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Simons Big Data workshop in honor of Peter Bickel

My first encounter of genomics bioinformatics (2007)
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Peter and Haiyan’s ENCODE team (2007–2013)
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Our ENCODE fruits (2012–2014)
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Our ENCODE fruits (2012–2014)
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Some questions I had about bioinformatics methods

1. Are p-values valid?

2. Why not classical statistical methods?

3. What is the proper null hypothesis?
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Statistical rigor in multiple testing

Criteria need calibration

• p-values ∼ (super-)uniform[0, 1] under the null hypotheses
• false discovery rate (FDR) = IE

[
# false discoveries
# discoveries ∨ 1

]
≤ the claimed level (e.g., 5%)

Three common causes of ill-posed p-values

1. Formulation of a two-sample test as a one-sample test

2. Specification of a parametric model that does not fit data well

3. Treatment of inferred covariates as observed

6
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1. Formulation of a two-sample test as a one-sample test

Example: peak calling from ChIP-seq data

Experimental

Background
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1. Formulation of a two-sample test as a one-sample test

Peak calling from ChIP-seq data

• Popular software:
– MACS [Zhang et al., Genome Biol, 2008]; cited > 10K times
– HOMER [Heinz et al., Mol Cell, 2010]; cited ∼ 8K times

• Formulation:
a region background count experimental count

random variable (hypothetical) X Y
random observation (data) x y

p-value = IP(Y ≥ y), where Y ∼ Poisson(x) — correct?
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1. Formulation of a two-sample test as a one-sample test

Peak calling from ChIP-seq data

• Formulation:
a region background count experimental count

random variable (hypothetical) X Y
random observation (data) x y

p-value = IP(Y ≥ y), where Y ∼ Poisson(x) — correct?
– No, because it assumes Y ∼ Poisson(λ) and tests

H0 : λ = x vs. H1 : λ > x ,

which treats x as a fixed parameter and ignores its randomness
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1. Formulation of a two-sample test as a one-sample test

How to perform a two-sample test when the sample size is 1 vs. 1?

– p-value calculation is difficult ...

– but, p-values are just intermediates for FDR control in large-scale multiple testing

Our solution: inspired by knockoffs [Barber and Candès, Ann Stat, 2015]
(to be elaborated)
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2. Specification of a parametric model that does not fit data well

Example: identifying differentially expressed genes (DEGs) from RNA-seq data
• Popular software (originally designed for small sample sizes):

– edgeR [Robinson et al., Bioinformatics, 2014]; cited ∼ 24K times
– DESeq2 [Love et al., Genome Biol, 2014]; cited > 33K times

both assume a negative binomial distribution per gene and condition
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2. Specification of a parametric model that does not fit data well

Identifying differentially expressed genes (DEGs) from RNA-seq data
• Check of false discoveries: permute individuals between conditions (no true DEGs)
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51 pre-nivolumab and 58 on-nivolumab anti-PD-1 therapy patients [Li et al., Genome Biology, 2022]
[Riaz et al., Cell, 2017] 12
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2. Specification of a parametric model that does not fit data well

Identifying differentially expressed genes (DEGs) from RNA-seq data
• Poor fit of negative binomial model ←→ false positive DEGs
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2. Specification of a parametric model that does not fit data well

Identifying differentially expressed genes (DEGs) from RNA-seq data
• False discoveries may mislead scientific conclusions
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2. Specification of a parametric model that does not fit data well

Method choice: popular bioinformatics tools vs. general statistical methods?
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Our recommendations for large-sample-sized data:
– sanity check: permutation
– consider non-parametric tests (e.g., Wilcoxon rank-sum test)

— collaboration with Dr. Yumei Li in Dr. Wei Li’s lab (UC Irvine)

– What if sample sizes are small?
Clipper is a non-parametric option (to be elaborated)
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3. Treatment of inferred covariates as observed

Example: identifying DEGs along pseudotime from single-cell RNA-seq data

• Cell pseudotime: a latent “temporal” variable that reflects a cell’s relative status
among all cells

• Pseudotime inference: estimate the pseudotime of cells, i.e., order cells along a
trajectory based on cells’ high-dimensional gene expression vectors

• Popular software:
– Monocle3 [Trapnell et al., Nat Biotechnol, 2014]; cited > 2.8K times
– Slingshot [Street et al., BMC Bioinform, 2018]; cited 700 times
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3. Treatment of inferred covariates as observed

Identifying DEGs along inferred pseudotime from single-cell RNA-seq data
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3. Treatment of inferred covariates as observed

Identifying DEGs along inferred pseudotime from single-cell RNA-seq data

• Cell pseudotime is inferred from the same data and thus random
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3. Treatment of inferred covariates as observed

Identifying DEGs along inferred pseudotime from single-cell RNA-seq data

• However, existing methods treat cell pseudotime as an observed covariate

• Our solution: PseudotimeDE considers the uncertainty of pseudotime inference

19
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3. Treatment of inferred covariates as observed

Identifying DEGs along inferred pseudotime from single-cell RNA-seq data

• PseudotimeDE generates well-calibrated p-values for FDR control
& uses a generalized additive model (GAM) to achieve good power
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3. Treatment of inferred covariates as observed

Identifying DEGs along inferred pseudotime from single-cell RNA-seq data

• PseudotimeDE generates well-calibrated p-values for FDR control
& uses a generalized additive model (GAM) to achieve good power
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3. Treatment of inferred covariates as observed

Identifying DEGs along inferred pseudotime from single-cell RNA-seq data

PseudotimeDE limitations

• computational time: high-resolution p-values require > 103 rounds of
(subsampling + pseudotime inference + permutation)

Q: how to reduce the number of rounds while still achieving FDR control?
A: Clipper

• complete null: what if cells do not follow a trajectory

Q: how to generate the null cells?
A: simulator scDesign3

22
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3. Treatment of inferred covariates as observed

Identifying DEGs along inferred pseudotime from single-cell RNA-seq data

• PseudotimeDE

Identifying DEGs between inferred cell clusters from single-cell RNA-seq data

• ClusterDE (cell clustering + DEG identification between cell clusters)
– existing methods assume Gaussian distributions

TN test [Zhang, Kamath, and Tse, Cell Syst, 2019]
clusterpval [Gao, Bien, and Witten, arXiv, 2020]

Our proposal: Clipper + scDesign3

— inspired by
gap statistic [Hastie, Tibshirani, and Walther, JRSSB, 2002]
knockoffs [Barber and Candès, Ann Stat, 2015]
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Halftime summary

Three common causes of ill-posed p-values

1. Formulation of a two-sample test as a one-sample test

2. Specification of a parametric model that does not fit data well

3. Treatment of inferred covariates as observed

Clipper: p-value-free FDR control for genomics feature screening
— using FDR control procedure from [Barber and Candès, Ann Stat, 2015]

24
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Clipper: p-value-free FDR control for genomics feature screening

• NO requirement of
– high-resolution p-values
– parametric distributions
– large sample sizes

• Foundation: knockoffs
• Two components

– contrast scores
– cutoff

Goal: marginal screening for interesting features
d features FDR threshold q
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Clipper: p-value-free FDR control for genomics feature screening

Key: contrast score construction

example target data null data

ChIP-seq peak calling (1 vs. 1) experimental condition background condition
RNA-seq DEG identification actual data permuted data

PseudotimeDE & ClusterDE actual data scDesign3 simulated data

Contrast score of feature j = 1, . . . , d , the

Cj := t(target data)− t(null data) ,

where t(·) is a summary statistic — can be a complex pipeline

26
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Clipper rectifies FDR control

ChIP-seq peaking calling RNA-seq DEG identification
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Clipper rectifies FDR control

ChIP-seq peaking calling RNA-seq DEG identification
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The last piece

Three common causes of ill-posed p-values

1. Formulation of a two-sample test as a one-sample test

2. Specification of a parametric model that does not fit data well

3. Treatment of inferred covariates as observed

Clipper: a p-value-free FDR control framework

scDesign3: an omnibus single-cell omics simulator

28
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scDesign2: a probabilistic single-cell gene expression data simulator

A multi-gene probabilistic model per cell type

• Each gene ∼ count distribution ∈ {Poisson, negative binomial, ZIP, ZINB}
• Gene correlations estimated via Gaussian copula

29
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scDesign2: a probabilistic single-cell gene expression data simulator

A multi-gene probabilistic model per cell type

• Each gene ∼ count distribution ∈ {Poisson, negative binomial, ZIP, ZINB}
• Gene correlations estimated via Gaussian copula

[Haber et al., Nature, 2017]
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scDesign3: an omnibus single-cell & spatial omics simulator

• Cell states: continuous trajectory & discrete cell types
• Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
• Model selection by likelihood: vine copula [Joe and Kurowicka’s book, 2011]

Example: continuous trajectory (pancreatic cell differentiation)

[Bastidas-Ponce et al., Development, 2019]
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scDesign3: an omnibus single-cell & spatial omics simulator

• Cell states: continuous trajectory & discrete cell types
• Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
• Model selection by likelihood: vine copula [Joe and Kurowicka’s book, 2011]

Example: spatial data (brain region measured by 10X Visium)
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scDesign3: an omnibus single-cell & spatial omics simulator

• Cell states: continuous trajectory & discrete cell types
• Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
• Model selection by likelihood: vine copula [Joe and Kurowicka’s book, 2011]

Example: bone marrow single-cell ATAC-seq data (+ scReadSim)

by Guan’ao Yan 31
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ClusterDE: scDesign3 for null data generation (preliminary)
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[Zheng et al., Nat Commun, 2017]
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ClusterDE: Clipper + scDesign3 (preliminary)

Complete null case: no cell clusters
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ClusterDE: Clipper + scDesign3 (preliminary)

Complete null case: no cell clusters
Null Cases − nDE = 0
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Summary: p-values are easily ill-posed in genomics data analysis

Q: should a scientific question be formulated as multiple testing?

If YES, three common causes of ill-posed p-values

1. Formulation of a two-sample test as a one-sample test
– ChIP-seq peak calling

2. Specification of a parametric model that does not fit data well
– RNA-seq DEG identification

3. Treatment of inferred covariates as observed
– single-cell RNA-seq PseudotimeDE & ClusterDE

Clipper: a p-value-free FDR control framework

scDesign3: an omnibus single-cell & spatial omics simulator
– fair benchmarking of computational tools (> 1000 at www.scrna-tools.org)

34
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Summary: relevant publications
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A reviewer’s quote

“These results may come as a surprise to some, given the nearly uncontestable status
that method A has achieved within the community, but sadly they reflect the fact that
computational biology methods can rise to fame almost by accident rather than by

sound statistical arguments.”
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