The hidden subgroup problem for \mathbb{Z}^{k} for infinite-index subgroups

Greg Kuperberg

UC Davis

June 13, 2022
(E-print in preparation.)

The hidden subgroup problem

Suppose that

where G is a discrete group, X is an unstructured set, f can be computed in polynomial time, and $H \leq G$ is a hidden subgroup. The hidden subgroup problem (HSP) is the computational problem of finding H, given f as functional input or an oracle. More explicitly, f hides H means that $f(x)=f(y)$ if and only if $x=y h$. f must be H-periodic, and otherwise 1-to-1.

The performance of HSP is rated by the bit complexity of the output.

The Shor-Kitaev algorithm

Theorem (Shor-Kitaev) Suppose that $G=\mathbb{Z}^{k}$ and that $H \leq \mathbb{Z}^{k}$ has finite index (i.e., max rank k). Then we can calculate H in quantum polynomial time (i.e., in functional BQP), uniformly in k and $\|H\|_{\text {bit }}$.

Corollary (Generalized discrete logarithm) If A is an algorithmic finite abelian group, then an isomorphism

$$
\phi: A \xrightarrow{\cong}\left(\mathbb{Z} / a_{1}\right) \times\left(\mathbb{Z} / a_{2}\right) \times \cdots \times\left(\mathbb{Z} / a_{\ell}\right)
$$

can be constructed and evaluated in quantum polynomial time.
This corollary has many applications to algorithmic number theory and public-key cryptography.

HSP when G is finite

Most algorithms for HSP other than Shor-Kitaev assume that the ambient group G is finite:

- G is finite and H is normal [Hallgren-Russell-Ta-Shma].
- G finite, almost abelian [Grigni-Schulman-Vazirani-Vazirani].
- G is Heisenberg over \mathbb{Z} / p [Bacon-Childs-van-Dam].
- G is finite and 2-step nilpotent [Ivanyos-Sanselme-Santha].
- G is dihedral [K.,Regev,Peikert].
- Some other cases.

HSP has polynomial quantum query complexity whenever G is finite [Ettinger-Høyer-Knill], but it still looks hard in cases such as $G=S_{n}$. But that is another topic.

New negative results when G is infinite

Theorem (K.) If $G=(\mathbb{Q},+)$ with standard encoding of rationals, then HSP is NP-hard.

Theorem (K.) If $G=F_{k}$ is a non-abelian free group with word encoding of elements, then HSP is NP-hard even for normal subgroups.

Theorem (K.) If $G=\mathbb{Z}^{k}$ with unary vector encoding (i.e., pseudopolynomial query cost), then HSP is as hard as uSVP (unique short lattice vector).

In this context, I first thought that Shor-Kitaev completely solves \mathbb{Z}^{k} with standard binary encoding of vectors. Then I noticed the finite-index hypothesis.

A new positive result

Theorem (K.) If $G=\mathbb{Z}^{k}$ with binary encoding and $H \leq \mathbb{Z}^{k}$ is a lattice with any rank, then H can be found in quantum polynomial time, uniformly in k and $\|H\|_{\text {bit }}$.

The new algorithm begins the same way as Shor-Kitaev, but it requires new ideas for the classical post-processing stage.

Unlike Shor-Kitaev, I do not know of any challenging instances of hiding functions $f: \mathbb{Z}^{k} \rightarrow X$ for this problem; much less, useful applications to number theory or cryptography. I cheerfully conjecture that applications exist.

The HSP algorithm in \mathbb{Z}^{k}

Suppose that $f: \mathbb{Z}^{k} \rightarrow X$ hides a sublattice $H \leq \mathbb{Z}^{k}$ of some rank $\ell \leq k$. Given parameters $Q \gg S \gg 1$, we follow a version of the standard quantum opening for this HSP:

1. Prepare an approximate Gaussian state on a cube in \mathbb{Z}^{k} :

$$
\left|\psi_{G}\right\rangle \propto \sum_{\substack{\vec{x} \in \mathbb{Z}^{k} \\\|\bar{x}\|_{\propto}<Q / 2}} \exp \left(-\pi\|\vec{x}\|_{2}^{2} / S^{2}\right)|\vec{x}\rangle
$$

2. Apply the hiding function f to $\left|\psi_{G}\right\rangle$ in unitary form:

$$
U_{f}\left|\psi_{G}\right\rangle \propto \sum_{\vec{x}} \exp \left(-\pi\|\vec{x}\|_{2}^{2} / S^{2}\right)|\vec{x}, f(\vec{x})\rangle
$$

(As usual, U_{f} must use uncomputation to erase scratch work.) Throw away the output, leaving a partially measured input state $\left|\psi_{H+\vec{v}}\right\rangle \in \ell^{2}\left((\mathbb{Z} / Q)^{k}\right)$.

Fourier measurement and dual samples

3. Apply the quantum Fourier operator $F_{(\mathbb{Z} / Q)^{k}}$ to $\left|\psi_{H+\vec{v}}\right\rangle$ and measure a Fourier mode $\vec{y}_{0} \in(\mathbb{Z} / Q)^{k}$. Rescale \vec{y}_{0} to obtain:

$$
\vec{y}_{1}=\frac{\vec{y}_{0}}{Q} \in(\mathbb{R} / \mathbb{Z})^{k}
$$

The vector \vec{y}_{1} is approximately a randomly chosen element of the dual group

$$
H^{\#}=\widehat{\mathbb{Z}^{k} / H} \leq(\mathbb{R} / \mathbb{Z})^{k}
$$

Explicitly, $H^{\#}$ consists of those \vec{y} such that $\vec{x} \cdot \vec{y} \in \mathbb{Z}$ for all $\vec{x} \in H$.
The sample \vec{y}_{1} also has noise due to both Gaussian blur and discretization. This noise is exponentially small, but so is the feature scale of $H^{\#}$.

Examples of $H^{\#}$

Here are two examples of $H^{\#}$ and a noisy sample $\vec{y}_{1} \underset{\sim}{\in} H^{\#}$.

On the left, H has full rank and $H^{\#}$ is a finite group. On the right, when H has lower rank, $H^{\#}$ a striped pattern whose connected subgroup $H_{1}^{\#}$ is a complicated torus.

Solving for $H^{\#}$ from random samples

The easy case
Goal: Find $H^{\#} \leq(\mathbb{R} / \mathbb{Z})^{k}$ from noisy random samples $\vec{y}_{1} \in H^{\#}$.
Shor-Kitaev: If H has full rank and $H^{\#}$ is finite, then we can find rational approximations to the coordinates of \vec{y}_{1} using the continued fraction algorithm. In this case, $O\left(\log \left|H^{\# \mid}\right|\right)$ samples generate $H^{\#}$ with high probability. (For instance, when $H=h \mathbb{Z} \leq \mathbb{Z}$, then $H^{\#}=\frac{1}{h} \mathbb{Z} / h \leq \mathbb{R} / \mathbb{Z}$, and we can succeed with one or two samples.)

New: If H has rank $\ell<k$, then $\operatorname{dim} H^{\#}=k-\ell$. Any one coordinate of \vec{y}_{1} is uniformly random in \mathbb{R} / \mathbb{Z}. Rational approximation of the coordinates does not work. Happily, the LLL lattice algorithm works, even in high dimensions.

Solving for $H^{\#}$ from random samples

The hard case
A randomly chosen $\vec{y}_{0} \in H^{\#}$ almost surely densely generates the connected subgroup $H_{1}^{\#}$. We look for multiples of $\vec{y}_{1} \underset{\sim}{\in} H^{\#}$ near $\overrightarrow{0}$ by lifting the dense orbit to a lattice one dimension higher.
4. Using a single sample \vec{y}_{1}, make a lattice $L \leq \mathbb{R}^{k+1}$ with basis:

$$
\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{k},\left(\widetilde{\vec{y}}_{1}, \frac{1}{T}\right)
$$

Here $S \gg T \gg R$, and $1 / R$ is a lower bound for the feature scale of $H^{\#}$. Then calculate an LLL basis of short vectors of L:

$$
\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{k+1} \in L \leq \mathbb{R}^{k+1}
$$

The first $k-\ell+1$ vectors approximately span $T_{\overrightarrow{0}}\left(H^{\#} \oplus \mathbb{R}\right)$.

Lifting a dense orbit to a lattice

We lift a dense orbit (approximately) in $H^{\#} \leq(\mathbb{R} / \mathbb{Z})^{k}$ to an anisotropic lattice $L \leq \mathbb{R}^{k+1}$ in the next dimension.

Denoising the data

5. Put the matrix

$$
B=\left[\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{k-\ell+1}\right]
$$

in CREF form by inverting an appropriate square submatrix A. When $k, k-\ell \gg 1$, we can find a good choice with a greedy algorithm based on the Cauchy-Binet formula

$$
\operatorname{det}\left(B^{T} B\right)=\sum_{A}(\operatorname{det} A)^{2} .
$$

6. The entries of $A^{-1} B$ are approximate rational numbers that can be denoised with the continued fraction algorithm. This yields a rational basis for

$$
T_{\overrightarrow{0}}\left(H^{\#} \oplus \mathbb{R}\right)=H_{\mathbb{R}}^{\perp} \leq \mathbb{R}^{k+1}
$$

and thus a rational basis for $H_{\mathbb{R}}=H \otimes \mathbb{R}$.

The last step

Where we stand: Using the quantum part of the algorithm, we obtained a noisy sample $\vec{y}_{1} \underset{\sim}{ } H^{\#} \leq(\mathbb{R} / \mathbb{Z})^{k}$, where $H \leq \mathbb{Z}^{k}$ is the hidden subgroup. We then used \vec{y}_{1} to define a lattice $L \leq \mathbb{R}^{k+1}$. We can apply the LLL algorithm to L and denoise the result to find a rational basis for $H_{\mathbb{R}}=H \otimes \mathbb{R}$.

To finish the algorithm:
7. We can use the Smith normal form algorithm to convert a rational basis for $H_{\mathbb{R}}$ to an integral basis for $H_{1}=H_{\mathbb{R}} \cap \mathbb{Z}^{k}$. Since the original $H \leq \mathbb{Z}^{k}$ has finite index in its rational closure H_{1}, we can use the standard Shor-Kitaev algorithm to find H.

Open problems

- Especially when the ambient dimension k is large, it is more efficient to find H using $m>1$ samples $\vec{y}_{1} \in H^{\#} \leq(\mathbb{R} / \mathbb{Z})^{k}$ and apply LLL to a lattice $L \leq \mathbb{R}^{k+m}$. This leads to a tradeoff between classical and quantum resources, that also depends on the complexity of the hiding function $f: \mathbb{Z}^{k} \rightarrow X$.
- Is there a challenging hiding function $f: \mathbb{Z}^{k} \rightarrow X$ which is H-periodic and otherwise injective, and H has lower rank $\ell<k$? Challenging here means that the algorithm to compute f does not reveal H directly, nor with the aid of an efficient companion classical algorithm.
- There should be a mutual generalization of this algorithm and the Eisenträger-Hallgren-Kitaev-Song algorithm for $H \leq \mathbb{R}^{k}$.

