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Dependence in Networks

Network Data

Network Data

Adjacency matrices (Symmetric), [Aij ]ni ,j=1 numerically represent
network data:

Aij =

1 if node i links to node j ,
0 otherwise.

Aij are dependent on each other.
Question: How to model this dependence?
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Network Data

Exchangeable Network Models

Figure: Peter and Aiyou’s Seminal Work.
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Dependence in Networks

Network Data

Exchangeable Network or Graphon Models

Derived from representation of exchangeable random infinite array by
Aldous and Hoover (1983).

Exchangeable Network Model
Define P({Aij}n

i ,j=1) conditionally given latent variables {ξi}n
i=1 associated

with vertices {vi}n
i=1 respectively. (Bickel & Chen (2009), Bollobás et.al.

(2007), Hoff et.al. (2002)).

ξ1, . . . , ξn
iid∼ U(0, 1)

P(Aij = 1|ξi = u, ξj = v) = hn(u, v) = ρnw(u, v),
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Network Data

Sequence of Networks

Figure: Network Sequence Examples
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Network Data

Voting Patterns in US Congress

Figure: Network Sequence Examples
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Network Data

Multi-layer Network Data

Definition (Multi-layer network)

A multi-layer network is a pair M = (G, C) where G = {Gα;α ∈ {1, . . . ,M}}
is a family of (directed or undirected, weighted or unweighted) graphs
Gα = (Xα,Eα) (called layers of M) and
C = {Eαβ ⊆ Xα ×Xβ;α, β ∈ {1, . . . ,M}, α 6= β} is the set of interconnections
between nodes of different layers Gα and Gβ with α 6= β.
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Network Data

Multi-layer Network Data
A multiplex network is a special type of multilayer network
in which X1 = X2 = · · · = XM = X and the only possible
type of interlayer connections are between corresponding
nodes in different layers, that is, Eαβ = {(x , x); x ∈ X} for
every α, β ∈ {1, . . . ,M}, α 6= β.
A temporal network (G(t))T

t=1 can be represented as a
multilayer network with a set of layers {G1, . . . ,GT} where
Gt = G(t), Eαβ = ∅ if β 6= α + 1, while
Eα,α+1 = {(x , x); x ∈ Xα ∩ Xα+1}. Notice that here t is an
integer, and not a continuous parameter.
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Focus of this Talk

Statistical Inference for Dependent Networks
1 Network Sequences with dependent layers: We consider

network sequences with two different types of dependent
layers.

Dependence of network layer adjacency matrices: The
adjacency matrices corresponding to each of the network
layers are dependent over of the sequence.
Dependence of network layer model parameters: The
model parameters or latent distributions of each network
layer models are dependent over the sequence.

2 Networks with dependent edge formation: We consider
sequences of networks with dependence edge construction
mechanism, going beyond the graphon models.
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Dependence in Networks

Focus of this Talk

Main Questions

1 Community Detection: Estimation of latent
memberships of the nodes using the edge structure of the
single and multi-layer networks.

2 Change-point Detection: Estimation of structural
break points in sequence of networks.

3 Parameter Estimation: Estimation of population
parameters of the network models with edge-dependence
and dependence between layers.
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Network Sequences with Dependent Layers

Two Forms of Inter-layer Dependencies

We consider network sequences with two different types of
dependent layers.

Dependence of network layer adjacency matrices:
The adjacency matrices corresponding to each of the
network layers are dependent over of the sequence.
Dependence of network layer model parameters:
The model parameters or latent distributions of each
network layer models are dependent over the sequence.

14 / 79



Network Dependence
Network Sequences with Dependent Layers

Dependence of network layer adjacency matrices

Outline
1 Dependence in Network Data

Network Data
Focus of this Talk

2 Network Sequences with Dependent Layers
Dependence of network layer adjacency matrices
Change-point Detection for Dependent Adjacency Matrices
Community Detection for Dependent Adjacency Matrices
Dependence of network layer model parameters

3 A Detour: Estimation of Number of Communities
4 Networks with Dependent Edge Structure

Transitive Inhomogeneous Erdös-Rényi (TIER) model
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Dependence of network layer adjacency matrices

Additional Collaborators

Sayak Chatterjee, Indian Statistical Institute, Kolkata.
Anirban Nath, Indian Statistical Institute, Kolkata.
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Dependence of network layer adjacency matrices

Lazy inhomogeneous Erdős-Rényi graph

A sequence of T ≥ 2 adjacency matrices (A(1), . . . ,A(T )) is
said to be generated from the lazy inhomogeneous
Erdős-Rényi (lazy IER in abbreviation) process with
parameters P ∈ [0, 1]n×n satisfying Pij = Pji for all i , j ∈ [n]
and α ∈ (0, 1), if

A(1)
ij ∼ Bernoulli(Pij), and

A(t)
ij =

A(t−1)
ij with probability α

ind∼ Bernoulli(Pij) with probability 1− α
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Dependence of network layer adjacency matrices

Lazy inhomogeneous Erdős-Rényi graph
Aggregated adjacency matrix is defined as

A :=
∑

t∈[T ]
A(t).

Aggregated Laplacian matrix is defined as

L := In − D−1/2AD−1/2,

where, D is the diagonal matrix of aggregated degrees
di := ∑

t∈[T ],j∈[n] A(t)
ij , i = 1, . . . , n.

The population versions of the aggregated adjacency and
Laplacian matrices are defined respectively as Ā := E(A) and
L̄ := In − D̄−1/2ĀD̄−1/2, where D̄ = ED.
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Dependence of network layer adjacency matrices

Concentration Around Population Parameter
Theorem (Chatterjee2, Mukheree, Nath and B. (2022))

Let dmin := mini∈[n]
∑

j∈[n] Pij (resp. dmax := maxi∈[n]
∑

j∈[n] Pij)
denote the minimum (resp. maximum) among the expected degrees
of the vertices for each t ∈ [T ]. Then there exist constants
C ,C1(α) > 0 such that if Tdmax > C(log(n))3, then

‖A− Ā‖ ≤ C1(α)
√

Tdmax log(n)

with high probability. Moreover, there exist constants C ,C2(α) > 0
such that if Tdmin > C(log(n))3, then

‖L − L̄‖ ≤ C2(α)
√

log(n)
Tdmin

with high probability.
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Dependence of network layer adjacency matrices

Concentration Around Population Parameter
Both C1(α),C2(α) ↑ ∞ as α ↑ 1, and C1(α),C2(α) ↓ C0 for an
universal constant C0 > 0 as α ↓ 0. In fact, both of these constants
are Ω(1/

√
1− α).

For α = 0, concentration is highest.
For, α increasing to 1, the correlation among the edges between each
pair of vertices across all layers increases to 1. Consequently, the
concentration properties of the aggregated adjacency and Laplacian
matrices deteriorate.
Matrix Bernstein-type inequalities, combinatorial arguments, and
path counting arguments used in random matrix theory are not
useful for proving the nontrivial concentration results for strongly
correlated layers of multi-layer network models that we address in
Theorem. Our approach enables us to go beyond weakly correlated
multi-layer network models and develop tools to analyze multi-layer
network models involving more complex correlation structures.
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Dependence of network layer adjacency matrices

Simulation Results
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Figure: Top: SBM; Bottom: Graphon; Left: Adjacency; Right: Laplacian.
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Network Sequences with Dependent Layers

Change-point Detection Problem

Change-point Problem Formulation
Observe T graphs G1, . . . ,GT on the same set of n vertices.
A(t) is the adjacency matrix of Gt .
Gt comes from a lazy inhomogeneous Erdös-Rényi model with
probability matrix, such that, there is an (unknown) time point
0 < τ < T with

E(A(t)) = Q1 for 1 ≤ t ≤ τ and E(A(t)) = Q2 for τ+1 ≤ t ≤ T

where Q1 and Q2 are unknown n × n probability matrices.
A(τ+1)

ij equals A(τ)
ij with probability α, and is sampled

independently (of A(1:τ) and across i , j) from Bernoulli(Q2) with
probability (1− α).
We want to estimate τ .
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Network Sequences with Dependent Layers

Change-point Detection Problem

Parameters/Hyper-parameters
T = Number of networks,
κ0 = (cushion) minimum gap between change point and the
end points,
Sig = ||Q1 −Q2||,
n = Size of each network,
d = Max expected degree of a node at a time (d = nρ where
ρ = maxi ,j,t P(t)

i ,j ),
(Algorithmic parameters)

κ = (buffer window length) target length of buffer from end
points or between change points.
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Change-point Detection Problem

Single Change Point Detection

Figure: Pictorial Representation
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Change-point Detection Problem

The CUSUM Procedure for Single Change Point
1. Obtain average degree D̄ = 1

nT
∑

i ,j∈[n],s∈[T ] A(s)
i ,j .

2. Given κ, obtain the CUSUM statistic,

G(t)
ξ :=

( t
T

(
1− t

T

))ξ 1
t

t∑
s=1

A(s) − 1
T − t

T∑
s=t+1

A(s)


for κ ≤ t ≤ T − κ.

3. Obtain M := maxt
∣∣∣∣∣∣G(t)

ξ

∣∣∣∣∣∣, and potential change point estimate
τ̌ := arg maxt

∣∣∣∣∣∣G(t)
ξ

∣∣∣∣∣∣.
4. If M > C

√
D̄
T for some specific constant C , then declare τ̌ as a

change-point estimate, τ̂ .
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Change-point Detection Problem

Theoretical Results

The main theoretical result is the following nature -

Theorem (Chatterjee2, Mukheree, Nath and B. (2022))

Let κ0 = min{τ,T − τ}. For any c > 0, there exists a
constant C > 0 such that for any κ ≤ κ0, if
κmin{dQ1

max, dQ2
max} > C(log n)3, then

|τ̂−τ | ≤ C4
T(

1− t
T

)ξ
‖Q1 −Q2‖

√√√√max{dQ1max, dQ2max}(1 + C) log(n)
(1− α)κ

with probability at least 1− 2T
nc .
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Change-point Detection Problem

Observations Regarding the Theorem

The networks can only be log(n)-sparse according to the
current results. But, it might be possible to extend the
current theoretical results.
The result depends on the lazyness parameter, α and as
expected as α increases the problem becomes more
difficult as the number of independent layers decreases.
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Change-point Detection Problem

Simulation Results
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Figure: Average absolute error in change-point detection for graphon model
over 100 experiments. Left panel: ∆p = 0.05. Right panel: ∆p = 0.07.
Parameters: ∆e = 100 (yellow), 110 (red), 120 (green). We have used the
CUSUM statistic with ξ = 1/2.
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Community Detection Problem

Community Detection Problem Formulation
A sequence of networks G (1), . . . ,G (T ) generated from the lazy
IER process, with common mean matrix P = ZBZ>.
Z ∈ {0, 1}n×K is the community membership matrix and
B ∈ [0, 1]K×K is the matrix of between/within community
edge-formation probabilities.
Goal: Recover the community membership matrix Z .
Method: Spectral clustering algorithm on (a) the aggregated
adjacency matrix A gives ẐAdj, and (b) aggregated Laplacian
matrix L gives ẐLap.
The mis-clustering error of a community estimator Ẑ is defined
to be -

ME(Ẑ ,Z ) := infΠ∈PK
1
n‖Ẑ − Z Π‖2

F ,
where PK is the set of all K × K permutation matrices.
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Community Detection Problem

Theoretical Results
Theorem (Chatterjee2, Mukheree, Nath and B. (2022))

Let γAdj and γLap denote the smallest non-zero singular value of P = ZBZ>

and D−1/2
P PD−1/2

P respectively.
For any constant c > 0 there exists another constant C = C(c) > 0 such that
if Tdmax > C(log(n))3, then there is a constant C1 = C1(α, c) such that for
any δ ∈ (n−c , 1/2),

ME(ẐAdj,Z ) ≤ C1(2 + ε)Kdmax log(n/δ)
γ2

AdjT

with probability at least 1− δ. And,

ME(ẐLap,Z ) ≤ C2(2 + ε)K log(4n/δ)
γ2

LapTdmin

with probability at least 1− δ.

The constants C1 and C2 are the same (up to absolute multiplicative constant)
as their namesakes appearing in the main Theorem.
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Community Detection Problem

Simulation Results
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Figure: Average misclustering error in community detection for SBM over
100 experiments. Left panel: using the aggregated adjacency matrix. Right
panel: using the aggregated Laplacian matrix. Parameters: a = 7, b = 3
(yellow); a = 7.5, b = 2.5 (red); a = 8, b = 2 (green).
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Dependence of network layer model parameters

Problem Formulation

Observe T graphs G1, . . . ,GT on the same set of n
vertices.
A(t) is the adjacency matrix of Gt .
P := {P(t) : 1 ≤ t ≤ T} is a stochastic process.
Gt comes from an inhomogeneous Erdös-Rényi model
with probability matrix: EA(t) = P(t).
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Dependence of network layer model parameters

Community Detection Problem Formulation
Z ∈ {0, 1}n×K is the community membership matrix and
consider B := (B(t)

K×K , t ∈ [T ]) is a stochastic process and
P(t) = ZB(t)ZT . B is the sequence of connection probability
matrix between/within community.
Goal: Recover the community membership matrix Z.
Method: Spectral clustering algorithm on the aggregated
squared adjacency matrix
A[2] = ∑T

t=1(A(t))2 − diag(∑T
t=1(A(t))2) gives Ẑ0.
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Dependence of network layer model parameters

Community Detection Algorithm
Obtain A[2]

0 := ∑T
t=1

(
A(t)

)2
(sum of squares of the adjacency

matrices) and zero out its diagonal to get 〈A[2]
0 〉.

Get D[1]
i := maxT

t=1
∑n

j=1 A(t)
i ,j and D[2]

i := ∑n
j=1〈A

[2]
0 〉i ,j for i ∈ [n].

Get the order statistics D[1]
(1) ≤ · · · ≤ D[1]

(n) and D[2]
(1) ≤ · · · ≤ D[2]

(n).
Get d̄2 := 1

nT
∑n

i=1 D[2]
i . Get Γ1 and Γ2 as two thresholds.

Get {i ∈ [n] : D[l]
i ≤ D[l]

(n+1−Γl ) for both l = 1, 2} and sort its entries
in ascending order to have 1 ≤ k1 < · · · < kn′ ≤ n.
Get submatrix A[2] ∈ Rn′×n′ of 〈A[2]

0 〉, where A[2]
i ,j = 〈A[2]

0 〉ki ,kj .
Perform Spectral Clustering on A[2] and extend to obtain Ẑ0 as
follows by including the excluded nodes in one community.
Ẑ0 is the estimate of Z.
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Dependence of network layer model parameters

Theoretical Results for Independent Layers
Theorem (B. and Chatterjee (2020))

For a ∈ [K ], let fa denote the proportion of nodes having community label a, which are
misclassified in Algorithm 1. For any ε > 0, there are constants C = C(ε), c > 0 such
that if η ∈ (0, 1) is any number satisfying η > c(Td(d ∧ 1))−1/3 and if

λ
(nmin

n

)2
> max

{
7
n ,

C
√

K
(Td(d ∧ 1))1/4

}
, (1)

then
∑

a∈[K ]
fa ≤

C 2K Ψ
λ2
(

(nmin
n

)4 with probability ≥ 1− η, where,

Ψ :=


(Td)−1/2 if d > 1 and n ≥ (Td)1/4

[n2 + (n/6) log(4/η)](Td)−1 if d > 1 and n < (Td)1/4

(Td2)−1/2 if d ≤ 1 and n ≥ (Td)1/4

[n2 + (n/6) log(4/η)](Td2)−1 if d ≤ 1 and n < (Td)1/4

Therefore, in the special case, when (i) K is a constant, (ii) the community sizes are
balanced, i.e. nmax/nmin = O(1), and (iii) the edge probabilities are of the same order,
i.e. λ � 1, then the proportion of misclassified nodes in Ẑ0 is arbitrarily small (resp. goes
to zero) with high probability (resp. probability 1− o(1)) if T (d ∧ d2) is large enough
(resp. T (d ∧ d2)→∞).
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Dependence of network layer model parameters

Community Detection Problem Formulation in
Dependent Case

The smallest eigenvalue λK ,t := λK ([B(t)]2) with CDF
Ft(x) := P(λK ,t ≤ x) for x ≥ 0. Let bt := 1{λK ,t =0} and
F +

t (x) := Ft (x)−Ft (0)
1−Ft (0) , and λ̃K ,t ∼ F +

t (x) for all t is an independent copy
generated from the truncated distribution.
The maximal degree variable, dn(ε) for any ε > 0, is defined in the
following way -

dn(ε) := sup
{

x ∈ [0, n] : P
(

max
t∈[T ], a,b∈[K ]

nB(t)
ab ≤ x

)
≤ ε

}
.
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Dependence of network layer model parameters

Community Detection Problem Formulation in
Dependent Case

(Mixing condition) Consider a decreasing function α↓ : Z+ → [0, 1] to
reflect the decay of correlation (at any rate) between two events of
non-informative (smallest eigenvalue of B(t) being zero) B(t) matrices,
like B(t1) and B(t2), where, t1, t2 ∈ [T ], t1 6= t2.∣∣∣∣∣∣P

(
∩i∈[2]{λK ,ti = 0}

)
−
∏

i∈[2]
P(λK ,ti = 0)

∣∣∣∣∣∣ ≤ α↓(|t1 − t2|) (2)

with α↓ having the property

α↓(s) ↓ 0 as s ↑ ∞, and α↓(0) = 1.

This decay of correlation is necessary to have consistent recovery of
communities.
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Dependence of network layer model parameters

Community Detection Problem Formulation in
Dependent Case

Consider a function ψ↑↓ : N× R+ → [0, 1] in terms of T and
dn(ε), which captures the probability that network layers are
non-informative, that is,

max
t∈[T ]

P ({λK ,t = 0}) ≤ ψ↑↓(T , dn(ε)). (3)

ψ↑↓(T ,d) is a function which captures the behavior that on one
hand ψ↑↓ increases to 1 as T increases and d remains constant.
But, on the other hand ψ↑↓ decreases to 0 as d increases and the
number of networks T stays the same, that is,

lim
T↑∞

ψ↑↓(T , d) = 1 and ψ↑↓(T , d) ↓ 0 as d↑ ∞.
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Dependence of network layer model parameters

Community Detection Problem Formulation in
Dependent Case

Based on the random variables λ+
K ,t and dn(ε), and the functions α↓, ψ↑↓ and

φ↓, we place the following conditions on the stochastic process B.
Assumption A: Let B = (B(t), t ∈ [T ]) be a stochastic process with the
following properties -

(a) ψ↑↓(T , dn(ε)) ≤ 1−
[√

T
T + α↓(

√
T )
]1/2−δ

∨ 1
(T dn(ε)(dn(ε) ∧ 1)) 1

60

(b) max
t∈[T ]

Ft(0) ≤ ψ↑↓(T , dn(1/2)), and (4)

(c) max
t∈[T ]

Eφ↓(λ+
K ,t) ≤ C1 for a decreasing and convex function (5)

φ↓ : (0,∞)→ (0,∞)

for any ε > 0 and for some constants C1 <∞ and δ < 1/2.
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Dependence of network layer model parameters

Theoretical Results
Theorem (B. and Chatterjee (2020))

Let (B(t), t ∈ [T ]) be any stochastic process satisfying Assumption A, (fa, a ∈ [K ])
be the mis-clustering error for each community. For any ε > 0, δ ∈ (0, 1/2),

P

 ∑
a∈[K ]

fa > (T d(ε))−1/6

 ≤ ε + C1

φ↓

(
2n2

n2
min

[T dn(ε)(dn(ε) ∧ 1)]−1/15
) (6)

+ min

4
[√

T
T + α↓(

√
T )
]2δ

,Tψ↑↓(T , dn(ε)(dn(ε) ∧ 1))


+2C ′ + 2nK

n
(

[T dn(ε)(dn(ε) ∧ 1)]−3/4 + ε
)
.

Therefore, in the special case, when (i) K is a constant and (ii) the community
sizes are balanced, i.e. nmax/nmin = O(1), then the proportion of misclassified nodes
in Ẑ0 is arbitrarily small (resp. goes to zero) with probability 1− o(1) if
T dn(ε)(dn(ε) ∧ 1) is large enough (resp. T dn(ε)(dn(ε) ∧ 1)→∞) and ε is small
enough (resp. ε→ 0).
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Dependence of network layer model parameters

Change-Point Problem Formulation
Observe T graphs G1, . . . ,GT on the same set of n vertices.
A(t) is the adjacency matrix of Gt .
P := {P(t) : 1 ≤ t ≤ T} is a stochastic process.
Gt comes from an inhomogeneous Erdös-Rényi model with
probability matrix: EA(t) = P(t).
Suppose that there is an (unknown) time point 0 < τ < T such
that

E(P(t)) = Q1 for 1 ≤ t ≤ τ and E(P(t)) = Q2 for τ+1 ≤ t ≤ T

where Q1 and Q2 are unknown n × n probability matrices.
We want to estimate τ .
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Dependence of network layer model parameters

Parameters/Hyper-parameters
T = Number of networks,
Sig = ||Q1 −Q2||,
n = Size of each network,
d = Max expected degree of a node at a time (d = nρ where
ρ = maxi ,j,t P(t)

i ,j ),
(Algorithmic parameters)

κ = (buffer window length) target length of buffer from end
points or between change points.
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Dependence of network layer model parameters

Single Change Point Detection

Figure: Pictorial Representation
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Dependence of network layer model parameters

The CUSUM Procedure for Single Change Point
1. Obtain average degree D̄ = 1

nT
∑

i ,j∈[n],s∈[T ] A(s)
i ,j .

2. Obtain submatrix Ã(s) of A(s) for all s ∈ (0,T ] by deleting rows
(and corresponding columns) with high row sum.

3. Given κ, obtain the CUSUM statistic,

G(t) :=
√

t
T

(
1− t

T

)1
t

t∑
s=1

Ã(s) − 1
T − t

T∑
s=t+1

Ã(s)


for κ ≤ t ≤ T − κ.

4. Obtain M := maxt
∣∣∣∣∣∣G(t)

∣∣∣∣∣∣, and potential change point estimate
τ̌ := arg maxt

∣∣∣∣∣∣G(t)
∣∣∣∣∣∣.

5. If M > C
√

D̄
T for some specific constant C , then declare τ̌ as a

change-point estimate.
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Dependence of network layer model parameters

Theoretical Results

The main theoretical result is the following nature -
Let P be stationary and ergodic process both before and after
change point τ . There are constants C , c > 0 and vanishing
sequence {εT}T such that if Sig �

√
d
T , then

P (|τ̂ − τ | = o(T )) ≥ 1− exp (−min{C log(n), cd})− εT .
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Dependence of network layer model parameters

Some Observations

The networks can be sparse. Maximum expected degree,
d can be constant as well as going to infinity at an
arbitrarily slow rate.
The result follows from the use of Birkhoff’s Ergodic
Theorem. But, the result can be generalized by using
mixing conditions.
Last note, Carey Priebe and collaborators has done some
excellent works in these directions albeit with a bit of
different assumptions and models.
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Bethe-Hessian Matrix
1 The Bethe Hessian matrix associated with an adjacency matrix

A is defined as

Hζ := (ζ2 − 1)IN + D− ζA (7)

where ζ > 1 is a real scalar parameter, D := Diag(A1N).
2 Methods based on the spectrum of the Bethe Hessian operator

have been considered empirically (e.g., Saade et al (2014),
Dall’Amico et al (2019, 2020), and Le and Levina (2015)).

3 Le and Levina (2015) proved the consistency of the method
based on the spectrum of the Bethe Hessian operator in
semi-dense regimes, mean degree d � log n.

4 However there is no theoretical result in the literature that
guarantees the effectiveness of the Bethe Hessian operator in
sparse regimes, d = o(log n).
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Bethe-Hessian Matrix
1 Le and Levina (2015) showed that the number of informative

eigenvalues of Hζ directly estimate K in the semi-dense regime
(d̃ � log(N)) when ζ is set to be either rm or ra (degree based
statistics). Both rm and ra are obtained based on heuristic
arguments and are commonly used in the literature to estimate
the radius of the bulk of the spectra.

2 (New Result) For a sparse regime when 1� d̃ � log(N), let
β := Bmax(1− λdminN̆K ), λ := λ↓K

(
N
d B

)
, N̆K := ∑

i∈CK ψ
2
i /d̄i

and dmin := min
(

Diag(D̄)
)

. Then, for any δ ∈ (0, 3/2), Hζ has
exactly K negative eigenvalues for all
ζ ∈ 1

2

(
− β ±

√
β2 + 4− 4dmin

)
with probability at least

1− exp[−(ζ/
√

d)3/2−δ].
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Empirical K-estimation
The theoretical result gives a theoretical interval but an empirical
estimate within the interval is needed for practical applications.
Following choice then works with high probability -

1 Consider
d̂min = Median

{
di | di <

1√
log N

quantile, i ∈ [N] \ R
}

, where
R = {i | di ∈ {0, 1}}.

2 Choose ζ = − β̂
2 =

√
d̂min − 1.

3 Compute Hζ := (ζ2 − 1)IN + D− ζA
4 Perform eigenvalue decomposition of Hζ and let K̂ be the

number of negative eigenvalues of Hζ .
5 K̂ is the estimate of K

53 / 79



Network Dependence
Estimation of Number of Communities

Consistency
Lemma (Hwang, Chatterjee, Xu, and B. (2022))

Let d̂min = max
{

di |di <
c√

log N
quantile, i ∈ [N]

}
, for some c ∈ (0,

√
log N).

Then, with probability at least 1− 2δ,

d̂min ∈
(

(1− εδ)dmin, (1 + εδ)dmin
)

(8)

for any

εδ ≥

√√√√−2 log(cδ/
√

log N)
dmin

(9)

Remark In Lemma , the quantity δ can be arbitrarily small depending on the
concentration bound of the estimate d̂min to its population counterpart dmin.

Theorem (Hwang, Chatterjee, Xu, and B. (2022))

Under the framework mentioned, with probability at least 1− δ as defined in
the Lemma, K̂ obtained from the Algorithm is the true K.
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A Simulation Demonstration

Figure: Row (A) shows Accuracy versus η using oracle intervals, with
different values of N and K = 3. Row (B) shows ACR versus η as K varies
with fixed N = 25, 000. Both with fixed d̃ = 3

√
log(N).
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Five “Desirable” Properties of Complex Networks
Sparsity: Average degree is bounded or grows slowly in terms of
number of vertices.
Small-world property: The diameter of the network is bounded
or grows slowly in terms of number of vertices.
Power-law degree distribution: The degree distribution of the
networks follow scale-free power-law models.
Transitivity: The network structure has transitive property, that
is, the average number of triangles grows in terms of number of
vertices.
Clusterability or presence of community or low-rank
structure: Possibility of the presence of a community structure
in the networks.
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Network Models with all “Five” Properties

Graphon or inhomogeneous Erdös-Rényi random graph
models can usually have at max four of these properties -
it is difficult to attain both sparse, transitive and low-rank
networks from graphon models as they have conditionally
independent edges.
Exponential random graph models have the possibility of
generating networks with all five properties but are
difficult to analyze.
Other network models, such as, edge-exchangeable
network models (Caron and Fox, 2015; Crane and
Dempsey, 2015) have been proposed which also have the
possibility of having all five properties.
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Transitive Inhomogeneous Erdös-Rényi (TIER) model

Transitive Inhomogeneous Erdös-Rényi (TIER)
model

Transitive inhomogeneous Erdös-Rényi (TIER) model of k closures, TIER(k),
can be described in terms of two parameters:

connectivity probability matrix Pn×n,
triangle closure parameter δn,
number of closures, k .

The TIER graph generating mechanism is given by -
1. Start with ` = 0, and P

(
Ãij = 1

)
= Pij ,

(inhomogeneous Erdös-Rényi generation step),
2. If Ãij = 0, then ñij := ∑

k 6=i ,j ÃikÃjk
(detection of ‘V’ structures)

3. P(Aij = 1) = min(1, δn)1(ñij > 0), and ` = ` + 1
(triangle or transitive closure)

4. If ` < k , go back to step 2 with Ã = A. Otherwise, A = (Aij)n
i ,j=1 is the

generated adjacency matrix.
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Transitive Inhomogeneous Erdös-Rényi (TIER) model

TIER model Comments

TIER(k) model extends the graphon or IER model set-up
to allow for dependent edge formation using transitive
closure. Networks generated from the TIER model are
not conditionally independent.
Transitive closures are common for directed graphs and
have also been applied to extend Chung-Lu models
(transitive Chung-Lu model, Pfeiffer et.al. (2012)).
TIER(k) models can potentially generate networks with
all five properties depending on the generating graphon.
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Transitive Inhomogeneous Erdös-Rényi (TIER) model

Another Related Work

Yuan and Qu (2021) proposed a conditional stochastic
block model with correlation structure on the adjacency
matrix.
The work was based on Bahadur’s approximation of
multivariate Bernoulli distributions and has close ties to
the transitive closures of TIER models.
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Transitive Inhomogeneous Erdös-Rényi (TIER) model

Properties of an Example of TIER model

Figure: TIER models generated using stochastic block model kernels.
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Transitive Inhomogeneous Erdös-Rényi (TIER) model

Properties of an Example of TIER model

Figure: TIER models generated using stochastic block model kernels.
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Transitive Inhomogeneous Erdös-Rényi (TIER) model

TIER model Comments

Networks generated from TIER(k) models can be studied
in several network inference problems -

1 Subgraph count distributions,
2 Community detection,
3 Change point detection,
4 Link prediction.

However, we shall focus on a specific change point
detection problem.
We are working on Problems 1 and 3. With Avanti
Athreya, Vince Lyzinski, and Jesus Arroyo, we are working
on Problem 2.
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Procedure for Local Change point Detection

Parameters/Hyper-parameters
T = Number of networks,
n = Size of each network,
d = Max expected degree of a node at a time (d = nρ where
ρ = maxi ,j,t P(t)

i ,j ),
δn = transitive closure probability,
(Algorithmic parameter)

κ = (buffer window length) target length of buffer from end
points or between change points.
γ = (group size) the size of non-overlapping local groups.
H is the subgraph of interest, most commonly, triangles.
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Procedure for Local Change point Detection

The Procedure for Local Change Point Detection
1. Divide the set of nodes randomly into g non-overlapping

groups, {V1,V2, . . . ,Vg}, such that, gγ = n.
2. For each node i ∈ {1, . . . , n}, compute, N (H,t)

i , the count of
subgraphs, H , containing node i .

3. For each group h ∈ {1, . . . , g}, for each t ∈ (κ,T − κ),
compute,

S(H,t)
h = 1

|Vh|
∑
i∈Vh

N (H,t)
i

4. Obtain the CUSUM statistic, for each group h ∈ {1, . . . , g}
and t ∈ (κ,T − κ),

G (H,t)
h :=

√
t
T

(
1− t

T

)1
t

t∑
s=1

S(H,s)
h − 1

T − t

T∑
s=t+1

S̃(H,s)
h

 .
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Procedure for Local Change point Detection

The Procedure for Local Change Point Detection II

5. Obtain for each group h ∈ {1, . . . , g},
Mh := maxt∈(κ,T−κ)

∣∣∣G (H,t)
h

∣∣∣, and potential change point
estimate τ̌h := arg maxt∈(κ,T−κ)

∣∣∣G (H,t)
h

∣∣∣.
For each group h ∈ {1, . . . , g}, if Mh > Ah for some
threshold Ah estimated using normal approximation, then
declare τ̌h as a change-point estimate for group h.
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Procedure for Local Change point Detection

Comments on the Local Algorithm

The number of groups, g , can range between O(1) to
O(n) to detect change points in different multi-scale
localities.
The change-point locations can be different for different
groups or channels.
The procedure can be used for multiple change point
detection using binary segmentation procedures.
The procedure can be extended for online change point
detection too.
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Procedure for Local Change point Detection

Theoretical Results for Local Change point
Detection

We have derived theoretical results for some special cases only
for now.
For the subgraph, H , as triangle, the results depend on the
asymptotic distribution of the triangle counts in TIER model
networks. The asymptotic distribution can be derived in several
different cases -

(Sparse Case) For dδn → 0 and d2δn →∞, normalised local
triangle count statistic has asymptotic standard normal
distribution. The proof follows using Stein’s method.
(dense case) For dδn →∞ and and d2δn →∞, normalised
local triangle count statistic also has asymptotic standard
normal distribution. But, the proof uses U-statistic method.
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Procedure for Local Change point Detection

Observations Regarding the Theoretical Results

The threshold for change point detection, Ah, can either
be derived using Brownian bridge approximation or
simulated distributions. In current case, we use simulated
distributions.
Depending on the sparsity of the networks, the size of the
groups can be decided. For very sparse networks, the
group size has to be large, but for dense networks, it can
be arbitrarily small.
Instead of triangles, counts for other subgraphs can also
be used, but the theoretical results for general subgraph
counts are tedious and still under investigation.
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Procedure for Local Change point Detection

Simulation Results

Figure: Power of the local change point detection methods.
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Procedure for Local Change point Detection

Results for US Senate Networks

Figure: Change in US Senate Network at change-point of Jan 10,
1994. The local change point detects the change point for groups
2, 4, 7, and 10 for 10 consecutive groups each of size 10. These 4
groups have the highest change proportions. 74 / 79



Network Dependence
Future Directions

Outline
1 Dependence in Network Data

Network Data
Focus of this Talk

2 Network Sequences with Dependent Layers
Dependence of network layer adjacency matrices
Change-point Detection for Dependent Adjacency Matrices
Community Detection for Dependent Adjacency Matrices
Dependence of network layer model parameters

3 A Detour: Estimation of Number of Communities
4 Networks with Dependent Edge Structure

Transitive Inhomogeneous Erdös-Rényi (TIER) model
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Future directions

Address the extensions in TIER(k) models.
Extended the dependence set-up of dependent adjacency
matrices.
Generalization to the case where the vertex set may
evolve with time and/or there are more general
dependence structures among the edges.
How to incorporate available information (covariates)
about the networks to improve the methods?
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An Advertisement
Two tenure-track openings at Department of Statistics

Figure: Oregon State University
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Thank You!
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