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Why care about missing data?

The best solution to handle missing data is to have none.

– R.A. Fisher

Consider a complete-case analysis with an n× d matrix, where each entry is
observed independently with probability p = 0.99.

• When d = 5, around 95% of observations are retained

• When d = 300, only around 5% of observations are retained.

Missingness represents one of the most common gaps between theory and
practice; it can render methodology unreliable or inapplicable.
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Missingness mechanisms

Image credit: Richard McElreath

The simplest setting is where data are MCAR; it makes the analysis is much
easier and more interpretable (Loh & Wainwright, 2012; Belloni, Rosenbaum & Tsybakov, 2017; Loh &

Tan, 2018; Zhu, Wang & S., 2019; Elsener & van de Geer, 2019; Cai & Zhang, 2019; Follain, Wang & S., 2022).
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Formal setting

Given x = (x1, . . . , xd) ∈
∏d
j=1 Xj =: X and ω = (ω1, . . . , ωd) ∈ {0, 1}d,

define the jth component of x ◦ ω ∈∏d
j=1(Xj ∪ {⋆}) by

(x ◦ ω)j :=
{
xj if ωj = 1
⋆ if ωj = 0.

We observe independent copies of the random vectorX ◦Ω, where (X,Ω) takes
values in X × {0, 1}d. Our aim is to test the MCAR null hypothesis

H0 : X ⊥⊥ Ω.

Write S := {S ⊆ [d] : P(Ω = 1S) > 0} for the set of possible observation
patterns. Let PS denote the distribution of XS := (Xj)j∈S conditional on
Ω = 1S , and let PS := (PS : S ∈ S).
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Little’s test

For Gaussian data where all pairs of variables are observed together, the EM
algorithm can be used to find MLEs for the population mean and covariance
matrix.

Little (1988) estimates means within each observation pattern and compares to
null MLEs with LR test:
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Fuchs’ test

When X is discrete and complete cases are available ([d] ∈ S), the EM algorithm
can be used to find the MLE for the population distribution.

Fuchs (1982) derived the LR test statistic that compares this to observed counts.
With a large number of complete cases its null distribution is approximately χ2.
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Nonparametric tests of consistency

For S1, S2 ∈ S with S1 ∩ S2 ̸= ∅, and ℓ ∈ {1, 2}, let PS1∩S2

Sℓ
denote the

marginal distribution of PSℓ
on XS1∩S2

.

We say that PS is consistent if P
S1∩S2

S1
= PS1∩S2

S2
for all S1, S2 ∈ S with

S1 ∩ S2 ̸= ∅.

1
P 1
{1,2} ̸= P 1

{1,5}

2

3

4

5

P{1,2}

P{2,3}

P{3,4}

P{4,5}

P{1,5}

We can rule out H0 if PS is not consistent, and this motivates two-sample tests
of consistency (Li & Yu, 2015; Michel et al., 2021).
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Testing consistency is not sufficient

There exist non-MCAR settings where all consistency tests have trivial power.
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We can rule out MCAR if ρ > 1/2.
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Our methodological aims

We would like to introduce methods that:

▶ Do not rely on parametric assumptions;

▶ Can be used for any S, without the need for complete cases (or data on
each pair of variables);

▶ Have power against all detectable alternatives.

If X ∼ N(0, 1) and Ω = 1{X≥0}, then X ◦ Ω d
= X ′ ◦ Ω′, where X ′ and Ω′ are

independent, with X ′ having a folded normal distribution and Ω′ ∼ Bern(1/2).
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Compatibility

We say PS is compatible if there exists a distribution P on X whose marginal
distribution on XS is PS , for each S ∈ S.

▶ If S =
{
{1}, . . . , {d}

}
, then any PS is compatible.

▶ If [d] ∈ S then compatibility is equivalent to consistency∗.

▶ If S =
{
{1, 2}, {2, 3}, {1, 3}

}
, then consistency is not sufficient for

compatibility.

Write P0
S for the set of compatible PS.

∗More generally, compatibility is equivalent to consistency if S is decomposable (Lauritzen &
Spiegelhalter, 1988).
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Compatibility

If H0 holds, then XS
d
= XS |{Ω = 1S} ∼ PS for each S ∈ S, so the distribution

of X is compatible.

On the other hand, if PS ∈ P0
S , then there exists a distribution P on X such

that, if X̃ ∼ P is independent of (X,Ω), then

X̃ ◦ Ω d
= X ◦ Ω.

But the distribution of (X̃,Ω) satisfies H0.
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Compatibility

H0 =⇒ PS ∈ P0
S and PS ∈ P0

S =⇒ cannot rule out H0.

PS compatible

Undetectable alternatives

H0 : X ⊥⊥ Ω
MCAR

PS incompatible
Detectable(?) alternatives

The best we can do is test the compatibility of PS.
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Testing compatibility

We slightly change our model. For fixed S ⊆ 2[d], distributions (PS : S ∈ S)
with PS on XS , and deterministic sample sizes nS := (nS : S ∈ S) we observe

XS,1, . . . , XS,nS

iid∼ PS ∀S ∈ S, independently.

With this data we aim to test

H ′
0 : PS ∈ P0

S .

In fact, tests of compatibility are needed in other areas beyond missing data.
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Quantum contextuality

‘...measurements of quantum observables cannot simply be thought of as
revealing pre-existing values’ (Wikipedia); see Bell (1966).

M. C. Escher (Cunha, 2019)
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P{1,2}

P{2,3}

P{3,4}

P{4,5}

P{1,5}

Other relevant areas include expert systems (Lauritzen & Spiegelhalter, 1988), meta
analysis (Massa & Lauritzen, 2010), relational database theory (Abramsky, 2013) and
quantitative risk management (Puccetti & Rüschendorf, 2012).
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Kellerer characterisation

Let GS be the set of sequences (fS : S ∈ S), where fS : XS → [−1,∞) is
bounded and upper semi-continuous. Take

G+
S :=

{
fS ∈ GS : inf

x∈X

∑

S∈S
fS(xS) ≥ 0

}
.

Theorem (Kellerer, 1984). We have PS ∈ P0
S if and only if

∑

S∈S

∫

XS

fS(xS) dPS(xS) ≥ 0 for all fS ∈ G+
S .

This can be regarded as a generalisation of Farkas’s lemma (Farkas, 1902), which
underpins the theory of linear programming.
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Incompatibility index

Definition. Define the incompatibility index

R(PS) := sup
fS∈G+

S

R(PS, fS),

where

R(PS, fS) := − 1

|S|
∑

S∈S

∫

XS

fS(xS) dPS(xS).

Since we may take fS ≡ 0 ∈ G+
S , we have R(PS) ≥ 0, and by Kellerer’s

characterisation, R(PS) = 0 iff PS ∈ P0
S .

We also have R(PS) ≤ 1.
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Dual form of incompatibility index

Let PS denote the set of all sequences (PS : S ∈ S), where PS is a distribution
on XS .

Theorem. Suppose that Xj is a locally compact Hausdorff space, for each
j ∈ [d], and that every open set in X is σ-compact. Then for any PS ∈ PS,

R(PS) = inf
{
ϵ ∈ [0, 1] : PS ∈ (1− ϵ)P0

S + ϵPS
}
.

When X is discrete, R(PS) < 1 iff there exists x ∈ X with PS({xS}) > 0 for all
S ∈ S.
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A simple test for discrete X

Writing XS := {(S, xS) : S ∈ S, xS ∈ XS}, we can identify GS with [−1,∞)XS

and G+
S with a convex polyhedral subset.

Since R(PS, ·) is linear, we can compute R(PS) using efficient linear
programming techniques.

Letting P̂S denote the sequence of empirical distributions, our test statistic is
R̂ := R(P̂S). We propose to reject H ′

0 at level α ∈ (0, 1) if R̂ ≥ Cα, where

Cα :=
1

2

∑

S∈S

( |XS | − 1

nS

)1/2
+

{
1

2
log(1/α)

∑

S∈S

1

nS

}1/2

.

Proposition. Fix α, β ∈ (0, 1). If PS ∈ P0
S , then PPS(R̂ ≥ Cα) ≤ α. Moreover,

for any PS ∈ PS with R(PS) ≥ Cα + Cβ , we have

PPS(R̂ ≥ Cα) ≥ 1− β.
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Compatibility and detectability

PS compatible

Undetectable alternatives

H0 : X ⊥⊥ Ω
MCAR

PS incompatible
Detectable alternatives
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Testing membership of a convex polytope

The null space P0
S is the convex hull of the columns of A ∈ {0, 1}XS×X , with

A(S,xS),y := 1{xS=yS}.

In fact, P0
S is a full-dimensional subset of Pcons

S , the set of consistent sequences.

Optimal testing over convex polyhedra depends on the specific geometry
(Blanchard, Carpentier & Gutzeit, 2018; Wei, Wainwright & Guntuboyina, 2019).
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Improved tests

In determining the critical value Cα we used the bound

sup
fS∈G+

S

R(P̂S, fS) ≤ sup
−1≤fS≤|S|−1

R(P̂S, fS).

This ignores the constraints

min
x∈X

(AT fS)x = min
x∈X

∑

S∈S
fS(xS) ≥ 0.

Our strategy is to seek to understand R(·) better, to derive improved tests.
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Understanding R(·)

Define the marginal cone P0,∗
S := {λ · P0

S : λ ≥ 0} and consistent ball
Pcons,∗∗
S := {λ · Pcons

S : λ ∈ [0, 1]}.
The Minkowski sum P0,∗

S + Pcons,∗∗
S is a convex polyhedral subset of [0,∞)XS ,

so let F denote its number of essential facets (i.e. ignoring non-negativity
conditions).

Proposition. There exist f (1)S , . . . , f
(F )
S ∈ G+

S , depending only on S and XS,
such that for PS ∈ Pcons

S ,

R(PS) = max
ℓ∈[F ]

R(PS, f
(ℓ)
S )+.

More generally, for any PS ∈ PS,

R(PS) ≍S max
ℓ∈[F ]

R(PS, f
(ℓ)
S )+ + max

S1,S2∈S
dTV

(
PS1∩S2

S1
, PS1∩S2

S2

)
.
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Improved test

If F is known, then we can choose a critical value

C ′
α ≍S

log(F/α)

minS∈S nS
+ max
S1 ̸=S2,S1∩S2 ̸=∅

|XS1∩S2 |
nS1

∧ nS2

.

Proposition. Fix α, β ∈ (0, 1). If PS ∈ P0
S , then PPS(R̂ ≥ C ′

α) ≤ α. Moreover,
there existsM ≡M(S) > 0 such that whenever PS ∈ PS has

R(PS) ≥M(C ′
α + C ′

β),

we have PPS(R̂ ≥ C ′
α) ≥ 1− β.

Taking min(Cα, C
′
α) as the critical value gives the best of both worlds.
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d = 3 example

Theorem. Let S =
{
{1, 2}, {2, 3}, {1, 3}

}
and X = [r]× [s]× [2] for r, s ≥ 2.

Then for any PS ∈ Pcons
S , we have

R(PS) = 2 max
A⊆[r],B⊆[s]

(−pAB• + pA•1 + p•B1 − p••1)+,

where, e.g., pAB• := P{1,2}(A×B). Moreover,

P0,∗
S +Pcons,∗∗

S =
{
PS ∈ Pcons,∗

S : max
A⊆[r],B⊆[s]

(−pAB•+pA•1+p•B1−p••1) ≤
1

2

}
.

In particular, we may take F = (2r − 2)(2s − 2). In this case, when
n{1,2} = n{2,3} = n{1,3} = n/3, we have

Cα + Cβ ≍
{
rs+log

(
1/(α∧β)

)

n

}1/2

, C ′
α + C ′

β ≍
{
r+s+log

(
1/(α∧β)

)

n

}1/2

.
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Proof idea

Lower bound via primal problem R(PS) ≥ maxA⊆[r],B⊆[s]R(PS, f
A,B
S ).

Upper bound via dual, relating R(PS) to a maximal two-commodity flow:

R(PS) = 1−max

{∑

i,j,k

pijk :

r∑

i=1

pijk ≤ p•jk,

s∑

j=1

pijk ≤ pi•k, pij1+pij2 ≤ pij•

}
.

s1

s2

x11

x12

xr1

xr2

y
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y
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(2)
1s

y
(2)
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Minimax testing framework

Given ρ ∈ [0, 1], it is convenient to write

PS(ρ) := {PS ∈ PS : R(PS) ≥ ρ},

so that PS(0) = PS and P0
S = PS \ ∪ρ∈(0,1]PS(ρ). The minimax risk at

separation ρ in this problem is defined as

R(nS, ρ) := inf
ψ′

nS

{
sup
PS∈P0

S

EPS(ψ
′
nS
) + sup

PS∈PS(ρ)

EPS(1− ψ′
nS
)

}
.

Finally, the minimax testing radius is defined as

ρ∗(nS) := inf
{
ρ ∈ [0, 1] : R(nS, ρ) ≤ 1/2}.
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Illustration of framework

H ′
0 : PS ∈ P0

S

H0 : X ⊥⊥ Ω
MCAR

H ′
1(ρ) : R(PS) ≥ ρ

ρ
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d = 3 example again

Theorem. Let S =
{
{1, 2}, {2, 3}, {1, 3}

}
and X = [r]× [s]× [2] for r, s ≥ 2.

Then

ρ∗(nS) ≲
( r + s

n{1,2}

)1/2
+
( r

n{1,3}

)1/2
+
( s

n{2,3}

)1/2
.

Moreover, when n{1,2} ≥ (r + s) log(r + s), n{1,3} ≥ r log r and
n{2,3} ≥ s log s we have a minimax lower bound:

ρ∗(nS) ≳
( r + s

n{1,2} log(r + s)

)1/2
+
( r

n{1,3} log r

)1/2
+
( s

n{2,3} log s

)1/2
.

The sequences of distributions in the lower bound contruction belong to Pcons
S ,

so the same lower bound holds for testing against consistent alternatives.
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Reductions (I)

For other (S,X ), analytic expressions for R(PS) can be difficult, but we can
sometimes reduce to simpler problems.

If there exists J ⊆ [d] and S0 ∈ S with J ⊆ S0 and J ∩ S = ∅ for all
S ∈ S \ {S0}, then

R(PS) = R(P−J
S ).

E.g., S = {{1, 2, 4}, {2, 3}, {1, 3, 5}} reduces to S = {{1, 2}, {2, 3}, {1, 3}}.

1

2 3

4 5
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Reductions (II)

If there exists J ⊆ [d] such that J ⊆ S and P JS = P J for all S ∈ S, then

R(PS) =
∑

xJ∈XJ

R(PS|XJ=xJ
)pJ(xJ)

when X is discrete.

E.g., if S =
{
{1, 2, 3}, {1, 3, 4}, {1, 2, 4}

}
with X = [r]× [s]× [t]× [2], then for

PS ∈ Pcons
S ,

R(PS) = 2

r∑

i=1

max
A⊆[s],B⊆[t]

(−piAB• + piA•1 + pi•B1 − pi••1)+.
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Reductions (III)

If S1,S2 ⊆ S are such that there exists J ∈ S with S1 ∩ S2 = {J} and
(∪S∈S1S) ∩ (∪S∈S2S) = J , then

max{R(PS1), R(PS2)} ≤ R(PS) ≤ R(PS1) +R(PS2).

1 2

34
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Irreducible d = 4 examples

1 2

34

(a) Chain pairs

1 2

34

(b) All pairs except one

1 2

34

(c) All pairs

1 2

34

(d) Single triple

1 2

34

(e) All triples

Figure 1: Irreducible observation patterns S with d = 4.

• Chain pairs: S =
{
{1, 2}, {2, 3}, {3, 4}, {1, 4}

}
;

• All pairs except one: S =
{
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}

}
;

• All pairs: S =
{
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}

}
;

• Single triple: S =
{
{1, 2, 3}, {1, 4}, {2, 4}, {3, 4}

}
;

• All triples: S =
{
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}

}
.

These patterns are illustrated in Figure 1.

Example 13. Let X1 = X2 = X3 = X4 = [2]. For PS ∈ Pcons
S , the following statements hold:

(i) When S =
{
{1, 2}, {2, 3}, {3, 4}, {1, 4}

}
,

R(PS) = 2 max
k,`∈[2]

{
p••k` − p•2k• −

2∑

i=1

min(pi1••, pi••`)

}

+

(12)

= 2 max
i,j,k∈[2]

(pij•• − p•jk• − p••k̄1 − pi••2)+.

19
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Mixed discrete and continuous variables

By binning continuous variables we can apply our tests designed for the discrete
setting.

In particular, when X = [0, 1)2 × {1, 2} and the densities on Xj are
(rj , L)-Hölder smooth, with rj ∈ (0, 1] for j = 1, 2,

ρ∗(nS) ≲|S|,L

(
min
S∈S

nS

)− r1∧r2
1+2(r1∧r2)

.
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Numerical results

Our tests have uniform, finite-sample Type I error control, but could be
conservative. An alternative, Monte Carlo test appears to perform well in
practice.

For |X | <∞, we can solve the dual program for R(P̂S) to find a decomposition

P̂S = {1−R(P̂S)}Q̂S +R(P̂S)T̂S ∈ {1−R(P̂S)}P0
S +R(P̂S)PS.

Here Q̂S can be thought of as a closest compatible sequence of marginal
distributions to P̂S.

We can generate bootstrap empirical distributions Q̂(1)
S , . . . , Q̂

(B)
S from Q̂S and

reject H ′
0 if and only if

1 +

B∑

b=1

1{R(Q̂
(b)
S )≤R(Q̂S)}

≤ α(B + 1).
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Numerical results
We compare with Fuchs’s LR test. For S =

{
{1, 2}, {2, 3}, {1, 3}

}
, with

X = [r]× [2]2 for r ∈ {2, 4, 6} and with PS ∈ Pcons
S defined by

pi•• =
1

r
, p•1• = p••1 =

1

2
, pi•1 =

1

2r
, pi•1 =

1 + (−1)i

2r

and p•21 ∈ [0.25, 0.375], we take nS = (200, 200, 200), B = 99, α = 0.05.

Fuchs’s test requires complete cases, so we allow it access to 200 observations
from a closest compatible sequence to PS.
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P
o
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e
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e
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Numerical results

Now take d = 5, X = [2]5 and

S =
{
{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}

}
.

For ϵ ∈ [0.2, 0.35] and i, j, k, ℓ,m ∈ [2], we set

pijkℓ• = pijk•ℓ = pij•kℓ = pi•jkℓ =
1 + ϵ(−1)i+j+k+ℓ

16
,

p•ijkℓ =
1− ϵ(−1)i+j+k+ℓ

16
,

for which R(PS) = (5ϵ− 1)+/4.
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Numerical results

Allow Fuchs’s test {25, 50, 100, 200} complete cases. Our test is in black.
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Summary

▶ Testing MCAR is equivalent to testing compatibility;

▶ We propose a general test with asymptotic power 1 against fixed
alternatives for discrete/discretisable data;

▶ Improved tests are possible given knowledge of underlying geometry (and
are rate-optimal in certain cases);

▶ A Monte Carlo critical value yields good empirical power.

Berrett, T. B. and Samworth, R. J. (2022) Optimal nonparametric testing of
Missing Completely At Random, and its connections to compatibility.
arXiv:2205.08627.

R package: MCARtest.
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‘Congratulations, Peter B’; ‘Thanks, Peter B’

Happy birthday, Peter!

Optimal MCAR testing 40/42



References
Abramsky, S. (2013) Relational databases & Bell’s theorem. In Search of Elegance in the Theory & Practice of

Computation, 13–15.

Bell, J. S. (1966) On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys., 38, 447.
Belloni, A., Rosenbaum, M. and Tsybakov, A. B. (2017) Linear and conic programming estimators in high

dimensional errors-in-variables models. J. Roy. Statist. Soc., Ser. B, 79, 939–956.
Blanchard, G., Carpentier, A. & Gutzeit, M. (2018) Minimax Euclidean separation rates for testing convex

hypotheses in Rd . Electr. J. Statist., 12, 3713–3735.
Cai, T. T. & Zhang, L. (2019) High dimensional linear discriminant analysis: Optimality, adaptive algorithm and

missing data. J. Roy. Statist. Soc., Ser. B, 81, 675–705.
Cunha, M. T. (2019) On measures & measurements: a fibre bundle approach to contextuality. Philos. Trans. R. Soc.

377.2157, 20190146.
Elsener, A. & van de Geer, S. (2019) Sparse spectral estimation with missing and corrupted measurements. Stat, 8,

e229.

Farkas, J. (1902) Theorie der einfachen Ungleichungen. Journal für die Reine und Angewandte Mathematik, 1902,
1–27.

Follain, B., Wang, T. & Samworth, R. J. (2022) High-dimensional changepoint estimation with heterogeneous
missingness. J. Roy. Statist. Soc., Ser. B, to appear.

Fuchs, C. (1982) Maximum likelihood estimation & model selection in contingency tables with missing data. J.
Amer. Statist. Assoc., 77, 270–278.

Kellerer, H. G. (1984) Duality theorems for marginal problems. Zeitschrift für Wahrscheinlichkeitstheorie und
verwandte Gebiete, 67, 399–432.

Lauritzen, S. L. & Spiegelhalter, D. J. (1988) Local computations with probabilities on graphical structures and their

application to expert systems. J. Roy. Statist. Soc., Ser. B, 50, 157–194.

Optimal MCAR testing 41/42



References

Li, J. & Yu, Y. (2015) A nonparametric test of missing completely at random for incomplete multivariate data.
Psychometrika, 80, 707–726.

Little, R. J. (1988) A test of missing completely at random for multivariate data with missing values. J. Amer. Statist.
Assoc., 83, 1198–1202.

Loh, P.-L. & Tan, X. L. (2018) High-dimensional robust precision matrix estimation: Cellwise corruption under
ϵ-contamination. Electr. J. Statist., 12, 1429–1467.

Loh, P.-L. & Wainwright, M. J. (2012) High-dimensional regression with noisy and missing data: Provable
guarantees with nonconvexity. Ann. Statist., 40, 1637–1664.

Massa, M. S. & Lauritzen, S. L. (2010) Combining statistical models. Contemporary Mathematics: Algebraic Methods
in Statistics & Probability II, 239–260.

Michel, L., Näf, J., Spohn, M.-L. & Meinshausen, N. (2021) PKLM: A flexible MCAR test using Classification. arXiv
preprint arXiv:2109.10150.

Puccetti, G. & Rüschendorf, L. (2012) Bounds for joint portfolios of dependent risks. Statistics & Risk Modeling, 29,
107–132.

Wei, Y., Wainwright, M. J. & Guntuboyina, A. (2019) The geometry of hypothesis testing over convex cones:
Generalized likelihood ratio tests and minimax radii. Ann. Statist., 47, 994–1024.

Zhu, Z., Wang, T. & Samworth, R. J. (2019) High-dimensional principal component analysis with heterogeneous
missingness. arXiv preprint arXiv:1906.12125.

Optimal MCAR testing 42/42


	d=4
	Monte Carlo method and numerical results
	References
	References

