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Can	quantum computers	
offer	a	superpolynomial

computational	advantage?



Can	such	advantage	
be	efficiently	verified?

Real-world	
impact	 verified



Current	state	of	complexity	theory	
⟹ no	unconditional	results

Is	structure needed	for	
quantum	advantage?
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Option	1:	Oracle	Separations

vs

Classical	algorithms Quantum	algorithms

no	structure	=	random	oracle



Option	2:	Conditional	Separations

Prove	advantage	under	some	computational	assumption

StructureNo	structure

SKE									RO								classical	PKE
[Impagliazzo-Rudich’89]

Our	take:



Verifiable Structureless

[Bernstein–Vazirani’92,	
Simon’94]:	BQPA ⊈ BPPA

[Raz-Tal’19]:	BQPA ⊈ PHA[Watrous’00]:	BQPA ⊈ MAA

[Shor’94]:	Factoring,	discrete	log
[Hallgren’02]:	Pell’s	eqns,	principal	ideal

[Babai-Beals-Seress’09]:	Matrix	
group	membership

[Bremner-Jozsa-Shepherd’10,	Aaronson-
Arkhipov’11]:	simulating	quantum	circuits

[Brakerski-Christiano-Mahadev-
Vazirani-Vidick’18]:	from	LWE

[Aaronson’09]:	Fourier	fishing
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All	existing	oracle-free	
advantage	in	NP relies	
on	period-finding

Basically,	random	oracles	shouldn’t	
help	separating	BQP from	BPP

[Aaronson-Ambanis’09]:	under	a	plausible	conjecture

RO
0/1

ROS
S potentially	computationally	unbounded

≈0/1

All	existing	structure-less	
sources	of	advantage	are	

sampling	problems



This	work:	verifiable	quantum	advantage	without	structure

Results:	relative	to	random	oracle	with	probability	1:

∃NP	search problem	in	BQP	\ BPP

∃OWF,	CRHFs,	signatures	that	are	classically	hard	but	quantumly easy

Assuming	classically	hard	PKE,	∃PKE	that	is	classically	hard	but	quantumly easy

∃publicly	verifiable	proof	of	quantumness with	minimal	rounds

Under	the	AA	conjecture,	∃ certifiable	randomness	with	minimal	rounds

Can	replace	RO	with	SHA256	to	obtain	conjectured	non-relativized	versions



Our	Construction



High-dimensional,	Large-alphabet,	Linear	Code

Printed by Wolfram Mathematica Student Edition



Random	Subset	of	x-coordinates

Printed by Wolfram Mathematica Student Edition

Determined	by	querying	random	oracle



Printed by Wolfram Mathematica Student Edition

Random	Subset	of	y-coordinates

Repeat	for	all	coordinates



Questions:
• Why	classically	hard?
• Why	quantumly easy?
• What	code	to	use?



Why/when	should	it	
be	classically	hard?



Domain-constrained	Linear	Equations

[Ajtai’96]:	Random	linear	code	+	low	L2 norm	(SIS)

[Applebaum-Haramaty-Ishai-
Kushilevitz-Vaikuntanathan’17]	

[Yu-Zhang-Weng-Guo-Li’17]
[Brakerski-Lyubashevsky-

Vaikuntanathan-Wichs’18]

Random	binary	linear	code	
+	low	Hamming	weight

These	seem	likely	to	be	(quantum)	hard

:



Def:	Dist(c	,	S1×S2×…×Sn)	:=	#{	i :	ci∉Si }	/	n

Def:	C	is	list	recoverable if	∃δ,ε,ε’	such	that,	if	
|S1|,|S2|,…,|Sn|	≤	2n

ε,	then	
#{	c∊C :	Dist(c	,	S1×S2×…×Sn)	≤	δ }	≤	2n

ε’

Thm:	list	recoverable									classically	intractable
Concretely,	Pr[poly(n)	queries	give	solution]	≤	2nε’ × 2-δn

Examples:
- Folded	Reed-Solomon	[Guruswami-Rudra’05]
- Random	Linear	codes	[Rudra-Wootters’17]

[Haitner-Ishai-Omri-Shaltiel’15]:	
List	recovery	à parallel	hashing



Why/when	should	it	
be	quantumly easy?



“Multiplying”	quantum	states	
[Regev’05]



× =

Ignoring	normalization



Switch	to	Fourier	Domain:	Convolution

* =



3.	Decode																													in	reverse:	

1.	Construct	separately:

2.	Add	“in	superposition”:



* =



* =



Example	[Regev’05]:

quantum	hardness	of	SIS quantum	hardness	of	LWE

Primal	domain:

indicator	for	linear	code	

Product	≈	short	vectors	in		

aka	SIS

=
Fourier	domain:

= indicator	for	

Step	3	≈	bounded	dist.	decoding

aka	LWE



Applying	to	our	construction



indicator	for

Product	=	solutions	to	our	problem

=
�x indicator	for	valid	coordinates=



What	is	the	decoding	problem?



Printed by Wolfram Mathematica Student Edition

The	dual	code



for	1	dimension complex	phase
0



(dual	codeword)	
+	(random	errors	in	≈	½	coordinates)

Thm:	Can	decode	efficiently	whp if	C⟂ is	list-
decodable for	½+ε	fraction	of	errors

Good	news:	Dual	of	Folded	RS	is	another	
Folded	RS,	has	essentially	optimal	list-decoding



Challenge:	In	general,	“whp”	decoding	not	good	enough

Actual	convolution	theorem:X

x,y

↵̂x�̂y|x+ yi  !
p
N

X

x

↵x�x|xi

Exponential!

Error	terms	in	decoding	naively	get	multiplied	by	exponential

[Regev’05]:	error	prob ⌧ N�1 still	small	after	multiplying
� N�1 delicate	analysis	neededOur	work:	error	prob



Applications



1.	NP	search	problem	in	BQP	\ BPP

R
O : {0, 1}n ⇥ ⌃n ! {0, 1}

R
O(x,w) :=

(
1 if w 2 C ^O(i||wi) = xi8i
0 otherwise



2.	Classical/Quantum	Separations	for	Crypto

OWF
O : C ! {0, 1}n

OWF
O(c) := O(1||c1) || O(2||c2) || · · · || O(n||cn)



3.	Proof	of	Quantumness



Def:	Proof	of	Quantumness
[Brakerski-Christiano-Mahadev-Vazirani-Vidick’18]	

1 0



Uniform	(oracle-independent)	adversaries

r  {0, 1}n

Oracle-dependent	non-uniform	adversaries

Thm ([Chung-Guo-Liu-Qian’20]):
Salting	defeats	non-uniformity

c 2 C : O(i||ci) = 08i

c 2 C : O(r||i||ci) = 08i



4.	Certifiable	Randomness



Def:	Certifiable	Randomness	
[Brakerski-Christiano-Mahadev-Vazirani-Vidick’18]

111010110001001110000001011… ⟂ or 11101011000100111000000…

10010 10010



Uniform	adversaries

c 2 C : O(i||ci) = 08i

s

Ext(s, c)

Thm:	AA	conjecture									c has	min-entropy					



Uniform	adversaries

r  {0, 1}n

Non-uniform	adversaries

c 2 C : O(i||ci) = 08i

c 2 C : O(r||i||ci) = 08i

s

Ext(s, c)

Ext(s, c)

Problem:	[Chung-Guo-Liu-Qian’20]
naively	requires	large	salts

r, s



Is	it	practical?



Thanks!


