Verifiable Quantum
 Advantage without Structure

Takashi Yamakawa (NTT Social Informatics Laboratories)
Mark Zhandry (NTT Research \& Princeton University)

Can quantum computers offer a superpolynomial computational advantage?

Can such advantage be efficiently verified?

Real-world

Is structure needed for quantum advantage?

Current state of complexity theory
\Rightarrow no unconditional results

Option 1: Oracle Separations

Classical algorithms

Quantum algorithms

> no structure = random oracle

Option 2: Conditional Separations

Prove advantage under some computational assumption

All existing oracle-free advantage in NP relies on period-finding

All existing structure-less sources of advantage are sampling problems

[Aaronson-Ambanis'09]: under a plausible conjecture

S potentially computationally unbounded
Basically, random oracles shouldn't help separating BQP from BPP

This work: verifiable quantum advantage without structure

```
Results: relative to random oracle with probability 1:
\existsNP search problem in BQP \BPP
\existsOWF,CRHFs, signatures that are classically hard but quantumly easy
Assuming classically hard PKE, \existsPKE that is classically hard but quantumly easy
\existspublicly verifiable proof of quantumness with minimal rounds
Under the AA conjecture, \exists certifiable randomness with minimal rounds
```

Our Construction

High-dimensional, Large-alphabet, Linear Code C

Random Subset of x-coordinates

Determined by querying random oracle

Random Subset of y-coordinates

Repeat for all coordinates

Questions:

- Why classically hard?
- Why quantumly easy?
- What code to use?

Why/when should it be classically hard?

Domain-constrained Linear Equations

$$
\text { [Ajtai'96]: Random linear code + low } L_{2} \text { norm (SIS) }
$$

[Applebaum-Haramaty-Ishai-Kushilevitz-Vaikuntanathan'17]
[Yu-Zhang-Weng-Guo-Li'17]: Random binary linear code
[Brakerski-Lyubashevsky- + low Hamming weight
Vaikuntanathan-Wichs'18]
These seem likely to be (quantum) hard

Def: $\operatorname{Dist}\left(c, S_{1} \times S_{2} \times \ldots \times S_{n}\right):=\#\left\{i: c_{i} \notin S_{i}\right\} / n$

Def: C is list recoverable if $\exists \delta, \varepsilon, \varepsilon^{\prime}$ such that, if
$\left|S_{1}\right|,\left|S_{2}\right|, \ldots,\left|S_{n}\right| \leq 2^{n}$, then

$$
\#\left\{c \in C: \operatorname{Dist}\left(c, S_{1} \times S_{2} \times \ldots \times S_{n}\right) \leq \delta\right\} \leq 2^{n^{n^{\prime}}}
$$

Examples:

- Folded Reed-Solomon [Guruswami-Rudra’05]
- Random Linear codes [Rudra-Wootters'17]

Thm: list recoverable \Rightarrow classically intractable
Concretely, $\operatorname{Pr}[$ poly (n) queries give solution $] \leq 2^{n^{\varepsilon^{\prime}}} \times 2^{-\delta n}$
[Haitner-Ishai-Omri-Shaltiel'15]:
List recovery \rightarrow parallel hashing

Why/when should it be quantumly easy?

"Multiplying" quantum states [Regev’05]

$$
\sum_{x} \alpha_{x}|x\rangle
$$

Switch to Fourier Domain: Convolution

$\sum_{x} \hat{\alpha}_{x}|x\rangle$
*
$\sum_{y} \hat{\beta}_{y}|y\rangle$

$$
\sum_{x, y} \hat{\alpha}_{x} \hat{\beta}_{y}|x+y\rangle
$$

1. Construct separately:

$$
\left(\sum_{x} \hat{\alpha}_{x}|x\rangle\right) \otimes\left(\sum_{y} \hat{\beta}_{y}|y\rangle\right)=\sum_{x, y} \hat{\alpha}_{x} \hat{\beta}_{y}|x, y\rangle
$$

2. Add "in superposition":

$$
\sum_{x, y} \hat{\alpha}_{x} \hat{\beta}_{y}|x, y\rangle \rightarrow \sum_{x, y} \hat{\alpha}_{x} \hat{\beta}_{y}|x, y, x+y\rangle
$$

3. Decode $x+y \rightarrow(x, y)$ in reverse:

$$
\sum_{x, y} \hat{\alpha}_{x} \hat{\beta}_{y}|x, y, x+y\rangle \rightarrow \sum_{x, y} \hat{\alpha}_{x} \hat{\beta}_{y}|x+y\rangle
$$

Applying to our construction
$\alpha_{x}=$ indicator for C
$\beta_{x}=$ indicator for valid coordinates
Product $=$ solutions to our problem

What is the decoding problem?

The dual code C^{\perp}

β_{x} for 1 dimension

$$
x+y=\begin{aligned}
& \text { (dual codeword) } \\
& +(\text { random errors in } \approx 1 / 2 \text { coordinates })
\end{aligned}
$$

Thm: Can decode efficiently whp if C^{\perp} is listdecodable for $1 / 2+\varepsilon$ fraction of errors

Good news: Dual of Folded RS is another
Folded RS, has essentially optimal list-decoding

Challenge: In general, "whp" decoding not good enough

Error terms in decoding naively get multiplied by exponential
[Regev’05]: error prob $\ll N^{-1} \longrightarrow$ still small after multiplying
Our work: error prob $\gg N^{-1} \longrightarrow$ delicate analysis needed

Applications

1. NP search problem in BQP \BPP

$$
\begin{aligned}
R^{O} & :\{0,1\}^{n} \times \Sigma^{n} \rightarrow\{0,1\} \\
R^{O}(x, w) & := \begin{cases}1 & \text { if } w \in C \wedge O\left(i \| w_{i}\right)=x_{i} \forall i \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

2. Classical/Quantum Separations for Crypto

$$
\begin{aligned}
O W F^{O} & : C \rightarrow\{0,1\}^{n} \\
O W F^{O}(c) & :=O\left(1 \| c_{1}\right)\left\|O\left(2 \| c_{2}\right)\right\| \cdots \| O\left(n \| c_{n}\right)
\end{aligned}
$$

3. Proof of Quantumness

Def: Proof of Quantumness

[Brakerski-Christiano-Mahadev-Vazirani-Vidick'18]

$$
\xrightarrow{c \in C: O\left(i \| c_{i}\right)=0 \forall i}
$$

Uniform (oracle-independent) adversaries

$$
\stackrel{r \leftarrow\{0,1\}^{n}}{\stackrel{\rightharpoonup}{\in \in C: O\left(r\|i\| c_{i}\right)=0 \forall} i}
$$

Thm ([Chung-Guo-Liu-Qian'20]): Salting defeats non-uniformity

Oracle-dependent non-uniform adversaries

4. Certifiable Randomness

Thm: AA conjecture \Rightarrow c has min-entropy

Non-uniform adversaries $\operatorname{Ext}(s, c)$

Is it practical?

Thanks!

