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Theme

Where is the “boundary” between the power of classical versus quantum computers?
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Guiding questions

1 Can one rigorously define such “boundaries”?
I “Quantum advantage” frameworks (make classical look bad)
I “Dequantization” via sampling (make classical look good)

2 Can a practically “meaningful” such boundary be found?
I Long-term: Shor’s factoring algorithm
I Shorter-term? This work?

3 What do such boundaries say about classical versus quantum physics?
I Quantum PCP conjecture:

“Natural” quantum systems can be “exponentially complex” even at high temperature
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This work

1 Formalize a central practical computational problem, GLH, from quantum chemistry
I Needs to be solved with 1/ poly precision for practical purposes

2 Show GLH is classically easy to solve with O(1) precision under “standard” sampling assumptions
I Idea: “Dequantize” the Quantum Singular Value Transform (QSVT) of [Gilyén, Su, Low, Wiebe

2019] in sparse, O(1)-precision setting

3 Show GLH is BQP-hard in worst-case to solve with 1/ poly precision
I Note: Not “quantum advantage” in usual sense, e.g. not average-case hardness

4 Quantum PCP conjecture — do sampling assumptions break the conjecture?
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Outline

1 The problem GLH

2 BQP-hardness of GLH within 1/ poly precision

3 Classical tractibility of GLH within O(1) precision

4 What does this say about Quantum PCP?
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Recall

k -local Hamiltonian problem (LH)

Input: k -local Hamiltonian H on n qubits, thresholds 0 ≤ α ≤ β s.t. |α− β| ≥ 1/ poly(n)

Promise: λmin(H) ≤ α or λmin(H) ≥ β
Output: Decide whether λmin(H) ≤ α or λmin(H) ≥ β

History:

[Kitaev 2002] LH is QMA-complete for k = 5 (QMA is Quantum Merlin-Arthur)

Since then: Many hardness results e.g. in 2D, Heisenberg model, 1D translation-invariant, etc

Variants:
I If1 |α− β| ≥ Ω(1)?

F NP-hard by classical PCP theorem
F Quantum PCP conjecture: LH is QMA-complete

1We renormalize ‖H‖ ≤ 1 to ensure this is well-defined.
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Meanwhile on Earth
Question: What are quantum chemists actually doing2?

In practice, efficient classical heuristics typically yield a good “starting/guiding state” |ψ〉

E.g. Hartree-Fock typically recovers 99% of total energy [Whitfield, Love, Aspuru-Guzik, 2013]

Idea: First, classically compute guiding state |ψ〉. Then, use quantum computer and |ψ〉 to solve LH.

The quantum part:
I Rigorous: Quantum Phase Estimation (QPE) [Abrams, Lloyd 1999], [ADLH 2005]
I Heuristic: Variational approaches (VQA) (see [Cerezo et al., 2021] for survey)

2See UC Berkeley Simons Quantum Colloquium talk by Garnet Chan! (Apr 12, 2022, video available)
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GLH

Guided local Hamiltonian problem (GLH)

Input:
1 k -local Hamiltonian H on n qubits, thresholds α < β

2 Representation of guiding state |ψ〉 ∈ (C2)⊗n

Promise:
1 λmin(H) ≤ α or λmin(H) ≥ β
2 ‖ΠH |ψ〉‖2 ≥ δ, for ΠH projector on ground space of H

Output: Decide whether λmin(H) ≤ α or λmin(H) ≥ β

Question: What is a “representation” of |ψ〉?

If “representation = sampling-access” =⇒ GLH classically solvable if α, β, δ ∈ Θ(1)

If “representation = semi-classical state” =⇒ GLH BQP-hard with |α− β| ∈ Θ(1/ poly)
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Punchline
Our result: GLH with 1/ poly precision is BQP-hard

Known: GLH with 1/ poly precision is also in BQP (i.e. can be solved efficiently quantumly)

Thus, GLH with 1/ poly precision characterizes the power of quantum computers

Punchline: Practically “meaningful” task to experimentally demonstrate “quantum advantage”?

Caveat: Our result is worst-case complexity, not average-case like e.g. Random Circuit Sampling?

Aside: semi-classical state� sampling-access (given former, can simulate latter)

Choice of representation is not bottleneck preventing 1/ poly precision classically
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Our result, formally

Recall: Guided local Hamiltonian problem (GLH)

Input: k -local Hamiltonian H on n qubits, α < β, semi-classical |ψ〉 ∈ (C2)⊗n

Promise: λmin(H) ≤ α or λmin(H) ≥ β, ‖ΠH |ψ〉‖2 ≥ δ
Output: Decide whether λmin(H) ≤ α or λmin(H) ≥ β

Semi-classical state

Any |ψ〉 ∈ (C2)⊗n s.t. there exists S ⊆ {0, 1}n of size |S| ∈ poly(n), s.t. (cf. [Grilo, Kerenidis, Sikora 2016])

|ψ〉 =
1√
|S|

∑
x∈S

|x〉.

Theorem
For any δ ∈ (0, 1/2− 1/ poly(n)), ∃α, β ∈ [0, 1] with β − α ≥ 1/ poly(n) such that GLH is BQP-hard.
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Proof sketch

Theorem

For any δ ∈ (0, 1/2− 1/ poly(n)), ∃α, β ∈ [0, 1] with β − α ≥ 1/ poly(n) such that GLH is BQP-hard.

Proof sketch.

Let x ∈ {0, 1}n be an input, and U = Um · · ·U1 a BQP circuit deciding x .

Goal: Map U to instance (H, α, β, |ψ〉) of GLH such that β − α ≥ 1/ poly(n) and

if U accepts x =⇒ λmin(H) ≤ α
if U rejects x =⇒ λmin(H) ≥ β

}
Both cases: |ψ〉 overlap ≥ δ with ground space of H

Tool 1: Feynman-Kitaev Circuit-to-Hamiltonian construction [Kitaev 1999]

Maps U to 5-local H satisfying left hand side above, where H = Hin + Hout + Hprop + Hstab.

To design |ψ〉 (right hand side above), need to modify H further
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Tool 1: Feynman-Kitaev Hamiltonian
H = Hin + Hout + Hprop + Hstab encodes action of U in low-energy history state

|ψhist〉 =
1√

m + 1

m∑
t=0

Ut · · ·U1|x〉A|0 · · · 0〉B|t〉C ,

Hin: Correct ancilla initialization at time t = 0 → 〈ψhist|Hin|ψhist〉 = 0
Hprop: Gate Ut applied at time t → 〈ψhist|Hprop|ψhist〉 = 0
Hstab: Clock register C encoded correctly in unary → 〈ψhist|Hout|ψhist〉 = 0
Hout: Penalize rejecting computation U at time t = m → 〈ψhist|Hout|ψhist〉 ∼ 1−Pr(U accepts x)

poly(m)

Case 1: U accepts with high probability (YES case)
1 |ψhist〉 low energy? Yes, 〈ψhist|H|ψhist〉 ∼ 1−Pr(U accepts x)

poly(m)

2 Guiding state |ψ〉 with large overlap with ground state of H?
I “Pre-idle” U, e.g. prepend m identity gates at beginning of U
I For ∆ ∈ poly(m), set ∆(Hin + Hprop + Hstab) + Hout.

Together: |ψ〉 := |x〉A|0〉B
(

1√
m

∑m
t=0 |t〉

)
C

pre-idle
≈ |ψhist〉

by ∆
≈ ground state of H
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Hin: Correct ancilla initialization at time t = 0 → 〈ψhist|Hin|ψhist〉 = 0
Hprop: Gate Ut applied at time t → 〈ψhist|Hprop|ψhist〉 = 0
Hstab: Clock register C encoded correctly in unary → 〈ψhist|Hout|ψhist〉 = 0
Hout: Penalize rejecting computation U at time t = m → 〈ψhist|Hout|ψhist〉 ∼ 1−Pr(U accepts x)

poly(m)

Case 1: U accepts with high probability (YES case)
1 |ψhist〉 low energy? Yes, 〈ψhist|H|ψhist〉 ∼ 1−Pr(U accepts x)

poly(m)

2 Guiding state |ψ〉 with large overlap with ground state of H?
I “Pre-idle” U, e.g. prepend m identity gates at beginning of U
I For ∆ ∈ poly(m), set ∆(Hin + Hprop + Hstab) + Hout.

Together: |ψ〉 := |x〉A|0〉B
(

1√
m

∑m
t=0 |t〉

)
C

pre-idle
≈ |ψhist〉

by ∆
≈ ground state of H
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Tool 2: Block encoding à la Ambainis
Case 2: U accepts with low probability (NO case)

Problem: In NO case, don’t know what low energy space of H looks like — how to argue about |ψ〉?
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Tool 2: Block encoding à la Ambainis
Case 2: U accepts with low probability (NO case)

Problem: In NO case, don’t know what low energy space of H looks like — how to argue about |ψ〉?

Update:

H ′ :=
α + β

2
IABC ⊗ |0〉〈0|D + HABC ⊗ |1〉〈1|D,

|ψ′〉 := |ψ〉ABC |+〉D.

where

If x is YES instance (resp. NO instance), λmin(H) ≤ α (resp. λmin(H) ≥ β)

Inspired by QMA query gadget of [Ambainis 2014] from unrelated context of PQMA[log]

Observe: H ′ block-diagonal w.r.t. D, such that:

λmin(H) ≤ α =⇒ λmin(H ′) is in |1〉〈1|D block =⇒ |ψ〉ABC |1〉D is good guiding state

λmin(H) ≥ β =⇒ λmin(H ′) is in |0〉〈0|D block =⇒ |ψ〉ABC |0〉D is good guiding state
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Outline

1 The problem GLH

2 BQP-hardness of GLH within 1/ poly precision

3 Classical tractibility of GLH within O(1) precision

4 What does this say about Quantum PCP?
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Our result, formally
Recall: Guided local Hamiltonian problem (GLH)

Input: sparse Hamiltonian H on n qubits, α < β, samplable |ψ〉 ∈ (C2)⊗n

Promise: λmin(H) ≤ α or λmin(H) ≥ β, ‖ΠH |ψ〉‖2 ≥ δ
Output: Decide whether λmin(H) ≤ α or λmin(H) ≥ β

ζ-samplable state for ζ ∈ [0,1)

Have ζ-sampling-access to |ψ〉 ∈ C2n
if all three hold:

(query access) For any i ∈ [2n], can compute ψi ∈ C in poly(n) classical time

(sampling access) Can sample in poly(n) classical time from distribution p : [2n]→ [0, 1] such that

∀j ∈ [2n] p(j) ∈

[
(1− ζ)

|ψj |2

‖|ψ〉‖2 , (1 + ζ)
|ψj |2

‖|ψ〉‖2

]

(norm approximation) Have m s.t. |m − ‖|ψ〉‖ | ≤ ζ ‖|ψ〉‖.

Note: When ζ = 0, recover [Tang 2019]’s definition from dequantization of recommender systems
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n = # of qubits

Theorem: GLH “tractable” in O(1)-precision setting

∀ constants δ, α, β ∈ (0, 1] and k ∈ O(log n), GLH classically solvable in poly(n) time with probability 1− 2−n.

~w
Theorem (informal)
The sparse “Guided Singular Value Estimation” problem is efficiently solvable to O(1) precision.~w

choose constant-degree polynomial P in QSVT to “process” singular values
→ possible in O(1)-precision setting

Theorem (informal)
The sparse Quantum Singular Value Transform (QSVT) can be “dequantized” for O(1) precision.
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Dequantizing the QSVT

Singular Value Transform (SVT)

Input: (1) query-access to s-sparse matrix A ∈ CM×N with ‖A‖ ≤ 1
(2) query-access to u ∈ CN s.t. ‖u‖ ≤ 1
(3) ζ-samplable v ∈ CN s.t. ‖v‖ ≤ 1
(4) even polynomial P ∈ R[x ] of degree d (even =⇒ for all x ∈ R, P(x) = P(−x))

Output: estimate ẑ ∈ C s.t. |ẑ − v†P(
√

A†A)u| ≤ ε

Lemma: Dequantizing SVT

∀ε ∈ (0, 1] and ζ ≤ ε/8, SVT solvable classically with probability 1− 1/ poly(N) in O∗((s2d+1)/ε2) time.
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Proof sketch for dequantizing SVT
SVT(s, ε, ζ) (singular value transform)

Input: (1) query-access to s-sparse matrix A ∈ CM×N with ‖A‖ ≤ 1
(2) query-access to u ∈ CN s.t. ‖u‖ ≤ 1
(3) ζ-samplable v ∈ CN s.t. ‖v‖ ≤ 1
(4) even polynomial P ∈ R[x ] of degree d (recall: even =⇒ for all x ∈ R, P(x) = P(−x))

Output: estimate ẑ ∈ C s.t. |ẑ − v†P(
√

A†A)u| ≤ ε

Proof sketch.

Idea (à la [Tang 2019]): Compute r random entries of 〈v ,P(
√

A†A)u〉, take arithmetic mean:

1 Set avg = 0

2 Repeat r ∈ Θ(1/ε2) times:
I Via ζ-sampling of v , sample index j ∈ {1, . . . ,N} (i.e. w.p. p(j) ≈ |vj |2 / ‖v‖2)
I Via query access, compute entry vj

I Via s-sparsity of A, compute entry j of w := P(
√

A†A)u (do this recursively)
I Update avg = avg + (wjm2)/(vj r)

Correctness: High probability bound obtained via Chebyshev’s inequality
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√

A†A)u| ≤ ε

Proof sketch.

Idea (à la [Tang 2019]): Compute r random entries of 〈v ,P(
√

A†A)u〉, take arithmetic mean:
1 Set avg = 0

2 Repeat r ∈ Θ(1/ε2) times:
I Via ζ-sampling of v , sample index j ∈ {1, . . . ,N} (i.e. w.p. p(j) ≈ |vj |2 / ‖v‖2)
I Via query access, compute entry vj

I Via s-sparsity of A, compute entry j of w := P(
√

A†A)u (do this recursively)

I Update avg = avg + (wjm2)/(vj r)

Correctness: High probability bound obtained via Chebyshev’s inequality

Sevag Gharibian (Uni Paderborn) Dequantizing the QSVT: QChemistry and QPCP June 2022 (arXiv:2111.09079) 19 / 26



Proof sketch for dequantizing SVT
SVT(s, ε, ζ) (singular value transform)

Input: (1) query-access to s-sparse matrix A ∈ CM×N with ‖A‖ ≤ 1
(2) query-access to u ∈ CN s.t. ‖u‖ ≤ 1
(3) ζ-samplable v ∈ CN s.t. ‖v‖ ≤ 1
(4) even polynomial P ∈ R[x ] of degree d (recall: even =⇒ for all x ∈ R, P(x) = P(−x))

Output: estimate ẑ ∈ C s.t. |ẑ − v†P(
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n = # of qubits

Theorem: GLH “tractable” in O(1)-precision setting

∀ constants δ, α, β ∈ (0, 1] and k ∈ O(log n), GLH classically solvable in poly(n) time with probability 1− 2−n.

~w
Theorem (informal)
The sparse “Guided Singular Value Estimation” problem is efficiently solvable to O(1) precision.~w

choose constant-degree polynomial P in QSVT to “process” singular values
→ possible in O(1)-precision setting

Theorem (informal)
The sparse Quantum Singular Value Transform (QSVT) can be “dequantized” for O(1) precision.
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Choosing the polynomial

Suppose we wish to decide if A has a singular value in range [a, b].

Then, roughly:
1 Modify polynomial construction of [Low, Chuang, 2017] to compute O(1)-degree polynomial P s.t.

∀x ∈ [a, b] =⇒ P(x) ≈ 1

∀x 6∈ [a, b] =⇒ P(x) ≈ 0.

2 Apply classical SVT algorithm to estimate u†P(
√

A†A)u.

Sevag Gharibian (Uni Paderborn) Dequantizing the QSVT: QChemistry and QPCP June 2022 (arXiv:2111.09079) 21 / 26



Choosing the polynomial

Suppose we wish to decide if A has a singular value in range [a, b].

Then, roughly:
1 Modify polynomial construction of [Low, Chuang, 2017] to compute O(1)-degree polynomial P s.t.

∀x ∈ [a, b] =⇒ P(x) ≈ 1

∀x 6∈ [a, b] =⇒ P(x) ≈ 0.

2 Apply classical SVT algorithm to estimate u†P(
√

A†A)u.

Sevag Gharibian (Uni Paderborn) Dequantizing the QSVT: QChemistry and QPCP June 2022 (arXiv:2111.09079) 21 / 26



Outline

1 The problem GLH

2 BQP-hardness of GLH within 1/ poly precision

3 Classical tractibility of GLH within O(1) precision

4 What does this say about Quantum PCP?
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Quantum PCP conjecture

Recall: k -local Hamiltonian problem (LH)

Input: k -local Hamiltonian H on n qubits, thresholds 0 ≤ α ≤ β s.t. |α− β| ≥ 1/ poly(n), ‖H‖ ≤ 1

Promise: λmin(H) ≤ α or λmin(H) ≥ β
Output: Decide whether λmin(H) ≤ α or λmin(H) ≥ β

Quantum PCP conjecture
∃k ∈ O(1) and b − a ∈ Ω(1) such that k -LH is QMA-hard

This work: Theorem
LH with b − a ≥ Ω(1), and promise there exists ζ-samplable guiding state |ψ〉 with constant overlap with
ground space, is in Merlin-Arthur (MA).
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A new NLTS-inspired conjecture

NLTS conjecture [Freedman, Hastings 2014]
∃ family of O(1)-local n-qubit Hamiltonians {Hn}n∈N, and constant ε > 0 s.t. for any family of states {|ϕn〉}n∈N
generated by constant-depth quantum circuits, we have for any sufficiently large n:

〈ϕn|Hn|ϕn〉 > λmin(Hn) + ε.

This work: NLSS conjecture
∃ family of O(1)-local n-qubit Hamiltonians {Hn}n∈N, and constant ε > 0 s.t. for any family of states {|ϕn〉}n∈N
allowing perfect-sampling-access (i.e. ζ = 0), we have for any sufficiently large n:

〈ϕn|Hn|ϕn〉 > λmin(Hn) + ε.
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Shameless self-promotion
S. Gharibian, D. Rudolph. Quantum space, ground space traversal, and how to embed multi-prover
interactive proofs into unentanglement.

Finally posted today: arXiv:2206.05243 (same work as presented at QIP 2022)

Theme: What can one “achieve” with exponentially long quantum proofs?
I Quantum space complexity + no-go for “quantum Savitch’s theorem”
I Compressing exp-length proofs into poly-size QMA(2)/unentangled proof systems
I Fooling quantum error-correcting codes with exp-length error processes
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