4]
- Probing entanglement entropy $[5,6]$
- Diagnosing quantum chaos [7]
- Learning quantum noise $[8,9]$

See more examples in the review [10].
[1] Elben, Andreas, et al. "Cross-platform verification of intermediate scale quantum devices." Physical review letters 124.1 (2020): 010504 [2] Anshu, Anurag, Zeph Landau, and Yunchao Liu. "Distributed quantum inner product estimation." arXiv preprint arXiv:2111.03273 (2021).
[3] Elben, Andreas, et al. "Many-body topological invariants from randomized measurements in synthetic quantum matter." Science advances 6.15 (2020)
[4] Huang, Hsin-Yuan, et al. "Provably efficient machine learning for quantum many-body problems." arXiv preprint arXiv:2106.12627 (2021).
[5] Brydges, Tiff, et al. "Probing Rényi entanglement entropy via randomized measurements." Science 364.6437 (2019): 260-263.
[6] Elben, Andreas, et al. "Mixed-state entanglement from local randomized
measurements." Physical Review Letters 125.20 (2020): 200501.
[7] Vermersch, Benoît, et al. "Probing scrambling using statistical correlations between randomized measurements." Physical Review X 9.2 (2019): 021061.
[8] Flammia, Steven T., and Joel J. Wallman. "Efficient estimation of Pauli channels." ACM Transactions on Quantum Computing 1.1 (2020): 1-32.
[9] Helsen, Jonas, et al. "Estimating gate-set properties from random sequences. " arXiv preprint arXiv:2110.13178 (2021).
[10] Elben, Andreas, et al. "The randomized measurement toolbox." arXiv preprint arXiv:2203.11374 (2022)

Why randomized experiments?

A. In many cases, they are asymptotically optimal! Adaptively choosing experiments based on new information seems better, but often don't [1, 2, 3].
B. Randomization turns bad scenarios into low-probability events.
C. If information is distributed evenly, random sampling quickly converges.

[^1]
Outline

- Basic setting and examples
- Key ideas:

Part I — Designing good learning algorithms
Part II - Proving no good learning algorithms exist

- Outlook and open questions

Outline

- Basic setting and examples
- Key ideas:

Part I — Designing good learning algorithms
Part II — Proving no good learning algorithms exist

- Outlook and open questions

Key Ideas

- Part II focuses on lower bounds (showing no good algorithms exist).

Part II

Conventional Experiments

What scientists currently do in the lab
Receive, process, and store classical information

Quantum-enhanced Experiments

What future experiments could be like
Receive, process, and store quantum information

Key Ideas

- Proving lower bounds for conventional experiments (classical agents) helps us understand the potential quantum advantage in learning from experiments.

Part I

Part II

Mathematical Framework

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

Mathematical Framework

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

Mathematical Framework

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

Perform
POVM measurement

Obtain classical data

Mathematical Framework

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

Perform
POVM measurement

Store the
classical data

Mathematical Framework

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

Perform
POVM measurement

Process the classical data And pick next measurement

Mathematical Framework

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

Perform
POVM measurement

Process the classical data And pick next measurement

Perform the next
POVM measurement

Mathematical Framework

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

Perform
POVM measurement

Process the classical data And pick next measurement

Perform the next
POVM measurement

Process the classical data And pick next measurement

Mathematical Framework

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

Classical memory storing data from all POVM

Process all classical data

Mathematical Framework

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

888 Quantum-enhanced experiments

Mathematical Framework

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

Mathematical Framework

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

Mathematical Framework

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

Mathematical Framework

- We consider a simple task of learning about an unknown physical system ρ (density matrix).
- Assume that a physical source that could generate a single copy of ρ at a time.

888 Quantum-enhanced experiments

Mathematical Framework

- Main difference:

Having quantum memory for entangling quantum information from past and future experiments.

- We can then analyze the possible protocols/algorithms to study their learning ability.

Algorithms without quantum memory

Algorithms with quantum memory

Quantum advantage in predicting properties

- The classical/quantum agent learns a classical model of the n-qubit state ρ.
- Subsequently, one can use the classical model to predict $|\operatorname{Tr}(P \rho)|$ for an observable P chosen from $\{I, X, Y, Z\}^{\otimes n}$.

Theorem

Classical agent needs $\Omega\left(2^{n}\right)$ experiments to predict observable from the set, but quantum agent only need $\mathcal{O}(n)$ experiments to predict all 4^{n} observables.

Quantum advantage in predicting properties

- The classical/quantum agent learns a classical model of the n-qubit state ρ.
- Subsequently, one can use the classical model to predict $|\operatorname{Tr}(P \rho)|$ for an observable P chosen from $\{I, X, Y, Z\}^{\otimes n}$.

Theorem

Classical agent needs $\Omega\left(2^{n}\right)$ experiments to predict observable from the set, but quantum agent only need $\mathcal{O}(n)$ experiments to predict all 4^{n} observables.

Uncertainty principle significantly hinders the learning ability of classical agent, but surprisingly not the ability of a quantum agent.

Quantum advantage in predicting properties

- The classical/quantum agent learns a classical model of the n-qubit state ρ.
- Subsequently, one can use the classical model to predict $|\operatorname{Tr}(P \rho)|$ for an observable P chosen from $\{I, X, Y, Z\}^{\otimes n}$.

Theorem
Classical agent needs $\Omega\left(2^{n}\right)$ experiments to predict observable from the set, but quantum agent only need $\mathcal{O}(n)$ experiments to predict all 4^{n} observables.

Exponential quantum advantage is present even when the state ρ is a classical distribution over product states (no entanglement!).

Proof Sketch: Tree representation

- Consider the lower bound $\Omega\left(2^{n}\right)$ for classical agents; See [HKP21] for upper bound $\mathcal{O}(n)$.
- We consider a graphical representation for the memory state of the classical agent.

Proof Sketch: Tree representation

- Consider the lower bound $\Omega\left(2^{n}\right)$ for classical agents; See [HKP21] for upper bound $\mathcal{O}(n)$.
- We consider a graphical representation for the memory state of the classical agent.

Proof Sketch: Tree representation

- Consider the lower bound $\Omega\left(2^{n}\right)$ for classical agents; See [HKP21] for upper bound $\mathcal{O}(n)$.
- We consider a graphical representation for the memory state of the classical agent.

Probability distribution (bottom layer) sufficiently different \equiv Classical agent can distinguish ρ_{A} and ρ_{B}

Proof Sketch: Tree representation

- Consider the lower bound $\Omega\left(2^{n}\right)$ for classical agents; See [HKP21] for upper bound $\mathcal{O}(n)$.
- We consider a graphical representation for the memory state of the classical agent.

Probability distribution (bottom layer) sufficiently different \equiv Classical agent can distinguish ρ_{A} and ρ_{B} More experiments done \equiv Deeper the tree \equiv More distinct the distribution

Many-vs-one distinguishing task

- If the classical agent succeeds in the prediction task, then he/she must succeeds in a corresponding distinguishing task.

Revealed to be P_{A}

Revealed to be P_{B}

Partially-revealed many-versus-one distinguishing task

Quantum advantage in predicting properties

- The classical/quantum agent learns a classical model of the n-qubit state ρ.
- Subsequently, one can use the classical model to predict $|\operatorname{Tr}(P \rho)|$ for an observable P chosen from $\{I, X, Y, Z\}^{\otimes n}$.

Theorem

Classical agent needs $\Omega\left(2^{n}\right)$ experiments to predict observable from the set, but quantum agent only need $\mathcal{O}(n)$ experiments to predict all 4^{n} observables.

Other examples

Current proof techniques vary rather substantially for different tasks.

- Estimating $\operatorname{Tr}(\rho \sigma)$ [1]
- Quantum state tomography [2]
- Classifying symmetry [3]
- Quantum state certification [4]
- Quantum PCA [5]
- Learning Pauli channel [6]

References:
[1] Anshu, Anurag, Zeph Landau, and Yunchao Liu. "Distributed quantum inner product estimation." arXiv preprint arXiv:2111.03273 (2021).
[2] Chen, Sitan, et al. "Tight Bounds for State Tomography with Incoherent
Measurements." arXiv preprint arXiv:2206.05265 (2022)
[3] Chen, Sitan, et al. "Exponential separations between learning with and without
quantum memory." 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 2022.
[4] Chen, Sitan, et al. "Tight Bounds for Quantum State Certification with Incoherent
Measurements." arXiv preprint arXiv:2204.07155 (2022).
[5] Huang, Hsin-Yuan et al. "Quantum advantage in learning from
experiments." Science (New York, N.Y.) vol. 376,6598 (2022): 1182-1186.
[6] Chen, Senrui, et al. "Quantum advantages for pauli channel estimation." Physical
Review A 105.3 (2022): 032435.

Outline

- Basic setting and examples
- Key ideas:

Part I — Designing good learning algorithms
Part II — Proving no good learning algorithms exist

- Outlook and open questions

Outline

- Basic setting and examples
- Key ideas:

Part I — Designing good learning algorithms
Part II — Proving no good learning algorithms exist

- Outlook and open questions

Outlook

We know a little bit about what we can learn efficiently.

Outlook

A lot of problems in these fields are yet to be studied rigorously.

Open questions

- Can we perform shadow tomography on broader classes of observables computationally efficiently?
We only know how to do it efficiently for low-weight and Pauli observables.
- What classes of quantum dynamics/circuits are efficiently learnable? Many natural classes are either not efficiently learnable quantumly or efficiently learnable classically (e.g., local Hamiltonian evolution). Is there something in between?
- Could we efficiently learn if there are non-local quantum noise? Fault-tolerant quantum computers require local noise. Can we experimentally test this?

[^0]: [1] Leonhardt, Ulf. "Quantum-state tomography and discrete Wigner function." Physical review letters 74.21 (1995): 4101
 [2] Gross, David, et al. "Quantum state tomography via compressed sensing." Physical review letters 105.15 (2010): 150401.
 [3] O'Donnell, Ryan, and John Wright. "Efficient quantum
 tomography." Proceedings of the forty-eighth annual ACM symposium on Theory of Computing. 2016.
 [4] Haah, Jeongwan, et al. "Sample-optimal tomography of quantum states." IEEE Transactions on Information Theory 63.9 (2017): 5628-5641.

[^1]: References:
 [1] Chen, Sitan, et al. "Exponential separations between learning with and without quantum memory." 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2022.
 [2] Anshu, Anurag, Zeph Landau, and Yunchao Liu. "Distributed quantum inner product estimation." arXiv preprint arXiv:2111.03273 (2021).
 [3] Chen, Sitan, et al. "Tight Bounds for State Tomography with Incoherent Measurements." arXiv preprint arXiv:2206.05265 (2022)

