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Network Data

• Network data record interactions (edges) between individuals
(nodes).

• From WIKIPEDIA: “... a complex network is a graph (network)
with non-trivial topological features ...”
• Examples of “non-trivial topological features”

– heavy-tail degree distribution (a.k.a “scale-free”, “power law”)
– large clustering coefficient (transitivity)
– community structure: the nodes can be grouped into subsets with

similar connectivity.
– . . .





Multilayer Network Data: An Example

Temporal gene co-expression networks in the medial prefrontal cortex of

rhesus monkeys (10 layers, ∼8k nodes, Bakken et al ’16, Liu et al ’18).



Multilayer Network Data: An Example

Visual inspection suggests four groups. But no single network can

distinguish all four groups.



Multilayer Network Data: An Example

Must aggregate the layers in an informative way to reveal the complete

group structure.



Multilayer Stochastic Block Models

• n nodes; K groups; L layers

• Let B1,..., BL be K×K symmetric matrices with all entries in
[0,1].

• Let g ∈ {1, ...,K}n be a membership vector, same for all layers.

• For each 1≤ l≤ L, 1≤ i < j≤ n

Al,ij ∼ Bernoulli(ρBl,gigj)

independent of everything else, where ρ ∈ (0,1) is a global
sparsity parameter.

• Goal: Estimate g from multilayer adjacency matrices
(Al : 1≤ l≤ L).



Singe layer SBMs

• When L = 1, this reduces to the well-known stochastic block
model (Holland et al 1983).

• Community recovery is well understood for single layer SBMs
(Bickel & Chen ’09, L. & Rinaldo ’14, Abbe & Sandon ’15, and
many more...)

• When L = 1, K is constant, and group sizes are balanced,
consistent estimation of g is possible if and only if

nρ → ∞ .

• How will multiple layers facilitate community estimation?



Multilayer SBM with layer-wise positivity

• If each Bl is positive definite with minimum eigenvalue bounded
away from 0, then consistent community recovery is possible if

nρL→ ∞ .

For example, consider the summed adjacency matrix A = ∑
L
l=1 Al

and use variants of spectral clustering (Paul & Chen 2017,
Bhattacharyya & Chatterjee, 2018).

• Dynamic SBM and smoothing: Pensky and Zhang ’19, Pensky
’19.

• Layer aggregation and denoising: Levin, Lodhia and Levina ’19.

• Global and local clustering: Chen, Liu and Ma ’20.



This work: aggregating general multilayer SBMs

• When the layer-wise positivity assumption is dropped, summing
up the layers may lose signal.

• Example: All entries of Bl’s are iid U(0,1), subject to symmetry.

• How to aggregate general multilayer SBM’s?

• What is the threshold for consistent estimation in general
multilayer SBM’s?



First approach: least squares

• Least squares estimate:
(ĝls, B̂ls) = argming,B ∑

L
l=1 ∑1≤i<j≤n(Bl,gigj−Al,ij)

2

Theorem (L., Chen, & Lynch 2020)

If K = O(1), L = O(n), community sizes are balanced, and
L−1

∑
L
l=1 B2

l � cI for some c > 0, then, with probability tending to 1,
the least squares estimate satisfies

n−1DHam(ĝls,g)≤ Const.× (logn)3/2

nρL1/2 ,

where DHam(ĝ,g) = minσ :[K]→[K] ∑
n
i=11(ĝi 6= σ(gi)) is the Hamming

distance.

As a consequence, ĝls is consistent if nρL1/2/(logn)3/2→ ∞.



From least squares to spectral clustering
• Let G = [G1, ...,GK ] be the normalized membership matrix.
• Example: n = 5, K = 2,

g =
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• Similar to the total variance decomposition in ANOVA, the least

squares problem is approximately

max
G

L

∑
l=1
‖GTAlG‖2

F ≈max
G

tr

[
GT

(
L

∑
l=1

A2
l

)
G

]
.



Spectral clustering on sum of squares

• Now the least squares is approximately
maxG tr

[
GT
(
∑

L
l=1 A2

l

)
G
]
, over all normalized membership

matrices.

• Relaxing the requirement of normalized membership matrix:
Let U = [U1, ...,UK ] be the top K eigenvectors of ∑

L
l=1 A2

l .

• Let ĝ be the output of a clustering algorithm applied to the rows
of U.

• How does it work?



Spectral clustering

• In general, let A = S+N where S is a signal matrix whose
leading eigenvectors contain useful information, and N is a noise
matrix.

• In order for the leading eigenvectors of A to carry similar
information as those of S, the eigengap of S needs to dominate
‖N‖.



An error decomposition in squared SBM

• Let Pl = EAl ≈ ρGBlGT (except diagonal), El = Al−Pl, then

A2
l =(Pl +El)

2

=P2
l +PlEl +ElPl +E2

l .

• The firs term P2
l is the signal term.

• The second and third terms PlEl, ElPl are mean zero noise terms,
so that ‖∑

L
l=1 PlEl‖.

√
L‖P1E1‖ (matrix Bernstein).

• The last term E2
l has positive expectation, so that

‖∑
L
l=1 E2

l ‖ � L‖E2
1‖. This is the bias term.



The bias term

• (E2
l )ij = ∑k 6=i,j El,ikEl,jk = ∑k 6=i,j(Al,ik−Pl,ik)(Al,jk−Pl,jk)

• E(E2
l )ij = 0 if and only if i 6= j.

• When i = j,

(E2
l )ii =∑

k 6=i
E2

l,ik = ∑
k 6=i

(Al,ik−Pl,ik)
2

=∑
k 6=i

(A2
l,ik−2Al,ikPl,ik +P2

l,ik)

• The leading term is ∑k 6=i Al,ik ≡ dl,i, the degree of node i in layer
l, which can be computed from the data and hence can be
removed.
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Bias-adjusted squared spectral clustering

• Let Dl = diag(dl,1, ...,dl,n)

• Let ĝsc be obtained by applying spectral clustering on

L

∑
l=1

(A2
l −Dl)

• In practice, one can just calculate ∑l A2
l and then zero out the

diagonal.



A simulation
L = 30, n = 200, K = 2, Bl equals B(1) or B(2) with equal probability,

where B(1) =

[
3/4

√
3/8√

3/8 1/2

]
, B(2) =

[
7/8 3

√
3/8

3
√

3/8 1/8

]



Analysis of bias removal.

∑l(A2
l −Dl) = ∑l P2

l +∑l(PlEl +ElPl)+∑l(E2
l −Dl)

1. ∑l P2
l has K large eigenvalues, with gap & n2ρ2L.

2. ‖∑l PlEl‖. n3/2ρ3/2L1/2 log1/2(L+n) (gen. Bernstein)

3. ‖∑l(E2
l −Dl)‖. nρL1/2 log1/2(L+n) (gen. Hanson–Wright)

Theorem (L. & Lin ’20)

Assume K = O(1), balanced community sizes, and L−1
∑l B2

l � cI.
The bias-adjusted squared spectral clustering is consistent if
nρL1/2/ log1/2(L+n)→ ∞ .

Not just a log factor improvement, but computationally much simpler.



The linear term: concentration of matrix sums

Theorem (generalized Bernstein’s inequality)

Let (Xl : 1≤ l≤ L) be a sequence of n× r matrices with independent
mean zero entries satisfying E|Xk

l,ij| ≤ (v/2)Rk−2k! for some constants
(v,R), and (Hl : 1≤ l≤ L) be a sequence of non-random r×m
matrices, then for all t > 0

P

(∥∥∥∥∥∑l
XlHl

∥∥∥∥∥≥ t

)

≤2(m+n)exp

{
− t2/2

v
[
(n‖∑l HT

l Hl‖)∨ (∑l ‖Hl‖2
F)
]
+ tRmaxl ‖Hl‖2,∞

}
,

where ‖ · ‖2,∞ denotes the maximum `2 norm of rows.



Controlling the quadratic term

Theorem

Let El = Al−EAl. If nρ = O(1), nρL1/2 & log1/2(L+n), then with
high probability∥∥∥∥∥∑l

(E2
l −Dl)

∥∥∥∥∥. nρL1/2 log1/2(L+n) .

Main ingredient of the proof: two rounds of de-coupling (de la Penã
and Montgomery-Smith ’95).



Concentration of matrix quadratic forms

Theorem (generalized Hanson–Wright inequality)

Let (Xl : 1≤ l≤ L) be a sequence of n× r matrices with independent
zero mean sub-Gaussian entries: EeX2

l,ij/v ≤ 2 for some constant v, and
(Ql : 1≤ l≤ L) be a sequence of non-random r× r matrices, then
there is a constant C such that with high probability∥∥∥∥∥∑l

(
XlQlXT

l −EXlQlXT
l
)∥∥∥∥∥≤ Cvn log(L+n)

(
∑

l
‖Ql‖2

)1/2

.



Monkey brain gene co-expression network

• n = 7836 genes

• L = 10: from 40 days in the embryo to 48 months after birth.

• Co-expression network from the medial prefrontal cortex
(related to developmental brain disorders such as ASD).

• K = 8 by scree plot.



Adjacency matrices grouped by K = 8 clusters



Meanings of the communities

Group Description GO ID p-value

1 RNA splicing 0008380 2.91×10−15

2 Mitotic cell cycle process 1903047 1.26×10−25

3 Chemical synaptic transmission 0007268 1.51×10−11

4 Tissue development 0009888 8.00×10−5

5 Neurotransmitter transport 0006836 2.22×10−5

6 Regulation of transporter activity 0032409 5.68×10−6

7 Transmembrane transporter activity 0022857 4.33×10−4

8 None





Next steps

• Optimality of the threshold nρL1/2?
• Conjecture 1: Without computational constraints, the threshold is

nρL. Consider maxw:‖w‖=1 ‖∑l wlAl‖, and spectral clustering on

∑l wlAl.
• Conjecture 2: nρL1/2 is the right threshold for polynomial time

algorithms.

• Time-varying SBMs with general connectivity structure
• What if both g and B changes smoothly from layer to layer?
• Optimal smoothing determined by triplet (n,L,ρ)?

• Estimating K: cross-validation or spectral methods?
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