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QUANTUM SPEEDUPS CRITERIA 

• Three criteria for quantum speedups whose intersection has 
proved to be remarkably hard to meet:  

1. Quantum algorithm is directly comparable to classical and 
performs the same task.  

2. Exponential speedups over best known classical algorithm.  

3. Problems useful in practice and widely applicable.



EXPONENTIAL QML SPEEDUPS?

• The amplitude encoding of N dimensional vector x requires log(N) qubits compared 
to an O(N) sized classical array. For N=16,  

• Such an exponential compression raises the possibility of an exponential speedup 
for quantum machine learning (QML).  

• Bottlenecks: State preparation requires a circuit of depth N and measurements 
perform        sampling from the output.  

• QML Algorithms: Inner product estimation/kernels, Hamiltonian simulation (HHL), 
quantum singular value transformation (QSVE/QSVT). 

|x⟩ =
1

||x||
(x1 |0000⟩ + x2 |0001⟩ + x3 |0010⟩ + ⋯ + x15 |1110⟩ + x16 |1111⟩) .

x1 x2 x3 ⋯ x15 x16

ℓ2−



READ THE FINE PRINT! 
• Input Issues: The initial state for a linear algebra procedure may 

need  exponential resources to prepare.                      

• Output Issues: Quantum algorithms sample from the output, a 
classical algorithm reconstructs the output.  

• Running time parameters: Condition number is difficult to bound 
making it hard to establish speedups.  

• Dense matrices: Matrices arising in machine learning are dense, 
but may often have good low rank approximations.  

• [Aaronson 14]: Caveats make it difficult to establish end-to-end 
speedups for QML algorithms. 



TOWARDS END-TO-END QML
• Input Issues: QRAM data structures can be replaced with parametrized 

circuits, logarithmic depth circuits for unary encoding.                     

• Output Issues: End-to-end quantum speedups for sampling tasks: 
recommendation systems [KP17], determinant sampling [KP22], 
fermion and boson samplers.  

• Running time parameters: Low rank quantum linear algebra depends 
on numerical rank. Improved understanding of parameters for 
quantum linear systems.  

• Dense matrices: We can operate with dense matrices that are sub-
matrices of efficient unitaries using block-encodings.  

• [KP22]: A new approach to QML with subspace states and some 
candidate exponential speedups. 



NETFLIX PROBLEMThe Netflix problem

Iordanis Kerenidis , Anupam Prakash QIP-2017, Seattle

The Recommendation Problem

The preference matrix P .
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Pij is the value of item j for user i . Samples from P arrive in
an online manner.
The assumption that P has a good rank-k approximation for
small k is widely used.

Iordanis Kerenidis , Anupam Prakash QIP-2017, Seattle

Solutions based on reconstruction of the  
incomplete  

preference matrix under  
low rank assumptions. 

Quantum algorithm samples from high 
value entries without reconstructing 

matrix.



QRS/DEQUANTIZATION

• Low rank assumption: The ‘completed’ preference matrix has a 
good low rank approximation as users fall into k types for  

• Theorem: The quantum algorithm outputs good recommendations 
for most users in time                        .  [Kerenidis, P. 2017].   

• [Tang 2019]: There is a classical recommendation systems 
algorithm with running time poly(k, polylog(mn)).  

• Exponential speedups for several other QML algorithms including 
PCA, SVM, k-means, semidefinite programming have since been 
refuted [CGLLTW19]. 

k ≪ n .

O(kpolylog(mn))



QML POST DEQUANTIZATION

• Sparse HHL based approach and the low rank approach both have 
their limitations, new techniques needed. 

ALGORITHM RUNNING TIME
PARAMETERS 
USERS, PRODUCTS:10^8.  

TYPES: 10^3. 
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NEW RESULTS IN 
QUANTUM MACHINE 

LEARNING



1. DETERMINANT SAMPLING 

• Relevance vs diversity in machine learning. (query: Jaguar).  

• Diverse results are obtained using                                                                                      
volume sampling.  

• Problem: Sample a set of rows S of                                                                                                                                                     
matrix               with probability                                                                                                                    
proportional to squared volume.   

•                                                                                                                                                                                                                                                 

A ∈ ℝN×D

APPLICATIONS: LOW RANK APPROXIMATION, 
LEAST SQUARES, REPRESENTATIVE SUMMARY, 
MONTE CARLO METHODS, SPARSE VECTOR IN 

SUBSPACE AND MORE!



1. DETERMINANT SAMPLING

• Determinant sampling: Given full rank matrix             , sample 
from probability distribution on row subsets S of size d,         

• Distribution is invariant under column operations on A, matrix is 
pre-processed to have orthonormal columns.  

• Classical algorithm: Subsequent samples using          arithmetic 
operations [Derezinski, Clarkson, Mahoney, Warmuth 19].  

•

A ∈ ℝN×D

Pr[S] =
det(AS)2

det(AT A)
.

O(D3)

THEOREM: THERE IS A QUANTUM DETERMINANT SAMPLING ALGORITHM USING 
O(ND) GATES AND WITH CIRCUIT DEPTH O(DLOG(N)).  



2. COMPOUND MATRICES 

• The k-th order compound matrix       corresponding to              is the 
matrix indexed by size-k subsets I, J of the rows and columns of A and 
with entries,  

• The compound matrix is an exponentially large matrix with dimension       
and the minors of the matrix as entries.  

• Kernel property:                               Compound matrix/Cauchy Binet 
kernels are widely applicable in ML. [Vishwanathan, Smola 08]. 

𝒜[k] A ∈ ℝn×n

𝒜[k]
I,J = det(AI,J) .

THEOREM: THERE IS A QUANTUM ALGORITHM FOR SINGULAR VALUE ESTIMATION/
TRANSFORMATION FOR COMPOUND MATRICES OF ALL ORDERS WITH COMPLEXITY 

O(POLY(N)). 

(n
k)

𝒜[k]ℬ[k] = (𝒜ℬ)[k] .



2. COMPOUND MATRICES 

• Naively,  classical algorithms would have complexity         for 
compound matrix SVD, this is a potentially exponential speedup.  

• Quantum inspired algorithms have running time polynomial in the 
matrix rank. 

• If matrix A has a rank r approximation, the rank of the compound 
matrix       is        , which is exponential in r.  

•  

O(nk)

OPEN QUESTION: FIND END-TO-END QML APPLICATION WITH 
EXPONENTIAL QUANTUM SPEEDUPS USING COMPOUND MATRIX SVD.    

𝒜[k] O(rk)



3. TOPOLOGICAL DATA ANALYSIS 

• Topological data analysis: Captures topological features of the data-set, 
complementary to classical ML methods.  

• Simplicial complexes generalize graphs, besides vertices and edges they have 
higher order faces.  

• The Vietoris-Rips complex VR(X, n, d) includes all point sets with diameter at 
most d.  

• A Dirac operator D and the Laplacian L= DD*+ D*D can be defined for every 
simplicial complex.   

• The Betti numbers are the dimensions of the kernels of the ‘graded’ Laplacian L.  

• Topological data analysis: The persistent Betti numbers for the VR complexes 
capture topological/’shape’ features of the data. 



3. TOPOLOGICAL DATA ANALYSIS

• The Dirac Operator is an exponentially large sparse operator, 
hence Hamiltonian simulation can be used for quantum TDA 
[Lloyd, Garnerone, Zanardi 16].  

• Large polynomial overheads         for Dirac operator simulation.  

• The depth overhead has been reduced to         in a series of 
recent works with more efficient Dirac operator constructions.  

•

O(n5)

O(n)

THEOREM: THERE IS A O(LOG N) DEPTH EMBEDDING FOR THE DIRAC OPERATOR, 
THAT YIELDS A QUANTUM TDA ALGORITHM WITH POLY-LOGARITHMIC OVERHEAD.  



 SUBSPACE STATES

• The orthogonal group acts not only on vectors, but on subspaces of 
arbitrary dimension.  

• A d-dimensional subspace             is represented by a matrix                    
with orthonormal columns such that   

• Quantum subspace state: 

• A one-to-one encoding for subspaces, depends on Col(X) and not the 
representing matrix X, that is |Col(X)> = |Col(XV)> for orthogonal V. 

• Subspace states are a small fraction of the Hamming weight d quantum 
states, standard basis states are subspace states. 

X ∈ ℝn×d𝒳 ⊂ ℝn

|𝒳⟩ = |Col(X)⟩ = ∑
|S|=d

det(XS) |S⟩ .

𝒳 = Col(X) .



 SUBSPACE STATES FOR QML 

• Near term QML algorithms use unary encodings of vectors and 
inner product estimation.  

• Inner product between subspace states is the product of the 
principal angles between the corresponding subspaces,  

• Subspace based classification and clustering methods have been 
useful in classical machine learning [Rene Vidal].  

• Particularly relevant to settings where data can be represented by 
a k-dimensional PCA, like images and videos. 

< Col(X) |Col(Y ) > = det(XTY ) = ∏
i

cos(θi) .



QUANTUM OPERATIONS ON SUBSPACE STATES

• Measurement: Measuring a subspace state in the standard basis is 
equivalent to the determinant sampling problem.  

• Addition/deletion of vector: Efficient quantum circuits C(y) for 
adding or deleting the vector y from the subspace |Col(X)>.  

• Rotations: Given |Col(X)> it is possible to create the rotated subspace 
state |Col(UX)> for an orthogonal matrix U.  

• Givens complexity: The gate complexity for the rotation |Col(UX)>  is 
the number of elementary Givens rotations in a decomposition of U.   

• Compound matrices and TDA algorithms follow from considering 
matrices embedded in the addition and rotation circuits. 



CLIFFORD ALGEBRAS

• Clifford algebras: Operator algebras generated by mutually anti-
commuting operators.  

• Theorem: If A(1), A(2), …., A(2N+1) are mutually anti-commuting 
operators acting on a Hilbert space H, then dim(H) > 2^N.  

• Quantum Proof: A pair of anti-commuting operators induces a 
tensor product factorization                  where     is a one qubit 
system. [Reichardt, Unger, Vazirani 13].  

• There is a canonical set of (N+1) mutually anti-commuting 
operators on the n-qubit real Hilbert space:

A(i) = Z⊗(i−1) ⊗ X ⊗ I⊗(n−i) .

H = H1 ⊗ H′� H1



THE GAMMA MAP

• Introduced by Dirac, the Gamma map lifts vectors, matrices and 
higher order tensors to the Clifford algebra.  

• Definition: The Gamma map for a vector x is defined as:                 

• It follows from anti-commutativity that if ||x||=1, then the Gamma 
map squares to I and is thus a unitary operator.  

• Definition: A Clifford loader circuit C(x) is an implementation of the 
unitary operator 

Γ(x) = ∑
i∈[n]

xiZ⊗i−1 ⊗ X ⊗ I⊗n−i .

Γ(x) .



CLIFFORD LOADERS

• Theorem: The action of the Clifford loader C(x) on |Col(Y)>:  

1. Addition: If x is orthogonal to Col(Y), then                                 
C(x) |Col(Y)> = |Col(Y, x)>.   

2. Deletion: If x belongs to Col(Y) and Col(Y)=Col(Y’, x), then       
C(x)|Col(Y)>=|Col(Y’)>.                                                                    

• In general, x will have components perpendicular and parallel to Y, 
and the result will be a superposition of case A and B.  

• Given matrix A with orthonormal columns the subspace state 
Col(A) can be prepared using Clifford loaders, 

|Col(A)⟩ = C(ad)C(ad−1)⋯C(a1) |0n⟩ .



UNARY DATA LOADERS

• Logarithmic depth state preparation circuits.  

• Circuit structured as binary tree. 

• Uses two qubit RBS gates: rotations on subspace                                              
spanned by |01> and |10>, identity otherwise.  

• N qubit and O(log N) depth: Optimal trade-off for                                                                                                                               
circuit depth vs number of qubits.  

• Figure: 8 dimensional data loader with depth 4.



FERMIONIC BEAM SPLITTER (FBS) GATES

• The two qubit gates used in the data loader are the RBS 
(Reconfigurable beam splitter) gates: 

• The Clifford loader uses the Fermionic analog of the RBS gates 
that we call the FBS (Fermionic beam splitter) gate:

RBS(θ) =

1 0 0 0
0 cos(θ) sin(θ) 0
0 −sin(θ) cos(θ) 0
0 0 0 1

.

FBS(i, j, θ) =

1 0 0 0
0 cos(θ) (−1)⊕i<k<jxksin(θ) 0
0 (−1)1+⊕i<k<jxksin(θ) cos(θ) 0
0 0 0 1

.



CLIFFORD LOADER CONSTRUCTION

• A ‘fermionic’ data loader D’(x) is obtained by replacing all the RBS 
gate in a data loader D(x) by the corresponding FBS gates.   

• A Clifford loader C(x) is defined to be a circuit such that,    

• Theorem: The C(x) defined above implements the Gamma map 
unitary:   

• The construction works for all circuits D(x) composed of RBS gates 
such that                  

C(x) = D′�(x)(X ⊗ In−1)D′�(x)† .

Γ(x) = ∑
i∈[n]

xiZ⊗i−1 ⊗ X ⊗ I⊗n−i .

D(x) |10N−1 > = |x > .



LOGARITHMIC DEPTH CLIFFORD LOADER ON 8 QUBITS.



ROTATIONS ON SUBSPACE STATES

• The Givens rotations             is rotation by angle theta on 
coordinates (i,j) and identity on other coordinates.  

• Givens rotations generate the special orthogonal group, there are 
different methods for decomposing an orthogonal matrix into 
Givens rotations. [Cosine Sine, pyramid decompositions].  

• Givens complexity: Minimum number of Givens rotations in a 
decomposition of U.  

• Givens complexity is O(N log N) for Fourier and related 
transforms. 

G(i, j, θ)



QUANTUM GIVENS ROTATIONS

• Lemma: A quantum Givens rotation is implemented by a single 
quantum gate,  

• Starting with                          , a sequence of Givens rotations can 
be applied to obtain the desired subspace state     

• A classical Givens rotation on rows (i, j) costs O(k) arithmetic 
operations and maps

|Col(IK)⟩ = |1k0n−k⟩

IK =

1 0 ⋯ 0
0 1 ⋯ 0
. ⋯ ⋯ .
0 0 ⋯ 1
0 0 ⋯ 0
. ⋯⋯ .

0 0 ⋯ 0

|Col(X)⟩ .

(xi, xj) → (cxi + sxj, cxj − sxi) .

X =

x11 x12 ⋯ x1d
x21 x22 ⋯ x2d
⋯ ⋯ ⋯ ⋯
xd1 xd2 ⋯ xdd
⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯
xn1 xn2 ⋯ xnd

|Col(G(i, j, θ)X) > = FBS(i, j, θ) |Col(X) > .



THE ACTION OF A GIVENS CIRCUIT

• Decompose U into a sequence of elementary Givens rotations.  

• The Givens circuit G(U) is a quantum circuit obtained by replacing 
every Givens rotation by the corresponding RBS or FBS gate.  

• Claim: On the standard basis G(U)|S> = |Col(U_S)>, it selects the 
columns and prepares corresponding subset state.  

• Proof: Follows from the claim G(U)|Col(X)>= |Col(UX)> applied to 
the standard basis state |S>.  

• Computationally hard case: G(U) applied to an entangled initial 
state, for example                            [Ivanov]( |00 > + |11 > )⊗n/2 .



COMPOUND MATRIX SVD

• The k-th order compound matrix       corresponding to              is 
the matrix indexed by size-k subsets I, J of the rows and columns 
of A and with entries  

• Observation 1: The Givens circuit G(U) acts as the compound  
matrix         on bit strings of Hamming weight k.  

• Observation 2: If U is a block encoding for A, then compound 
matrices       are block encodings for       .  

• Thus, we can perform SVE and SVT and quantum linear algebra for 
compound matrices in a black box manner using G(U). 

𝒜[k] A ∈ ℝn×n

𝒜[k]
I,J = det(AIJ) .

𝒰[k]

𝒰[k] 𝒜[k]



DIRAC OPERATOR EMBEDDING

• Observation 3: The Dirac operator for the complete simplicial 
complex is implemented by the C(z) circuit for 

• Observation 4: The Dirac operator for an arbitrary simplicial 
complex is a sub matrix of C(z), giving an efficient block encoding 
for D.  

• Logarithmic depth Clifford loader constructions reduce the depth 
for quantum TDA from O(n) to O(log n).  

• Potential exponential speedups were found by looking at matrices 
embedded in exponentially large unitaries associated with 
subspace states: Givens circuits and Clifford Loaders. 

z =
1

N
(1,1,⋯,1) .



NEW QUANTUM SPEEDUPS

PROBLEM QUANTUM CLASSICAL SPEEDUP 

DETERMINANT 
SAMPLING 

CLIFFORD 
LOADERS

IMPORTANCE 
SAMPLING

COMPOUND 
MATRIX SVD 

GIVENS  
CIRCUITS  SINGULAR VALUE 

DECOMPOSITION

TOPOLOGICAL 
DATA ANALYSIS 

DIRAC OPERATOR 
EMBEDDING ———— CIRCUIT DEPTH 

O(n2)

O(n3)
O(poly(n))

O(poly(nk))

O(log(N ))

O(N )



RESEARCH QUESTIONS

• Find end-to-end QML application using compound matrix SVD 
with potentially exponential speedup.  

• Find a QML application with exponential speedup for quantum 
TDA taking into account the implicit assumptions.  

• Bosonic compound matrices are indexed by multi-sets with scaled 
permanents as entries, develop NISQ methods for quantum SVD 
for bosonic compound matrices and find applications to ML. 



SOME TAKEAWAYS

• A promising avenue for exponential quantum linear algebra 
speedups is to find matrices that embed in unitary operators 
associated with non interacting fermions. 

• Quantum Machine learning algorithms can be formulated to work 
not only with vectors (1-dimensional subspaces) but for sub-
spaces of arbitrary dimension.  

• The way to obtain quantum speedups in an applied domain is not 
to fit an applied problem to a known quantum technique, but 
rather to look at problems closely related to quantum mechanics.  


