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• One of the central goals of science is to learn how the physical world operates. 

• By performing experiments, humans can receive information about the physical world, and 
process information to form predictive models.
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• To accelerate and automate scientific development, it is important to understand how to 
design better algorithms to learn from experiments. 

• A burgeoning field in QI considers the task of learning from quantum experiments.
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• Basic setting and examples 

• Key ideas: 
       Part I — Designing good learning algorithms 
       Part II — Proving no good learning algorithms exist 

• Outlook and open questions
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• There is an unknown quantum object (states, processes, entire phase diagram, …). 

• Learn that object from experiments. So it becomes (approximately) known. 

• How many experiments are needed? (Sample and query complexity)
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Learning from 
quantum experiments

Quantum machine learning

Quantum benchmarking

Variational quantum 
algorithmsQuantum sensing

Machine learning for physics

Overview

Noise characterization

Goal: Provide a learning-theoretic foundation for various applications



• There is an unknown -qubit quantum state described by . 

• Learn a classical description  by performing measurements on copies of . 

• After learning, we want  under trace norm .

n ρ ∈ ℂ2n×2n

̂ρ ρ

̂ρ ≈ ρ ∥⋅∥1

Example 1: Quantum state tomography

Unknown quantum state
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• There is an unknown -qubit Pauli channel . 

• Learn  by preparing input states, evolving under , and measuring output states. 
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n 𝒫

�̂� 𝒫
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Example 3: Pauli channel tomography
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• There is an unknown  mapping parameter  to the ground state of . 

• Learn  by preparing ground states under different ’s, and measuring the states. 

• After learning, we want  for most of .

f(x) x H(x)

̂f x

̂f(x) ≈ f(x) x

Example 4: Predicting ground states

Unknown phase diagram

References: 
[1] Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum many-
body problem with artificial neural networks." Science 355.6325 (2017): 
602-606. 
[2] Gilmer, Justin, et al. "Neural message passing for quantum 
chemistry." International conference on machine learning. PMLR, 2017. 
[3] Qiao, Zhuoran, et al. "OrbNet: Deep learning for quantum chemistry 
using symmetry-adapted atomic-orbital features." The Journal of 
chemical physics 153.12 (2020): 124111. 
[4] Huang, Hsin-Yuan, et al. "Provably efficient machine learning for 
quantum many-body problems." arXiv preprint arXiv:2106.12627 (2021).



• There is an unknown  mapping parameter  to the ground state of . 

• Learn  by preparing ground states under different ’s, and measuring the states. 

• After learning, we want  for most of .

f(x) x H(x)

̂f x

̂f(x) ≈ f(x) x

Example 4: Predicting ground states

Unknown phase diagram

References: 
[1] Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum many-
body problem with artificial neural networks." Science 355.6325 (2017): 
602-606. 
[2] Gilmer, Justin, et al. "Neural message passing for quantum 
chemistry." International conference on machine learning. PMLR, 2017. 
[3] Qiao, Zhuoran, et al. "OrbNet: Deep learning for quantum chemistry 
using symmetry-adapted atomic-orbital features." The Journal of 
chemical physics 153.12 (2020): 124111. 
[4] Huang, Hsin-Yuan, et al. "Provably efficient machine learning for 
quantum many-body problems." arXiv preprint arXiv:2106.12627 (2021).

Motivations: 
• Machine learning for 

quantum chemistry/physics 

• Speed up computation with ML



• Almost all problems contain some aspects about learning an unknown object.

Type your problem here

Unknown [           ]



• What quantum circuits/algorithms can we learn? (QML & VQA) 

• What aspects of an unknown quantum machine is learnable? (Benchmarking & Noise) 

• How to learn a good quantum sensor given an unknown quantum machine? (Sensing) 

• Can a learning algorithm discover “new physics”? (ML for physics) 

• The list goes on …

More problems

SensingQuantum ML

Benchmarking

VQA ML for physics

Noise
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• Part I focuses on upper bounds (how to design good learning algorithms). 

• Part II focuses on lower bounds (how to show that no good algorithms exist).

Key Ideas

v.s.
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     Algorithmic side: randomized experiments + data processing 
     Analysis side: geometric analysis + concentration inequality



A dive into shadow tomography

Recall the task of shadow tomography: 

• There is an unknown -qubit quantum state described by . 

• Learn  by performing measurements on copies of . 

• After learning, we want  for observables .

n ρ ∈ ℂ2n×2n

̂ρ ρ

Tr(O ̂ρ) ≈ Tr(Oρ) O1, …, OM

     Algorithmic side: randomized experiments + data processing 
     Analysis side: geometric analysis + concentration inequality
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For example: 
• , then naively we need  measurements. 
• This theorem shows that we only need  measurements. 

Furthermore, we don’t need to know  in advance.

M = 106, B = 1 106/ϵ2

6 log(10)/ϵ2

O1, …, OM

Theorem (Huang et al.; 2020)

A dive into shadow tomography

1. Given  the procedure learns a classical representation of 
       an unknown quantum state  from 
                                    measurements. 
2.  Subsequently, given any  with  
       the procedure can use the classical representation to predict  
                           where  , for all .

B, ϵ > 0,
ρ

N = 𝒪(B log(M)/ϵ2)
O1, …, OM B ≥ max∥Oi∥2

2,
̂o1, …, ̂oM,

| ̂oi − tr(Oiρ)| < ϵ i
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Other applications

• Cross platform verification [1, 2] 
• Characterizing topological order [3, 4] 
• Probing entanglement entropy [5, 6] 
• Diagnosing quantum chaos [7] 
• Learning quantum noise [8, 9] 
See more examples in the review [10].

References: 
[1] Elben, Andreas, et al. "Cross-platform verification of intermediate scale quantum 
devices." Physical review letters 124.1 (2020): 010504. 
[2] Anshu, Anurag, Zeph Landau, and Yunchao Liu. "Distributed quantum inner product 
estimation." arXiv preprint arXiv:2111.03273 (2021). 
[3] Elben, Andreas, et al. "Many-body topological invariants from randomized measurements in 
synthetic quantum matter." Science advances 6.15 (2020). 
[4] Huang, Hsin-Yuan, et al. "Provably efficient machine learning for quantum many-body 
problems." arXiv preprint arXiv:2106.12627 (2021). 
[5] Brydges, Tiff, et al. "Probing Rényi entanglement entropy via randomized 
measurements." Science 364.6437 (2019): 260-263. 
[6] Elben, Andreas, et al. "Mixed-state entanglement from local randomized 
measurements." Physical Review Letters 125.20 (2020): 200501. 
[7] Vermersch, Benoît, et al. "Probing scrambling using statistical correlations between 
randomized measurements." Physical Review X 9.2 (2019): 021061. 
[8] Flammia, Steven T., and Joel J. Wallman. "Efficient estimation of Pauli channels." ACM Transactions 
on Quantum Computing 1.1 (2020): 1-32. 
[9] Helsen, Jonas, et al. "Estimating gate-set properties from random sequences." arXiv preprint 
arXiv:2110.13178 (2021). 
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     Algorithmic side: randomized experiments + data processing 
     Analysis side: geometric analysis + concentration inequality
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Why randomized experiments?

A. In many cases, they are asymptotically optimal! Adaptively choosing experiments 
based on new information seems better, but often don’t [1, 2, 3]. 

B. Randomization turns bad scenarios into low-probability events. 

C. If information is distributed evenly, random sampling quickly converges.
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v.s.

Part I
Part II

• Part II focuses on lower bounds (showing no good algorithms exist).

Key Ideas
Mostly focus on 

Conventional Experiments



Conventional Experiments

Classical 
Computation

Physical 
Measurements

Classical 
Memory

Receive, process, and store 
classical informationWhat scientists currently do in the lab



Quantum-enhanced Experiments

Quantum 
Computation

Transduce from 
quantum sensors

Quantum 
Memory

What future experiments could be like Receive, process, and store 
quantum information



v.s.

Part I
Part II

• Proving lower bounds for conventional experiments (classical agents) helps us 
understand the potential quantum advantage in learning from experiments.

Key Ideas



Mathematical Framework

Quantum-enhanced experiments

Transduce from 
quantum sensors

Quantum 
computation

Quantum 
memory

Conventional experiments

Physical 
measurements

Classical 
computation

Classical 
memory

• We consider a simple task of learning about an unknown physical system  (density matrix). 

• Assume that a physical source that could generate a single copy of  at a time.

ρ

ρ

Related framework has been considered in [Bubeck, Chen, Li, FOCS’20], [Huang, Kueng, Preskill, PRL’21], [Aharonov, Cotler, Qi, ’21]
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Algorithms without quantum memory Algorithms with quantum memory

• Main difference: 
  Having quantum memory for entangling quantum information from past and future experiments. 

• We can then analyze the possible protocols/algorithms to study their learning ability.



Quantum advantage 
in predicting properties

Theorem
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Ω(2n)
𝒪(n) 4n

• The classical/quantum agent learns a classical model of the -qubit state . 

• Subsequently, one can use the classical model to predict  for an 
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Uncertainty principle significantly hinders the learning ability of classical agent, 
but surprisingly not the ability of a quantum agent.



Quantum advantage 
in predicting properties

Exponential quantum advantage is present even when the state  is 
a classical distribution over product states (no entanglement!).
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• We consider a graphical representation for the memory state of the classical agent.

Ω(2n) 𝒪(n)

[HKP21] Huang, Kueng, Preskill. Information-theoretic bounds on quantum advantage in machine learning, PRL 2021.

[CCHL21] Chen, Cotler, Huang, Li. Exponential separations between learning with and without quantum memory, FOCS 2021.



Proof Sketch: Tree representation

• Consider the lower bound  for classical agents; See [HKP21] for upper bound . 

• We consider a graphical representation for the memory state of the classical agent.

Ω(2n) 𝒪(n)

[HKP21] Huang, Kueng, Preskill. Information-theoretic bounds on quantum advantage in machine learning, PRL 2021.

ρA ρB

[CCHL21] Chen, Cotler, Huang, Li. Exponential separations between learning with and without quantum memory, FOCS 2021.



Proof Sketch: Tree representation

• Consider the lower bound  for classical agents; See [HKP21] for upper bound . 

• We consider a graphical representation for the memory state of the classical agent.

Ω(2n) 𝒪(n)

[HKP21] Huang, Kueng, Preskill. Information-theoretic bounds on quantum advantage in machine learning, PRL 2021.

ρA ρB

[CCHL21] Chen, Cotler, Huang, Li. Exponential separations between learning with and without quantum memory, FOCS 2021.

Probability distribution (bottom layer) sufficiently different   Classical agent can distinguish  and ≡ ρA ρB



Proof Sketch: Tree representation

• Consider the lower bound  for classical agents; See [HKP21] for upper bound . 

• We consider a graphical representation for the memory state of the classical agent.

Ω(2n) 𝒪(n)

[HKP21] Huang, Kueng, Preskill. Information-theoretic bounds on quantum advantage in machine learning, PRL 2021.

ρA ρB

[CCHL21] Chen, Cotler, Huang, Li. Exponential separations between learning with and without quantum memory, FOCS 2021.

More experiments done  Deeper the tree  More distinct the distribution≡ ≡

Probability distribution (bottom layer) sufficiently different   Classical agent can distinguish  and ≡ ρA ρB



Many-vs-one distinguishing task

PA PB

• If the classical agent succeeds in the prediction task, then he/she must succeeds in 
a corresponding distinguishing task.



Quantum advantage 
in predicting properties

• The classical/quantum agent learns a classical model of the -qubit state . 

• Subsequently, one can use the classical model to predict  for an 
observable  chosen from .
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Other examples

• Estimating  [1] 
• Quantum state tomography [2] 
• Classifying symmetry [3] 
• Quantum state certification [4] 
• Quantum PCA [5] 
• Learning Pauli channel [6]

Tr(ρσ)
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Current proof techniques vary rather substantially for different tasks.
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Outlook

Noise characterization

A lot of problems in these fields are yet to be studied rigorously.



• Can we perform shadow tomography on broader classes of observables 
computationally efficiently? 
We only know how to do it efficiently for low-weight and Pauli observables. 

• What classes of quantum dynamics/circuits are efficiently learnable? 
Many natural classes are either not efficiently learnable quantumly or efficiently learnable 
classically (e.g., local Hamiltonian evolution). Is there something in between? 

• Could we efficiently learn if there are non-local quantum noise? 
Fault-tolerant quantum computers require local noise. Can we experimentally test this?

Open questions


