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Network Data

® Network data record interactions (edges) between individuals

(nodes).

® From WIKIPEDIA: “... a complex network is a graph (network)
with non-trivial topological features ...”

e Examples of “non-trivial topological features”

CEIT3

— heavy-tail degree distribution (a.k.a “scale-free”, “power law”)

— large clustering coefficient (transitivity)

— community structure: the nodes can be grouped into subsets with
similar connectivity.
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Prompted by the increasing interest in networks in many fields,
we present an attempt at unifying points of view and analyses of
these objects coming from the social sciences, statistics, probal

principle, “fail-safe” for rich enough models. Morec
of view has the virtue of enabling us to think in tern
of relations” between individuals not necessarily cl

and physics communities. We apply our approach to the Ni
Girvan modularity, widely used for “community” detection, among
others. Our analysis is asymptotic but we show by simulation and
application to real examples that the theory is a reasonable guide
to practice.

modularity | profile likelihood | ergodic model | spectral clustering

he social sciences have investigated the structure of small

networks since the 1970s, and have come up with elaborate
modeling strategies, both deterministic, see Doreian et al. (1) for
a view, and stochastic, see Airoldi et al. (2) for a view and recent
work. During the same period, starting with the work of Erdds
and Rényi (3), a rich literature has developed on the probabilistic
properties of stochastic models for graphs. A major contribution
to this work is Bollobas et al. (4). On the whole, the goals of the
analyses of ref. 4, such as emergence of the giant component, are
not aimed at the statistical goals of the social science literature we
have cited.

Recently, there has been a surge of interest, particularly in the
physics and computer science communities in the properties of
networks of many kinds, including the Internet, mobile networks,
the World Wide Web, citation networks, email networks food
webs, and networks.
munity slmcmre has received particular attention: mevemces in
networks are often found to cluster into small communities, where
vertices within a community share the same densities of connect-
ing with vertices in the their own community as well as different
ones with other communities. The ability to detect such groups can
be of significant practical importance. For instance, groups within
the worldwide Web may correspond to sets of web pages on related

into ie

We begin, using results of Aldous and Hoover (9
ing what we view as the analogues of arbitrary infin
models on infinite unlabeled graphs which are “ergc
which a subgraph with n vertices can be viewed as
development of Aldous and Hoover can be viewe
alization of deFinetti’s famous characterization of
sequences as mixtures of i..d. ones, Thus, our appro:
viewed as a first step in the generalization of the clas
tion of complexstatistical models out of i.i.d. ones us
information about labels and relationships.

It turns out that natural classes of parametric
approximate the nonparametric models we intrc
“blockmodels” introduced by Holland, Laskey a
ref. 10; see also refs. 2 and 11, which are generali
Erdos-Rényi model. These can be described as foll

In a possibly (at least conceptually) infinite popu
tices) there are K unknown subcommunities. Unla
uals (vertices) relate to each other through edges
paperwe This situation lead:
ing set of probability models for undirected graphs ¢
the corresponding adjacency matrices {4;; : i,j > 1
1 or 0 according as there is or is not an edge betwe:

1. Individuals independently belong to com
probability 7, 1 <j <K, Y- m = 1.

. A symmetric K x K matrix {P; <kl<}¥
ities is given such that P, is the probability
individual i relates to individual j given thz
The membership relations between individi
lished independently. Thus 1 — 3,k 7

nrohahility that there is no edoe hetween i
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Multilayer Network Data: An Example

Sub-network for time E40 Sub-network for time E90 Sub-network for time 48M

Adjacency matrices

Networks

Temporal gene co-expression networks in the medial prefrontal cortex of

rhesus monkeys (10 layers, ~8k nodes, Bakken et al *16, Liu et al *18).



Multilayer Network Data: An Example

Sub-network for time E40 Sub-network for time E90 Sub-network for time 48M

Adjacency matrices

Networks

Visual inspection suggests four groups. But no single network can

distinguish all four groups.



Multilayer Network Data: An Example

Sub-network for time E40 Sub-network for time E90 Sub-network for time 48M

Adjacency matrices

Networks

Must aggregate the layers in an informative way to reveal the complete

group structure.



Multilayer Stochastic Block Models

n nodes; K groups; L layers

Let By,..., By be K x K symmetric matrices with all entries in
[0,1].

Let g € {1,...,K}" be a membership vector, same for all layers.

Foreach1 <I<L,1<i<j<n
Ay ;i ~ Bernoulli(pBy gq;)

independent of everything else, where p € (0, 1) is a global
sparsity parameter.

Goal: Estimate g from multilayer adjacency matrices
(Aj:1<I<L).



Singe layer SBMs

When L = 1, this reduces to the well-known stochastic block
model (Holland et al 1983).

Community recovery is well understood for single layer SBMs
(Bickel & Chen ’09, L. & Rinaldo ’14, Abbe & Sandon ’15, and

many more...)

When L = 1, K is constant, and group sizes are balanced,

consistent estimation of g is possible if and only if
np — .

How will multiple layers facilitate community estimation?



Multilayer SBM with layer-wise positivity

e [f each By is positive definite with minimum eigenvalue bounded

away from 0, then consistent community recovery is possible if
npL — oo.

For example, consider the summed adjacency matrix A = ZlelAl
and use variants of spectral clustering (Paul & Chen 2017,
Bhattacharyya & Chatterjee, 2018).

® Dynamic SBM and smoothing: Pensky and Zhang 19, Pensky
'19.

® Layer aggregation and denoising: Levin, Lodhia and Levina "19.

® Global and local clustering: Chen, Liu and Ma °20.



This work: aggregating general multilayer SBMs

When the layer-wise positivity assumption is dropped, summing

up the layers may lose signal.

Example: All entries of B;’s are iid U(0, 1), subject to symmetry.

How to aggregate general multilayer SBM’s?

What is the threshold for consistent estimation in general
multilayer SBM’s?



First approach: least squares

® Least squares estimate:

PO . L 2
(gls ) Bls) =argming gy |}, <i<j<n (Bl,gfg,- - Ahij)

Theorem (L., Chen, & Lynch 2020)

If K = O(1), L = O(n), community sizes are balanced, and
L! Z{‘:l 312 > cl for some ¢ > 0, then, with probability tending to 1,

the least squares estimate satisfies

(logn)>/2

7' Dygam (815, g) < Const. x P ATER

where Dyam (8, 8) = ming. (k] k) iz 1(8; # 0(g:)) is the Hamming
distance.

As a consequence, s is consistent if npL'/2 /(logn)3/? — co.



From least squares to spectral clustering

® Let G=[Gy,...,Gk] be the normalized membership matrix.
e Example: n =35, K =2,

= % 0
1 5 0
g= 2| G=|0 %
2 0 %
2] [0 o5

e Similar to the total variance decomposition in ANOVA, the least

squares problem is approximately
AT 2 7 42
max G"AG||r ~ maxtr |G A7 |G
ax Y. 6 AG = ma Y4




Spectral clustering on sum of squares

Now the least squares is approximately
maxg tr [GT (Zlel Alz) G] , over all normalized membership

matrices.

Relaxing the requirement of normalized membership matrix:
Let U = [Uy, ..., Uk] be the top K eigenvectors of Y1 | AZ.

Let g be the output of a clustering algorithm applied to the rows
of U.

How does it work?



Spectral clustering

® In general, let A = S+ N where S is a signal matrix whose
leading eigenvectors contain useful information, and N is a noise

matrix.

® In order for the leading eigenvectors of A to carry similar
information as those of S, the eigengap of S needs to dominate
IV][-



An error decomposition in squared SBM

Let P, =FA; ~ pGBlGT (except diagonal), E; = A; — Py, then

A} =(Pi+ Ey)*
=P} +P.E|+EP+E}.

The firs term P? is the signal term.

The second and third terms P;E;, E;P; are mean zero noise terms,
so that | XX, PiEj|| < V/I||P1E1]|| (matrix Bernstein).

The last term E12 has positive expectation, so that
| X, E?|| < L||E3||. This is the bias term.



The bias term

(EF)ij = YorijErinErje = Yazij(Avic — Pri) (At — Prji)
E(E?);; = 0if and only if i # j.

When i =,
(ED)i =Y Efn =Y (Arik—Prix)’
ki ki
= Z(Azz,,-k —2Aiu Pk + P,%ik)
ki
The leading term is }.;; Ak = dy, the degree of node i in layer

[, which can be computed from the data and hence can be

removed.



The bias term

(EF)ij = YorijErinErje = Yazij(Avic — Pri) (At — Prji)
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When i =,
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Bias-adjusted squared spectral clustering

o letD; = diag(dm s ...,d17n)

® [et g, be obtained by applying spectral clustering on

(A7 — D)

M=

—
[

1

® In practice, one can just calculate Z,Alz and then zero out the

diagonal.



A simulation
L =30, n =200, K =2, B; equals B"") or B?) with equal probability,
3/4 \/3/8 ] 50 [ 7/8  3V3/8 ]

where B(l) =
here B [\@/8 1/2 3v3/8  1/8

Comparison against aggregation
methods (Two communities)
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Analysis of bias removal.

Yi(A7 — D) =X, P} + Y (PiE+ EiP) + Y (Ef — D))

1. Y, P,2 has K large eigenvalues, with gap > n?p°L.
2. || PiE|| < nd/2p3/2L 2 10g! (L4 n) (gen. Bernstein)
3. I%(E? = D))|| < npL'/?10g"/?(L+ n) (gen. Hanson—Wright)

Theorem (L. & Lin ’20)

Assume K = O(1), balanced community sizes, and L'y, B? = cl.
The bias-adjusted squared spectral clustering is consistent if
npL'/2/1og! > (L+n) — oo.

Not just a log factor improvement, but computationally much simpler.



The linear term: concentration of matrix sums

Theorem (generalized Bernstein’s inequality)

Let (X;: 1 <1< L) be asequence of n X r matrices with independent
mean zero entries satisfying IE|X;‘U| < (v/2)R*~2k! for some constants
(v,R), and (H; : 1 <1< L) be a sequence of non-random r x m
matrices, then for all 7 > 0

]P’< ZI:XIHI 2r>

SZ(m—}—n)exp{—v[ /2 }7

(nll X HT Hill) v (X | Hil|7)] + tR max; || Hyl12.

where || - ||2,.. denotes the maximum ¢, norm of rows.



Controlling the quadratic term

Theorem
Let E; = Aj—EA;. If np = O(1), npL'/% > log'/?(L+n), then with
high probability

Y.(E} —D)|| < npL'?log"*(L+n).
)

Main ingredient of the proof: two rounds of de-coupling (de la Pena

and Montgomery-Smith *95).



Concentration of matrix quadratic forms

Theorem (generalized Hanson—Wright inequality)

Let (X;: 1 <1<L) be asequence of n x r matrices with independent
2

zero mean sub-Gaussian entries: Ee*ii/” < 2 for some constant v, and

(Q;:1 <1< L) be asequence of non-random r X r matrices, then

there is a constant C such that with high probability

Y (xi0x] —EX,0ix])

l

1/2
< Cvnlog(L+n) (ZHQle) .




Monkey brain gene co-expression network

® n =7836 genes
® [ =10: from 40 days in the embryo to 48 months after birth.

® Co-expression network from the medial prefrontal cortex

(related to developmental brain disorders such as ASD).

® K = 8 by scree plot.



8 clusters

Adjacency matrices grouped by K

Network for time E90 Network for time 48M

Network for time E40




Meanings of the communities

Group Description GO ID p-value

1 RNA splicing 0008380 2.91 x 1071
2 Mitotic cell cycle process 1903047 1.26 x 107%
3 Chemical synaptic transmission 0007268 1.51 x 10~!!
4 Tissue development 0009888  8.00 x 107>
5 Neurotransmitter transport 0006836 2.22x 107>
6 Regulation of transporter activity ~ 0032409  5.68 x 107°
7 Transmembrane transporter activity 0022857  4.33 x 10~
8 None




Within-cluster connectivity over time
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Next steps

e Optimality of the threshold npL!'/2?
® Conjecture 1: Without computational constraints, the threshold is
npL. Consider max,y, -1 | £;wiA;|, and spectral clustering on
Y WiA;.
® Conjecture 2: npL'/? is the right threshold for polynomial time
algorithms.
e Time-varying SBMs with general connectivity structure
® What if both g and B changes smoothly from layer to layer?
® Optimal smoothing determined by triplet (n,L,p)?

e Estimating K: cross-validation or spectral methods?



References

1. L., Chen, & Lynch (2020) “Consistent community detection in
multi-layer network data”, Biometrika, 107(1), 61-73.

2. L. & Lin (2022+) “Bias-adjusted spectral clustering in
multi-layer stochastic block models”, JASA, to appear.
arXiv:2003.08222


arXiv:2003.08222

Thank you!



