Dequantizing the Quantum Singular Value Transform: Hardness and applications to quantum chemistry and the quantum PCP conjecture

Sevag Gharibian ${ }^{1}$
${ }^{1}$ Department of Computer Science
Institute for Photonic Quantum Systems (PhoQS)
Paderborn University
Germany

François le Gall ${ }^{2}$
${ }^{2}$ Graduate School of Mathematics
Nagoya University
Japan

Theme

Where is the "boundary" between the power of classical versus quantum computers?

Guiding questions

(1) Can one rigorously define such "boundaries"?

- "Quantum advantage" frameworks (make classical look bad)
- "Dequantization" via sampling (make classical look good)

Guiding questions

(1) Can one rigorously define such "boundaries"?

- "Quantum advantage" frameworks (make classical look bad)
- "Dequantization" via sampling (make classical look good)
(2) Can a practically "meaningful" such boundary be found?
- Long-term: Shor's factoring algorithm
- Shorter-term? This work?

Guiding questions

(1) Can one rigorously define such "boundaries"?

- "Quantum advantage" frameworks (make classical look bad)
- "Dequantization" via sampling (make classical look good)
(2) Can a practically "meaningful" such boundary be found?
- Long-term: Shor's factoring algorithm
- Shorter-term? This work?
(3) What do such boundaries say about classical versus quantum physics?
- Quantum PCP conjecture:
"Natural" quantum systems can be "exponentially complex" even at high temperature

This work

(1) Formalize a central practical computational problem, GLH, from quantum chemistry

- Needs to be solved with 1/ poly precision for practical purposes

This work

(1) Formalize a central practical computational problem, GLH, from quantum chemistry

- Needs to be solved with 1/ poly precision for practical purposes
(2) Show GLH is classically easy to solve with $O(1)$ precision under "standard" sampling assumptions
- Idea: "Dequantize" the Quantum Singular Value Transform (QSVT) of [Gilyén, Su, Low, Wiebe 2019] in sparse, $O(1)$-precision setting

This work

(1) Formalize a central practical computational problem, GLH, from quantum chemistry

- Needs to be solved with 1/ poly precision for practical purposes
(2) Show GLH is classically easy to solve with O (1) precision under "standard" sampling assumptions
- Idea: "Dequantize" the Quantum Singular Value Transform (QSVT) of [Gilyén, Su, Low, Wiebe 2019] in sparse, $O(1)$-precision setting
(3) Show GLH is BQP-hard in worst-case to solve with 1 / poly precision
- Note: Not "quantum advantage" in usual sense, e.g. not average-case hardness

This work

(1) Formalize a central practical computational problem, GLH, from quantum chemistry

- Needs to be solved with 1/ poly precision for practical purposes
(2) Show GLH is classically easy to solve with O (1) precision under "standard" sampling assumptions
- Idea: "Dequantize" the Quantum Singular Value Transform (QSVT) of [Gilyén, Su, Low, Wiebe 2019] in sparse, $O(1)$-precision setting
(3) Show GLH is BQP-hard in worst-case to solve with 1 / poly precision
- Note: Not "quantum advantage" in usual sense, e.g. not average-case hardness
(4) Quantum PCP conjecture - do sampling assumptions break the conjecture?

Outline

(1) The problem GLH

(2) BQP-hardness of GLH within $1 /$ poly precision
(3) Classical tractibility of GLH within $O(1)$ precision
4. What does this say about Quantum PCP?

Recall

k-local Hamiltonian problem (LH)

- Input: k-local Hamiltonian H on n qubits, thresholds $0 \leq \alpha \leq \beta$ s.t. $|\alpha-\beta| \geq 1 / \operatorname{poly}(n)$
- Promise: $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$
- Output: Decide whether $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$

History:

- [Kitaev 2002] LH is QMA-complete for $k=5$ (QMA is Quantum Merlin-Arthur)
- Since then: Many hardness results e.g. in 2D, Heisenberg model, 1D translation-invariant, etc

[^0]
Recall

k-local Hamiltonian problem (LH)

- Input: k-local Hamiltonian H on n qubits, thresholds $0 \leq \alpha \leq \beta$ s.t. $|\alpha-\beta| \geq 1 / \operatorname{poly}(n)$
- Promise: $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$
- Output: Decide whether $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$

History:

- [Kitaev 2002] LH is QMA-complete for $k=5$ (QMA is Quantum Merlin-Arthur)
- Since then: Many hardness results e.g. in 2D, Heisenberg model, 1D translation-invariant, etc
- Variants:
- If $^{1}|\alpha-\beta| \geq \Omega(1)$?
\star NP-hard by classical PCP theorem
\star Quantum PCP conjecture: LH is QMA-complete
${ }^{1}$ We renormalize $\|H\| \leq 1$ to ensure this is well-defined.

Meanwhile on Earth

Question: What are quantum chemists actually doing ${ }^{2}$?

[^1]
Meanwhile on Earth

Question: What are quantum chemists actually doing ${ }^{2}$?

In practice, efficient classical heuristics typically yield a good "starting/guiding state" $|\psi\rangle$

- E.g. Hartree-Fock typically recovers 99\% of total energy [Whitfield, Love, Aspuru-Guzik, 2013]

[^2]
Meanwhile on Earth

Question: What are quantum chemists actually doing ${ }^{2}$?

In practice, efficient classical heuristics typically yield a good "starting/guiding state" $|\psi\rangle$

- E.g. Hartree-Fock typically recovers 99\% of total energy [Whitfield, Love, Aspuru-Guzik, 2013]
- Idea: First, classically compute guiding state $|\psi\rangle$. Then, use quantum computer and $|\psi\rangle$ to solve LH .

[^3]
Meanwhile on Earth

Question: What are quantum chemists actually doing ${ }^{2}$?

In practice, efficient classical heuristics typically yield a good "starting/guiding state" $|\psi\rangle$

- E.g. Hartree-Fock typically recovers 99\% of total energy [Whitfield, Love, Aspuru-Guzik, 2013]
- Idea: First, classically compute guiding state $|\psi\rangle$. Then, use quantum computer and $|\psi\rangle$ to solve LH.
- The quantum part:
- Rigorous: Quantum Phase Estimation (QPE) [Abrams, Lloyd 1999], [ADLH 2005]
- Heuristic: Variational approaches (VQA) (see [Cerezo et al., 2021] for survey)

[^4]
GLH

Guided local Hamiltonian problem (GLH)

- Input:
(1) k-local Hamiltonian H on n qubits, thresholds $\alpha<\beta$
(2) Representation of guiding state $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$
- Promise:
(1) $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$
(2) $\| \Pi_{H}|\psi\rangle \|_{2} \geq \delta$, for Π_{H} projector on ground space of H
- Output: Decide whether $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$

GLH

Guided local Hamiltonian problem (GLH)

- Input:
(1) k-local Hamiltonian H on n qubits, thresholds $\alpha<\beta$
(2) Representation of guiding state $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$
- Promise:
(1) $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$
(2) $\| \Pi_{H}|\psi\rangle \|_{2} \geq \delta$, for Π_{H} projector on ground space of H
- Output: Decide whether $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$

Question: What is a "representation" of $|\psi\rangle$?

GLH

Guided local Hamiltonian problem (GLH)

- Input:
(1) k-local Hamiltonian H on n qubits, thresholds $\alpha<\beta$
(2) Representation of guiding state $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$
- Promise:
(1) $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$
(2) $\| \Pi_{H}|\psi\rangle \|_{2} \geq \delta$, for Π_{H} projector on ground space of H
- Output: Decide whether $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$

Question: What is a "representation" of $|\psi\rangle$?

- If "representation $=$ sampling-access" \Longrightarrow GLH classically solvable if $\alpha, \beta, \delta \in \Theta(1)$

GLH

Guided local Hamiltonian problem (GLH)

- Input:
(1) k-local Hamiltonian H on n qubits, thresholds $\alpha<\beta$
(2) Representation of guiding state $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$
- Promise:
(1) $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$
(2) $\| \Pi_{H}|\psi\rangle \|_{2} \geq \delta$, for Π_{H} projector on ground space of H
- Output: Decide whether $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$

Question: What is a "representation" of $|\psi\rangle$?

- If "representation $=$ sampling-access" \Longrightarrow GLH classically solvable if $\alpha, \beta, \delta \in \Theta(1)$
- If "representation $=$ semi-classical state" \Longrightarrow GLH BQP-hard with $|\alpha-\beta| \in \Theta(1 /$ poly $)$

Punchline

- Our result: GLH with 1 / poly precision is BQP-hard
- Known: GLH with 1 / poly precision is also in BQP (i.e. can be solved efficiently quantumly)
- Thus, GLH with 1 / poly precision characterizes the power of quantum computers

Punchline

- Our result: GLH with 1 / poly precision is BQP-hard
- Known: GLH with 1 / poly precision is also in BQP (i.e. can be solved efficiently quantumly)
- Thus, GLH with 1 / poly precision characterizes the power of quantum computers

- Punchline: Practically "meaningful" task to experimentally demonstrate "quantum advantage"?

Punchline

- Our result: GLH with 1 / poly precision is BQP-hard
- Known: GLH with 1 / poly precision is also in BQP (i.e. can be solved efficiently quantumly)
- Thus, GLH with 1 / poly precision characterizes the power of quantum computers

- Punchline: Practically "meaningful" task to experimentally demonstrate "quantum advantage"?
- Caveat: Our result is worst-case complexity, not average-case like e.g. Random Circuit Sampling?

Punchline

- Our result: GLH with 1 / poly precision is BQP-hard
- Known: GLH with 1 / poly precision is also in BQP (i.e. can be solved efficiently quantumly)
- Thus, GLH with 1 / poly precision characterizes the power of quantum computers

- Punchline: Practically "meaningful" task to experimentally demonstrate "quantum advantage"?
- Caveat: Our result is worst-case complexity, not average-case like e.g. Random Circuit Sampling?

Aside: semi-classical state \gg sampling-access (given former, can simulate latter)

- Choice of representation is not bottleneck preventing 1 / poly precision classically

Outline

(1) The problem GLH

(2) BQP-hardness of GLH within $1 /$ poly precision
(3) Classical tractibility of GLH within $O(1)$ precision
(4) What does this say about Quantum PCP?

Our result, formally

Recall: Guided local Hamiltonian problem (GLH)

- Input: k-local Hamiltonian H on n qubits, $\alpha<\beta$, semi-classical $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$
- Promise: $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta, \| \Pi_{H}|\psi\rangle \|_{2} \geq \delta$
- Output: Decide whether $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$

Semi-classical state

Any $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$ s.t. there exists $S \subseteq\{0,1\}^{n}$ of size $|S| \in \operatorname{poly}(n)$, s.t. (cf. [Grilo, Kerenidis, Sikora 2016])

$$
|\psi\rangle=\frac{1}{\sqrt{|S|}} \sum_{x \in S}|x\rangle
$$

Our result, formally

Recall: Guided local Hamiltonian problem (GLH)

- Input: k-local Hamiltonian H on n qubits, $\alpha<\beta$, semi-classical $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$
- Promise: $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta, \| \Pi_{H}|\psi\rangle \|_{2} \geq \delta$
- Output: Decide whether $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$

Semi-classical state

Any $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$ s.t. there exists $S \subseteq\{0,1\}^{n}$ of size $|S| \in \operatorname{poly}(n)$, s.t. (cf. [Grilo, Kerenidis, Sikora 2016])

$$
|\psi\rangle=\frac{1}{\sqrt{|S|}} \sum_{x \in S}|x\rangle
$$

Theorem

For any $\delta \in(0,1 / 2-1 / \operatorname{poly}(n)), \exists \alpha, \beta \in[0,1]$ with $\beta-\alpha \geq 1 / \operatorname{poly}(n)$ such that GLH is BQP-hard.

Proof sketch

Theorem

For any $\delta \in(0,1 / 2-1 / \operatorname{poly}(n)), \exists \alpha, \beta \in[0,1]$ with $\beta-\alpha \geq 1 / \operatorname{poly}(n)$ such that GLH is BQP-hard.

Proof sketch.

Proof sketch

Theorem

For any $\delta \in(0,1 / 2-1 / \operatorname{poly}(n)), \exists \alpha, \beta \in[0,1]$ with $\beta-\alpha \geq 1 / \operatorname{poly}(n)$ such that GLH is BQP-hard.

Proof sketch.
Let $x \in\{0,1\}^{n}$ be an input, and $U=U_{m} \cdots U_{1}$ a BQP circuit deciding x.
Goal: Map U to instance $(H, \alpha, \beta,|\psi\rangle)$ of GLH such that $\beta-\alpha \geq 1 / \operatorname{poly}(n)$ and

$$
\left.\begin{array}{l}
\text { if } U \text { accepts } x \Longrightarrow \lambda_{\min }(H) \leq \alpha \\
\text { if } U \text { rejects } x \Longrightarrow \lambda_{\min }(H) \geq \beta
\end{array}\right\} \text { Both cases: }|\psi\rangle \text { overlap } \geq \delta \text { with ground space of } H
$$

Proof sketch

Theorem

For any $\delta \in(0,1 / 2-1 / \operatorname{poly}(n)), \exists \alpha, \beta \in[0,1]$ with $\beta-\alpha \geq 1 / \operatorname{poly}(n)$ such that GLH is BQP-hard.

Proof sketch.
Let $x \in\{0,1\}^{n}$ be an input, and $U=U_{m} \cdots U_{1}$ a BQP circuit deciding x.
Goal: Map U to instance $(H, \alpha, \beta,|\psi\rangle)$ of GLH such that $\beta-\alpha \geq 1 / \operatorname{poly}(n)$ and

$$
\left.\begin{array}{l}
\text { if } U \text { accepts } x \Longrightarrow \lambda_{\min }(H) \leq \alpha \\
\text { if } U \text { rejects } x \Longrightarrow \lambda_{\min }(H) \geq \beta
\end{array}\right\} \text { Both cases: }|\psi\rangle \text { overlap } \geq \delta \text { with ground space of } H
$$

Tool 1: Feynman-Kitaev Circuit-to-Hamiltonian construction [Kitaev 1999]

- Maps U to 5 -local H satisfying left hand side above, where $H=H_{\text {in }}+H_{\text {out }}+H_{\text {prop }}+H_{\text {stab }}$.
- To design $|\psi\rangle$ (right hand side above), need to modify H further

Tool 1: Feynman-Kitaev Hamiltonian

$H=H_{\text {in }}+H_{\text {out }}+H_{\text {prop }}+H_{\text {stab }}$ encodes action of U in low-energy history state

$$
\left|\psi_{\text {nist }}\right\rangle=\frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_{t} \cdots U_{1}|x\rangle_{A}|0 \cdots 0\rangle_{B}|t\rangle_{C},
$$

$H_{\text {in }}: \quad$ Correct ancilla initialization at time $t=0 \quad \rightarrow \quad\left\langle\psi_{\text {hist }}\right| H_{\text {in }}\left|\psi_{\text {hist }}\right\rangle=0$
$H_{\text {prop }}:$ Gate U_{t} applied at time $t \quad \rightarrow \quad\left\langle\psi_{\text {hist }}\right| H_{\text {prop }}\left|\psi_{\text {nist }}\right\rangle=0$
$H_{\text {stab }}: \quad$ Clock register C encoded correctly in unary $\quad \rightarrow \quad\left\langle\psi_{\text {hist }}\right| H_{\text {out }}\left|\psi_{\text {hist }}\right\rangle=0$
$H_{\text {out }}: \quad$ Penalize rejecting computation U at time $t=m \quad \rightarrow \quad\left\langle\psi_{\text {hist }}\right| H_{\text {out }}\left|\psi_{\text {hist }}\right\rangle \sim \underset{\text { poly }(m)}{1-\operatorname{Pr}(U \operatorname{lacepts} x)}$

Tool 1: Feynman-Kitaev Hamiltonian

$H=H_{\text {in }}+H_{\text {out }}+H_{\text {prop }}+H_{\text {stab }}$ encodes action of U in low-energy history state

$$
\left|\psi_{\text {nist }}\right\rangle=\frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_{t} \cdots U_{1}|x\rangle_{A}|0 \cdots 0\rangle_{B}|t\rangle_{C},
$$

$H_{\text {in }}: \quad$ Correct ancilla initialization at time $t=0 \quad \rightarrow \quad\left\langle\psi_{\text {hist }}\right| H_{\text {in }}\left|\psi_{\text {hist }}\right\rangle=0$
$H_{\text {prop }}:$ Gate U_{t} applied at time $t \quad \rightarrow \quad\left\langle\psi_{\text {hist }}\right| H_{\text {prop }}\left|\psi_{\text {nist }}\right\rangle=0$
$H_{\text {stab }}: \quad$ Clock register C encoded correctly in unary $\quad \rightarrow \quad\left\langle\psi_{\text {hist }}\right| H_{\text {out }}\left|\psi_{\text {hist }}\right\rangle=0$
$H_{\text {out }}: \quad$ Penalize rejecting computation U at time $t=m \quad \rightarrow \quad\left\langle\psi_{\text {hist }}\right| H_{\text {out }}\left|\psi_{\text {hist }}\right\rangle \sim \underset{\text { poly }(m)}{1-\operatorname{Pr}(U \operatorname{lacepts} x)}$
Case 1: U accepts with high probability (YES case)
(1) $\left|\psi_{\text {hist }}\right\rangle$ low energy? Yes, $\left\langle\psi_{\text {hist }}\right| H\left|\psi_{\text {hist }}\right\rangle \sim \frac{1-\operatorname{Pr}(U \text { accepts } x)}{\text { poly }(m)}$

Tool 1: Feynman-Kitaev Hamiltonian

$H=H_{\text {in }}+H_{\text {out }}+H_{\text {prop }}+H_{\text {stab }}$ encodes action of U in low-energy history state

$$
\left|\psi_{\text {nist }}\right\rangle=\frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_{t} \cdots U_{1}|x\rangle_{A}|0 \cdots 0\rangle_{B}|t\rangle_{C},
$$

$H_{\text {in }}:$ Correct ancilla initialization at time $t=0 \quad \rightarrow \quad\left\langle\psi_{\text {hist }}\right| H_{\text {in }}\left|\psi_{\text {nist }}\right\rangle=0$
$H_{\text {prop }}:$ Gate U_{t} applied at time $t \quad \rightarrow \quad\left\langle\psi_{\text {hist }}\right| H_{\text {prop }}\left|\psi_{\text {nist }}\right\rangle=0$
$H_{\text {stab }}: \quad$ Clock register C encoded correctly in unary $\quad \rightarrow\left\langle\left\langle\psi_{\text {hist }}\right| H_{\text {out }} \mid \psi_{\text {hist }}\right\rangle=0$
$H_{\text {out }}: \quad$ Penalize rejecting computation U at time $t=m \quad \rightarrow \quad\left\langle\psi_{\text {hist }}\right| H_{\text {out }}\left|\psi_{\text {hist }}\right\rangle \sim \frac{1-\operatorname{Pr}(U \text { accepps } x)}{\text { poly }(m)}$
Case 1: U accepts with high probability (YES case)
(1) $\left|\psi_{\text {hist }}\right\rangle$ low energy? Yes, $\left\langle\psi_{\text {hist }}\right| H\left|\psi_{\text {hist }}\right\rangle \sim \frac{1-\operatorname{Pr}(U \text { accepts } x)}{\text { poly }(m)}$
(2) Guiding state $|\psi\rangle$ with large overlap with ground state of H ?

Tool 1: Feynman-Kitaev Hamiltonian

$H=H_{\text {in }}+H_{\text {out }}+H_{\text {prop }}+H_{\text {stab }}$ encodes action of U in low-energy history state

$$
\left|\psi_{\text {nist }}\right\rangle=\frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_{t} \cdots U_{1}|x\rangle_{A}|0 \cdots 0\rangle_{B}|t\rangle_{C},
$$

$H_{\text {in }}: \quad$ Correct ancilla initialization at time $t=0 \quad \rightarrow \quad\left\langle\psi_{\text {hist }}\right| H_{\text {in }}\left|\psi_{\text {hist }}\right\rangle=0$
$H_{\text {prop }}:$ Gate U_{t} applied at time $t \quad \rightarrow \quad\left\langle\psi_{\text {hist }}\right| H_{\text {prop }}\left|\psi_{\text {nist }}\right\rangle=0$
$H_{\text {stab }}: \quad$ Clock register C encoded correctly in unary $\quad \rightarrow \quad\left\langle\psi_{\text {hist }}\right| H_{\text {out }}\left|\psi_{\text {hist }}\right\rangle=0$
$H_{\text {out }}: \quad$ Penalize rejecting computation U at time $t=m \quad \rightarrow \quad\left\langle\psi_{\text {hist }}\right| H_{\text {out }}\left|\psi_{\text {hist }}\right\rangle \sim \underset{\text { poly }(m)}{1-\operatorname{Pr}(U \operatorname{lacepts} x)}$
Case 1: U accepts with high probability (YES case)
(1) $\left|\psi_{\text {hist }}\right\rangle$ low energy? Yes, $\left\langle\psi_{\text {hist }}\right| H\left|\psi_{\text {hist }}\right\rangle \sim \frac{1-\operatorname{Pr}(U \text { accepts } x)}{\text { poly }(m)}$
(2) Guiding state $|\psi\rangle$ with large overlap with ground state of H ?

- "Pre-idle" U, e.g. prepend m identity gates at beginning of U
- For $\Delta \in \operatorname{poly}(m)$, set $\Delta\left(H_{\text {in }}+H_{\text {prop }}+H_{\text {stab }}\right)+H_{\text {out }}$.

Tool 1: Feynman-Kitaev Hamiltonian

$H=H_{\text {in }}+H_{\text {out }}+H_{\text {prop }}+H_{\text {stab }}$ encodes action of U in low-energy history state

$$
\left|\psi_{\text {nist }}\right\rangle=\frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_{t} \cdots U_{1}|x\rangle_{A}|0 \cdots 0\rangle_{B}|t\rangle_{C},
$$

$H_{\text {in }}:$ Correct ancilla initialization at time $t=0 \quad \rightarrow \quad\left\langle\psi_{\text {hist }}\right| H_{\text {in }}\left|\psi_{\text {nist }}\right\rangle=0$
$H_{\text {prop }}:$ Gate U_{t} applied at time $t \quad \rightarrow \quad\left\langle\psi_{\text {hist }}\right| H_{\text {prop }}\left|\psi_{\text {nist }}\right\rangle=0$
$H_{\text {stab }}: \quad$ Clock register C encoded correctly in unary $\quad \rightarrow \quad\left\langle\psi_{\text {hist }}\right| H_{\text {out }}\left|\psi_{\text {hist }}\right\rangle=0$
$H_{\text {out }}: \quad$ Penalize rejecting computation U at time $t=m \quad \rightarrow \quad\left\langle\psi_{\text {hist }}\right| H_{\text {out }}\left|\psi_{\text {hist }}\right\rangle \sim \frac{1-\operatorname{Pr}(U \text { accepts } x)}{\text { poly }(m)}$
Case 1: U accepts with high probability (YES case)
(1) $\left|\psi_{\text {hist }}\right\rangle$ low energy? Yes, $\left\langle\psi_{\text {hist }}\right| H\left|\psi_{\text {hist }}\right\rangle \sim \frac{1-\operatorname{Pr}(U \text { accepts } x)}{\text { poly }(m)}$
(2) Guiding state $|\psi\rangle$ with large overlap with ground state of H ?

- "Pre-idle" U, e.g. prepend m identity gates at beginning of U
- For $\Delta \in \operatorname{poly}(m)$, set $\Delta\left(H_{\text {in }}+H_{\text {prop }}+H_{\text {stab }}\right)+H_{\text {out }}$.

Together: $\left.|\psi\rangle:=|x\rangle_{A}|0\rangle_{B}\left(\frac{1}{\sqrt{m}} \sum_{t=0}^{m}|t\rangle\right)\right)_{C}^{\text {pre-idle }}\left|\psi_{\text {hist }}\right\rangle$ by Δ ground state of H

Tool 2: Block encoding à la Ambainis

Case 2: U accepts with low probability (NO case)
Problem: In NO case, don't know what low energy space of H looks like — how to argue about $|\psi\rangle$?

Tool 2: Block encoding à la Ambainis

Case 2: U accepts with low probability (NO case)
Problem: In NO case, don't know what low energy space of H looks like — how to argue about $|\psi\rangle$?
Update:

$$
\begin{aligned}
H^{\prime} & :=\frac{\alpha+\beta}{2} I_{A B C} \otimes|0\rangle\left\langle\left. 0\right|_{D}+H_{A B C} \otimes \mid 1\right\rangle\left\langle\left. 1\right|_{D}\right. \\
\left|\psi^{\prime}\right\rangle & :=|\psi\rangle_{A B C}|+\rangle_{D}
\end{aligned}
$$

where

- If x is YES instance (resp. NO instance), $\lambda_{\min }(H) \leq \alpha\left(\right.$ resp. $\lambda_{\min }(H) \geq \beta$)
- Inspired by QMA query gadget of [Ambainis 2014] from unrelated context of $P^{\text {QMA[log] }}$

Tool 2: Block encoding à la Ambainis

Case 2: U accepts with low probability (NO case)
Problem: In NO case, don't know what low energy space of H looks like — how to argue about $|\psi\rangle$?
Update:

$$
\begin{aligned}
H^{\prime} & :=\frac{\alpha+\beta}{2} I_{A B C} \otimes|0\rangle\left\langle\left. 0\right|_{D}+H_{A B C} \otimes \mid 1\right\rangle\left\langle\left. 1\right|_{D}\right. \\
\left|\psi^{\prime}\right\rangle & :=|\psi\rangle_{A B C}|+\rangle_{D} .
\end{aligned}
$$

where

- If x is YES instance (resp. NO instance), $\lambda_{\min }(H) \leq \alpha\left(\right.$ resp. $\lambda_{\min }(H) \geq \beta$)
- Inspired by QMA query gadget of [Ambainis 2014] from unrelated context of $P^{\text {QMA[log] }}$

Observe: H^{\prime} block-diagonal w.r.t. D, such that:

- $\lambda_{\min }(H) \leq \alpha \Longrightarrow \lambda_{\min }\left(H^{\prime}\right)$ is in $|1\rangle\left\langle\left. 1\right|_{D} \text { block } \Longrightarrow \mid \psi\right\rangle_{A B C}|1\rangle_{D}$ is good guiding state

Tool 2: Block encoding à la Ambainis

Case 2: U accepts with low probability (NO case)
Problem: In NO case, don't know what low energy space of H looks like — how to argue about $|\psi\rangle$?
Update:

$$
\begin{aligned}
H^{\prime} & :=\frac{\alpha+\beta}{2} I_{A B C} \otimes|0\rangle\left\langle\left. 0\right|_{D}+H_{A B C} \otimes \mid 1\right\rangle\left\langle\left. 1\right|_{D}\right. \\
\left|\psi^{\prime}\right\rangle & :=|\psi\rangle_{A B C}|+\rangle_{D} .
\end{aligned}
$$

where

- If x is YES instance (resp. NO instance), $\lambda_{\min }(H) \leq \alpha\left(\right.$ resp. $\lambda_{\min }(H) \geq \beta$)
- Inspired by QMA query gadget of [Ambainis 2014] from unrelated context of $P^{\text {QMA[log] }}$

Observe: H^{\prime} block-diagonal w.r.t. D, such that:

- $\lambda_{\min }(H) \leq \alpha \Longrightarrow \lambda_{\min }\left(H^{\prime}\right)$ is in $|1\rangle\left\langle\left. 1\right|_{D} \text { block } \Longrightarrow \mid \psi\right\rangle_{A B C}|1\rangle_{D}$ is good guiding state
- $\lambda_{\min }(H) \geq \beta \Longrightarrow \lambda_{\min }\left(H^{\prime}\right)$ is in $|0\rangle\left\langle\left. 0\right|_{D} \text { block } \Longrightarrow \mid \psi\right\rangle_{A B C}|0\rangle_{D}$ is good guiding state

Outline

(1 The problem GLH

(2) BQP-hardness of GLH within $1 /$ poly precision
(3) Classical tractibility of GLH within $O(1)$ precision

What does this say about Quantum PCP?

Our result, formally

Recall: Guided local Hamiltonian problem (GLH)

- Input: sparse Hamiltonian H on n qubits, $\alpha<\beta$, samplable $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$
- Promise: $\lambda_{\text {min }}(H) \leq \alpha$ or $\lambda_{\text {min }}(H) \geq \beta, \| \Pi_{H}|\psi\rangle \|_{2} \geq \delta$
- Output: Decide whether $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$

Our result, formally

Recall: Guided local Hamiltonian problem (GLH)

- Input: sparse Hamiltonian H on n qubits, $\alpha<\beta$, samplable $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$
- Promise: $\lambda_{\text {min }}(H) \leq \alpha$ or $\lambda_{\text {min }}(H) \geq \beta, \| \Pi_{H}|\psi\rangle \|_{2} \geq \delta$
- Output: Decide whether $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$

ζ-samplable state for $\zeta \in[0,1)$

Have ζ-sampling-access to $|\psi\rangle \in \mathbb{C}^{2^{n}}$ if all three hold:

- (query access) For any $i \in\left[2^{n}\right]$, can compute $\psi_{i} \in \mathbb{C}$ in poly (n) classical time
- (sampling access) Can sample in poly (n) classical time from distribution $p:\left[2^{n}\right] \rightarrow[0,1]$ such that

$$
\forall j \in\left[2^{n}\right] \quad p(j) \in\left[(1-\zeta) \frac{\left|\psi_{j}\right|^{2}}{\||\psi\rangle \|^{2}},(1+\zeta) \frac{\left|\psi_{j}\right|^{2}}{\||\psi\rangle \|^{2}}\right]
$$

- (norm approximation) Have m s.t. $|m-\|| \psi\rangle\||\leq \zeta \|| \psi\rangle \|$.

Note: When $\zeta=0$, recover [Tang 2019]'s definition from dequantization of recommender systems
$n=\#$ of qubits

Theorem: GLH "tractable" in $O(1)$-precision setting

\forall constants $\delta, \alpha, \beta \in(0,1]$ and $k \in O(\log n)$, GLH classically solvable in poly (n) time with probability $1-2^{-n}$.
$n=\#$ of qubits

Theorem: GLH "tractable" in $O(1)$-precision setting

\forall constants $\delta, \alpha, \beta \in(0,1]$ and $k \in O(\log n)$, GLH classically solvable in poly (n) time with probability $1-2^{-n}$.

\Uparrow

Theorem (informal)

The sparse "Guided Singular Value Estimation" problem is efficiently solvable to O (1) precision.
\square
choose constant-degree polynomial P in QSVT to "process" singular values
\rightarrow possible in $O(1)$-precision setting

Theorem (informal)

The sparse Quantum Singular Value Transform (QSVT) can be "dequantized" for $O(1)$ precision.

Dequantizing the QSVT

Singular Value Transform (SVT)

Input: (1) query-access to s-sparse matrix $A \in \mathbb{C}^{M \times N}$ with $\|A\| \leq 1$
(2) query-access to $u \in \mathbb{C}^{N}$ s.t. $\|u\| \leq 1$
(3) ζ-samplable $v \in \mathbb{C}^{N}$ s.t. $\|v\| \leq 1$
(4) even polynomial $P \in \mathbb{R}[x]$ of degree d (even \Longrightarrow for all $x \in \mathbb{R}, P(x)=P(-x)$)

Output: estimate $\hat{z} \in \mathbb{C}$ s.t. $\left|\hat{z}-v^{\dagger} P\left(\sqrt{A^{\dagger} A}\right) u\right| \leq \epsilon$

Lemma: Dequantizing SVT

$\forall \epsilon \in(0,1]$ and $\zeta \leq \epsilon / 8$, SVT solvable classically with probability $1-1 / \operatorname{poly}(N)$ in $O^{*}\left(\left(s^{2 d+1}\right) / \epsilon^{2}\right)$ time.

Proof sketch for dequantizing SVT

$\operatorname{SVT}(s, \epsilon, \zeta)$ (singular value transform)

Input: (1) query-access to s-sparse matrix $A \in \mathbb{C}^{M \times N}$ with $\|A\| \leq 1$
(2) query-access to $u \in \mathbb{C}^{N}$ s.t. $\|u\| \leq 1$
(3) ζ-samplable $v \in \mathbb{C}^{N}$ s.t. $\|v\| \leq 1$
(4) even polynomial $P \in \mathbb{R}[x]$ of degree d (recall: even \Longrightarrow for all $x \in \mathbb{R}, P(x)=P(-x)$)

Output: estimate $\hat{z} \in \mathbb{C}$ s.t. $\left|\hat{z}-v^{\dagger} P\left(\sqrt{A^{\dagger} A}\right) u\right| \leq \epsilon$

Proof sketch.
Idea (à la [Tang 2019]): Compute r random entries of $\left\langle v, P\left(\sqrt{A^{\dagger} A}\right) u\right\rangle$, take arithmetic mean:

Proof sketch for dequantizing SVT

$\operatorname{SVT}(s, \epsilon, \zeta)$ (singular value transform)

Input: (1) query-access to s-sparse matrix $A \in \mathbb{C}^{M \times N}$ with $\|A\| \leq 1$
(2) query-access to $u \in \mathbb{C}^{N}$ s.t. $\|u\| \leq 1$
(3) ζ-samplable $v \in \mathbb{C}^{N}$ s.t. $\|v\| \leq 1$
(4) even polynomial $P \in \mathbb{R}[x]$ of degree d (recall: even \Longrightarrow for all $x \in \mathbb{R}, P(x)=P(-x)$)

Output: estimate $\hat{z} \in \mathbb{C}$ s.t. $\left|\hat{z}-v^{\dagger} P\left(\sqrt{A^{\dagger} A}\right) u\right| \leq \epsilon$

Proof sketch.
Idea (à la [Tang 2019]): Compute r random entries of $\left\langle v, P\left(\sqrt{A^{\dagger} A}\right) u\right\rangle$, take arithmetic mean:
(1) Set avg $=0$
(2) Repeat $r \in \Theta\left(1 / \epsilon^{2}\right)$ times:

Proof sketch for dequantizing SVT

$\operatorname{SVT}(s, \epsilon, \zeta)$ (singular value transform)

Input: (1) query-access to s-sparse matrix $A \in \mathbb{C}^{M \times N}$ with $\|A\| \leq 1$
(2) query-access to $u \in \mathbb{C}^{N}$ s.t. $\|u\| \leq 1$
(3) ζ-samplable $v \in \mathbb{C}^{N}$ s.t. $\|v\| \leq 1$
(4) even polynomial $P \in \mathbb{R}[x]$ of degree d (recall: even \Longrightarrow for all $x \in \mathbb{R}, P(x)=P(-x)$)

Output: estimate $\hat{z} \in \mathbb{C}$ s.t. $\left|\hat{z}-v^{\dagger} P\left(\sqrt{A^{\dagger} A}\right) u\right| \leq \epsilon$

Proof sketch.
Idea (à la [Tang 2019]): Compute r random entries of $\left\langle v, P\left(\sqrt{A^{\dagger} A}\right) u\right\rangle$, take arithmetic mean:
(1) Set avg $=0$
(2) Repeat $r \in \Theta\left(1 / \epsilon^{2}\right)$ times:

- Via ζ-sampling of v, sample index $j \in\{1, \ldots, N\}$ (i.e. w.p. $p(j) \approx\left|v_{j}\right|^{2} /\|v\|^{2}$)
- Via query access, compute entry v_{j}

Proof sketch for dequantizing SVT

$\operatorname{SVT}(s, \epsilon, \zeta)$ (singular value transform)

Input: (1) query-access to s-sparse matrix $A \in \mathbb{C}^{M \times N}$ with $\|A\| \leq 1$
(2) query-access to $u \in \mathbb{C}^{N}$ s.t. $\|u\| \leq 1$
(3) ζ-samplable $v \in \mathbb{C}^{N}$ s.t. $\|v\| \leq 1$
(4) even polynomial $P \in \mathbb{R}[x]$ of degree d (recall: even \Longrightarrow for all $x \in \mathbb{R}, P(x)=P(-x)$)

Output: estimate $\hat{z} \in \mathbb{C}$ s.t. $\left|\hat{z}-v^{\dagger} P\left(\sqrt{A^{\dagger} A}\right) u\right| \leq \epsilon$

Proof sketch.
Idea (à la [Tang 2019]): Compute r random entries of $\left\langle v, P\left(\sqrt{A^{\dagger} A}\right) u\right\rangle$, take arithmetic mean:
(1) Set avg $=0$
(2) Repeat $r \in \Theta\left(1 / \epsilon^{2}\right)$ times:

- Via ζ-sampling of v, sample index $j \in\{1, \ldots, N\}$ (i.e. w.p. $p(j) \approx\left|v_{j}\right|^{2} /\|v\|^{2}$)
- Via query access, compute entry v_{j}
- Via s-sparsity of A, compute entry j of $w:=P\left(\sqrt{A^{\dagger} A}\right) u \quad$ (do this recursively)

Proof sketch for dequantizing SVT

$\operatorname{SVT}(s, \epsilon, \zeta)$ (singular value transform)

Input: (1) query-access to s-sparse matrix $A \in \mathbb{C}^{M \times N}$ with $\|A\| \leq 1$
(2) query-access to $u \in \mathbb{C}^{N}$ s.t. $\|u\| \leq 1$
(3) ζ-samplable $v \in \mathbb{C}^{N}$ s.t. $\|v\| \leq 1$
(4) even polynomial $P \in \mathbb{R}[x]$ of degree d (recall: even \Longrightarrow for all $x \in \mathbb{R}, P(x)=P(-x)$)

Output: estimate $\hat{z} \in \mathbb{C}$ s.t. $\left|\hat{z}-v^{\dagger} P\left(\sqrt{A^{\dagger} A}\right) u\right| \leq \epsilon$

Proof sketch.
Idea (à la [Tang 2019]): Compute r random entries of $\left\langle v, P\left(\sqrt{A^{\dagger} A}\right) u\right\rangle$, take arithmetic mean:
(1) Set avg $=0$
(2) Repeat $r \in \Theta\left(1 / \epsilon^{2}\right)$ times:

- Via ζ-sampling of v, sample index $j \in\{1, \ldots, N\}$ (i.e. w.p. $p(j) \approx\left|v_{j}\right|^{2} /\|v\|^{2}$)
- Via query access, compute entry v_{j}
- Via s-sparsity of A, compute entry j of $w:=P\left(\sqrt{A^{\dagger} A}\right) u \quad$ (do this recursively)
- Update avg $=\operatorname{avg}+\left(w_{j} m^{2}\right) /\left(v_{j} r\right)$

Proof sketch for dequantizing SVT

$\operatorname{SVT}(s, \epsilon, \zeta)$ (singular value transform)

Input: (1) query-access to s-sparse matrix $A \in \mathbb{C}^{M \times N}$ with $\|A\| \leq 1$
(2) query-access to $u \in \mathbb{C}^{N}$ s.t. $\|u\| \leq 1$
(3) ζ-samplable $v \in \mathbb{C}^{N}$ s.t. $\|v\| \leq 1$
(4) even polynomial $P \in \mathbb{R}[x]$ of degree d (recall: even \Longrightarrow for all $x \in \mathbb{R}, P(x)=P(-x)$)

Output: estimate $\hat{z} \in \mathbb{C}$ s.t. $\left|\hat{z}-v^{\dagger} P\left(\sqrt{A^{\dagger} A}\right) u\right| \leq \epsilon$

Proof sketch.
Idea (à la [Tang 2019]): Compute r random entries of $\left\langle v, P\left(\sqrt{A^{\dagger} A}\right) u\right\rangle$, take arithmetic mean:
(1) Set avg $=0$
(2) Repeat $r \in \Theta\left(1 / \epsilon^{2}\right)$ times:

- Via ζ-sampling of v, sample index $j \in\{1, \ldots, N\}$ (i.e. w.p. $p(j) \approx\left|v_{j}\right|^{2} /\|v\|^{2}$)
- Via query access, compute entry v_{j}
- Via s-sparsity of A, compute entry j of $w:=P\left(\sqrt{A^{\dagger} A}\right) u \quad$ (do this recursively)
- Update avg $=\operatorname{avg}+\left(w_{j} m^{2}\right) /\left(v_{j} r\right)$

Correctness: High probability bound obtained via Chebyshev's inequality
$n=\#$ of qubits

Theorem: GLH "tractable" in $O(1)$-precision setting

\forall constants $\delta, \alpha, \beta \in(0,1]$ and $k \in O(\log n)$, GLH classically solvable in poly (n) time with probability $1-2^{-n}$.

\Uparrow

Theorem (informal)

The sparse "Guided Singular Value Estimation" problem is efficiently solvable to O (1) precision.
\square
choose constant-degree polynomial P in QSVT to "process" singular values
\rightarrow possible in $O(1)$-precision setting

Theorem (informal)

The sparse Quantum Singular Value Transform (QSVT) can be "dequantized" for $O(1)$ precision.

Choosing the polynomial

Suppose we wish to decide if A has a singular value in range $[a, b]$.
Then, roughly:
(1) Modify polynomial construction of [Low, Chuang, 2017] to compute $O(1)$-degree polynomial P s.t.

$$
\begin{array}{lll}
\forall x \in[a, b] & \Longrightarrow & P(x) \approx 1 \\
\forall x \notin[a, b] & \Longrightarrow & P(x) \approx 0
\end{array}
$$

Choosing the polynomial

Suppose we wish to decide if A has a singular value in range $[a, b]$.
Then, roughly:
(1) Modify polynomial construction of [Low, Chuang, 2017] to compute $O(1)$-degree polynomial P s.t.

$$
\begin{aligned}
& \forall x \in[a, b] \quad \Longrightarrow \quad P(x) \approx 1 \\
& \forall x \notin[a, b] \quad \Longrightarrow \quad P(x) \approx 0 .
\end{aligned}
$$

(2) Apply classical SVT algorithm to estimate $u^{\dagger} P\left(\sqrt{A^{\dagger} A}\right) u$.

Outline

(9) The problem GLH

(2) BQP-hardness of GLH within $1 /$ poly precision
(3) Classical tractibility of GLH within $O(1)$ precision
4. What does this say about Quantum PCP?

Quantum PCP conjecture

Recall: k-local Hamiltonian problem (LH)

- Input: k-local Hamiltonian H on n qubits, thresholds $0 \leq \alpha \leq \beta$ s.t. $|\alpha-\beta| \geq 1 / \operatorname{poly}(n),\|H\| \leq 1$
- Promise: $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$
- Output: Decide whether $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$

Quantum PCP conjecture

$\exists k \in O(1)$ and $b-a \in \Omega(1)$ such that k-LH is QMA-hard

Quantum PCP conjecture

Recall: k-local Hamiltonian problem (LH)

- Input: k-local Hamiltonian H on n qubits, thresholds $0 \leq \alpha \leq \beta$ s.t. $|\alpha-\beta| \geq 1 / \operatorname{poly}(n),\|H\| \leq 1$
- Promise: $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$
- Output: Decide whether $\lambda_{\min }(H) \leq \alpha$ or $\lambda_{\min }(H) \geq \beta$

Quantum PCP conjecture

$\exists k \in O(1)$ and $b-a \in \Omega(1)$ such that k-LH is QMA-hard

This work: Theorem

LH with $b-a \geq \Omega(1)$, and promise there exists ζ-samplable guiding state $|\psi\rangle$ with constant overlap with ground space, is in Merlin-Arthur (MA).

A new NLTS-inspired conjecture

NLTS conjecture [Freedman, Hastings 2014]

\exists family of $O(1)$-local n-qubit Hamiltonians $\left\{H_{n}\right\}_{n \in \mathbb{N}}$, and constant $\epsilon>0$ s.t. for any family of states $\left\{\left|\varphi_{n}\right\rangle\right\}_{n \in \mathbb{N}}$ generated by constant-depth quantum circuits, we have for any sufficiently large n :

$$
\left\langle\varphi_{n}\right| H_{n}\left|\varphi_{n}\right\rangle>\lambda_{\min }\left(H_{n}\right)+\epsilon .
$$

A new NLTS-inspired conjecture

NLTS conjecture [Freedman, Hastings 2014]

\exists family of $O(1)$-local n-qubit Hamiltonians $\left\{H_{n}\right\}_{n \in \mathbb{N}}$, and constant $\epsilon>0$ s.t. for any family of states $\left\{\left|\varphi_{n}\right\rangle\right\}_{n \in \mathbb{N}}$ generated by constant-depth quantum circuits, we have for any sufficiently large n :

$$
\left\langle\varphi_{n}\right| H_{n}\left|\varphi_{n}\right\rangle>\lambda_{\min }\left(H_{n}\right)+\epsilon .
$$

This work: NLSS conjecture

\exists family of $O(1)$-local n-qubit Hamiltonians $\left\{H_{n}\right\}_{n \in \mathbb{N}}$, and constant $\epsilon>0$ s.t. for any family of states $\left\{\left|\varphi_{n}\right\rangle\right\}_{n \in \mathbb{N}}$ allowing perfect-sampling-access (i.e. $\zeta=0$), we have for any sufficiently large n :

$$
\left\langle\varphi_{n}\right| H_{n}\left|\varphi_{n}\right\rangle>\lambda_{\min }\left(H_{n}\right)+\epsilon .
$$

Shameless self-promotion

S. Gharibian, D. Rudolph. Quantum space, ground space traversal, and how to embed multi-prover interactive proofs into unentanglement.

- Finally posted today: arXiv:2206.05243 (same work as presented at QIP 2022)
- Theme: What can one "achieve" with exponentially long quantum proofs?
- Quantum space complexity + no-go for "quantum Savitch's theorem"
- Compressing exp-length proofs into poly-size QMA(2)/unentangled proof systems
- Fooling quantum error-correcting codes with exp-length error processes

[^0]: ${ }^{1}$ We renormalize $\|H\| \leq 1$ to ensure this is well-defined.

[^1]: ${ }^{2}$ See UC Berkeley Simons Quantum Colloquium talk by Garnet Chan! (Apr 12, 2022, video available)

[^2]: ${ }^{2}$ See UC Berkeley Simons Quantum Colloquium talk by Garnet Chan! (Apr 12, 2022, video available)

[^3]: ${ }^{2}$ See UC Berkeley Simons Quantum Colloquium talk by Garnet Chan! (Apr 12, 2022, video available)

[^4]: ${ }^{2}$ See UC Berkeley Simons Quantum Colloquium talk by Garnet Chan! (Apr 12, 2022, video available)

