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The hidden subgroup problem

Suppose that
f

NS

G/H

G

X

where G is a discrete group, X is an unstructured set, f can be
computed in polynomial time, and H < G is a hidden subgroup.
The hidden subgroup problem (HSP) is the computational problem
of finding H, given f as functional input or an oracle. More
explicitly, f hides H means that f(x) = f(y) if and only if x = yh.
f must be H-periodic, and otherwise 1-to-1.

The performance of HSP is rated by the bit complexity of the
output.
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The Shor-Kitaev algorithm

Theorem (Shor-Kitaev) Suppose that G = Z* and that H < Zk
has finite index (i.e., max rank k). Then we can calculate H in
quantum polynomial time (i.e., in functional BQP), uniformly in k
and ||HHbit-

Corollary (Generalized discrete logarithm) If Ais an algorithmic
finite abelian group, then an isomorphism

0: A5 (Z)a1) x (Z)a3) x -+ % (Z] ay)
can be constructed and evaluated in quantum polynomial time.

This corollary has many applications to algorithmic number theory
and public-key cryptography.
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HSP when G is finite

Most algorithms for HSP other than Shor-Kitaev assume that the
ambient group G is finite:

e G is finite and H is normal [Hallgren-Russell-Ta-Shmal].

G finite, almost abelian [Grigni-Schulman-Vazirani-Vazirani.

G is Heisenberg over Z/p [Bacon-Childs-van-Dam].

G is finite and 2-step nilpotent [Ilvanyos-Sanselme-Santha].
G is dihedral [K.,Regev,Peikert].

e Some other cases.

HSP has polynomial quantum query complexity whenever G is
finite [Ettinger-Hgyer-Knill], but it still looks hard in cases such as
G = S,. But that is another topic.
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New negative results when G is infinite

Theorem (K.) If G =(Q,+) with standard encoding of rationals,
then HSP is NP-hard.

Theorem (K.) If G = Fj is a non-abelian free group with word
encoding of elements, then HSP is NP-hard even for normal
subgroups.

Theorem (K.) If G = Z* with unary vector encoding (i.e.,
pseudopolynomial query cost), then HSP is as hard as uSVP
(unique short lattice vector).

In this context, | first thought that Shor-Kitaev completely solves
Z¥ with standard binary encoding of vectors. Then | noticed the
finite-index hypothesis.
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A new positive result

Theorem (K.) If G = Z* with binary encoding and H < Z* is a
lattice with any rank, then H can be found in quantum polynomial
time, uniformly in k and [|H||pit.

The new algorithm begins the same way as Shor-Kitaev, but it
requires new ideas for the classical post-processing stage.

Unlike Shor-Kitaev, | do not know of any challenging instances of
hiding functions f : ZX — X for this problem; much less, useful
applications to number theory or cryptography. | cheerfully
conjecture that applications exist.
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The HSP algorithm in Zk

Suppose that f : ZK — X hides a sublattice H < Z* of some rank
£ < k. Given parameters @ > 5 > 1, we follow a version of the
standard quantum opening for this HSP:

1. Prepare an approximate Gaussian state on a cube in ZX:
We) o< Y, exp(—7[|%[13/5%)I%)
XEZX
(%[l < Q/2

2. Apply the hiding function f to |yg) in unitary form:
Urlve) o<Z,e><P(—7t||?<||§/52)\?, f(X))

(As usual, Ur must use uncomputation to erase scratch work.)
Throw away the output, leaving a partially measured input

state |yi4v) € C2((Z/Q)%).
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Fourier measurement and dual samples

3. Apply the quantum Fourier operator F(Z/Q)k to |yyay) and
measure a Fourier mode ¥p € (Z/Q)¥. Rescale ¥y to obtain:

—

h=1g € R/Z)"

The vector y; is approximately a randomly chosen element of the
dual group
H#* =7k /H < (R/Z)*,

Explicitly, H# consists of those y such that X-y € Z for all X € H.
The sample y; also has noise due to both Gaussian blur and

discretization. This noise is exponentially small, but so is the
feature scale of H#.
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Examples of H7

Here are two examples of H# and a noisy sample y; € H7.

ol

(R/Z)? (R/Z)?

On the left, H has full rank and H# is a finite group. On the right,
when H has lower rank, H# a striped pattern whose connected
subgroup HfL is a complicated torus.
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Solving for H# from random samples

The easy case
Goal: Find H# < (R/Z) from noisy random samples y; € H#.

Shor-Kitaev: If H has full rank and H# is finite, then we can find
rational approximations to the coordinates of y; using the
continued fraction algorithm. In this case, O(log|H#|) samples
generate H# with high probability. (For instance, when

H = hZ <7, then H# = $7,/h <R/Z, and we can succeed with
one or two samples.)

New: If H has rank £ < k, then dim H# = k —£. Any one
coordinate of y; is uniformly random in R/Z. Rational
approximation of the coordinates does not work. Happily, the LLL
lattice algorithm works, even in high dimensions.
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Solving for H# from random samples
The hard case

A randomly chosen yo € H# almost surely densely generates the
connected subgroup Hfﬁ. We look for multiples of y; € H# near 0
by lifting the dense orbit to a lattice one dimension higher.

4. Using a single sample y;, make a lattice L < R¥*! with basis:

S oo |
617627-«-7610()/177)

Here S>> T > R, and 1/R is a lower bound for the feature
scale of H#. Then calculate an LLL basis of short vectors of

L:
517?‘27‘"’_6/("1‘1 € LSRk+1

The first k — £+ 1 vectors approximately span Ta(H# ®R).
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Lifting a dense orbit to a lattice

J1] [ V

0

We lift a dense orbit (approximately) in H# < (R/Z)* to an
anisotropic lattice L <R *! in the next dimension.
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Denoising the data
5. Put the matrix
B =[b1,by,..., bx—r+1]

in CREF form by inverting an appropriate square submatrix A.
When k,k—/¢>> 1, we can find a good choice with a greedy
algorithm based on the Cauchy-Binet formula

det(BTB) =Y (det A)>.
A

6. The entries of A~1B are approximate rational numbers that
can be denoised with the continued fraction algorithm. This
yields a rational basis for

Ts(H* @R) = Hg <R,

and thus a rational basis for Hp = H®Q R.
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The last step

Where we stand: Using the quantum part of the algorithm, we
obtained a noisy sample y; € H* < (R/Z)k, where H < Z* is the
hidden subgroup. We then used y; to define a lattice L < R¥+1.
We can apply the LLL algorithm to L and denoise the result to find
a rational basis for Hp = H® R.

To finish the algorithm:

7. We can use the Smith normal form algorithm to convert a
rational basis for Hg to an integral basis for H; = Hg NZX.
Since the original H < Z* has finite index in its rational closure
Hi, we can use the standard Shor-Kitaev algorithm to find H.
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Open problems

e Especially when the ambient dimension k is large, it is more
efficient to find H using m > 1 samples y; € H# < (R/Z)k
and apply LLL to a lattice L < R¥*t™. This leads to a tradeoff
between classical and quantum resources, that also depends
on the complexity of the hiding function f : Zk — X.

e Is there a challenging hiding function f : Z*¥ — X which is
H-periodic and otherwise injective, and H has lower rank
£ < k7 Challenging here means that the algorithm to compute
f does not reveal H directly, nor with the aid of an efficient
companion classical algorithm.

e There should be a mutual generalization of this algorithm and
the Eisentriger-Hallgren-Kitaev-Song algorithm for H < R
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