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Plan for Today

1 Intro to multi-player (stochastic) bandits.

2 The power of (explicit or implicit) communication.

3 T 1/2 regret with no collisions.

4 Pareto optimal instance dependence with no communication.
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Classical Bandits

Classic (stochastic) bandit problem: learn the best of K actions online.
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Ordinary Bandits

K actions a1, . . . , aK . Unknown reward probabilities p = (p1, . . . , pK ) ∈ [0, 1].

Each time t ∈ [T ], play action ait . Receive (and observe) reward

rewit ∼ Ber(pit ) ∈ {0, 1}.

Minimize expected regret

RT (p) = E

[
T ·max

i
pi −

T∑
i=1

rewit

]
.

Both minimax and gap-dependent regret are important. Gold standards:
1 Minimax regret

RT = max
p

RT (p) .
√
T .

2 Gap-dependent regret (with ∆ = p∗1 − p∗2 the gap between best and 2nd best):

RT ,∆ = max
∆(p)≥∆

RT (p) .
log(T )

∆
.
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Multi-player (Cooperative) Bandits

Consider m > 1 players X ,Y , . . . . We assume colliding on the same action iXt = iYt is
very bad and yields zero reward.

We consider full cooperation. No incentives or zero sum. Just maximize total reward.

Proposed for wireless radio – learn good signal frequencies without interference.
[Lai-Jiang-Poor 08, Liu-Zhao 10, Anandkumar-Michael-Tang-Swami 11].

With communication between players this is semibandit. E.g. online shortest path.

M. Sellke Multi-Player Bandits without Communication 5 / 21



Multi-player (Cooperative) Bandits

Consider m > 1 players X ,Y , . . . . We assume colliding on the same action iXt = iYt is
very bad and yields zero reward.

We consider full cooperation. No incentives or zero sum. Just maximize total reward.

Proposed for wireless radio – learn good signal frequencies without interference.
[Lai-Jiang-Poor 08, Liu-Zhao 10, Anandkumar-Michael-Tang-Swami 11].

With communication between players this is semibandit. E.g. online shortest path.

M. Sellke Multi-Player Bandits without Communication 5 / 21



Multi-player (Cooperative) Bandits

Consider m > 1 players X ,Y , . . . . We assume colliding on the same action iXt = iYt is
very bad and yields zero reward.

We consider full cooperation. No incentives or zero sum. Just maximize total reward.

Proposed for wireless radio – learn good signal frequencies without interference.
[Lai-Jiang-Poor 08, Liu-Zhao 10, Anandkumar-Michael-Tang-Swami 11].

With communication between players this is semibandit. E.g. online shortest path.

M. Sellke Multi-Player Bandits without Communication 5 / 21



Multi-player Bandits Without Communication

Catch: the players cannot communicate. We want a distributed algorithm.
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The Power of Communication

Many, many possibilities for algorithms. A central difficulty is to smoothly break ties
between top arms.

If players can detect collisions, this helps a lot!

[Alatur-Levy-Krause 20]: T 2/3 regret. Communication via (detectable) collisions.

On each block of length T 1/3, every player stays on a fixed action.
Every T 1/3 time-steps, players synchronize information using O(logT ) collisions.
Reduces to semibandit game with T 2/3 “rounds” of true length T 1/3.

This is not really distributed... Communicating via collisions is super powerful.

In fact Õ(T 1/2) regret is possible even with adversarial rewards [Bubeck-Li-Peres-S. 20].

Takeaway: to get distributed algorithms, need to set the problem up carefully.
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Precise Setup

Fix p = (p1, p2, . . . , pK ) ∈ [0, 1]K . Generate KmT independent Bernoulli reward
variables rewX

t (i) for (t, i ,X ) ∈ [T ]× [K ]× [M]:

P
[
rewX

t (i) = 1
]

= pi and P
[
rewX

t (i) = 0
]

= 1− pi .

At time t, each player (PX )X∈[m] picks arm iXt , and receives the reward:

rewt(X ) = rewX
t (iXt ) · 1iXt 6=iYt ∀Y 6=X .

Players do not observe whether collisions occur.
p∗ =

∑m
j=1 p

∗
j , the sum of the best m arms, is the regret benchmark:

RT = E

[
Tp∗ −

( T∑
t=1

m∑
X=1

rewt(X )

)]
.

More specification needed!? Collisions may be weakly detectable or undetectable.
(A) Observe reward rewt(X ). (Collisions affect rewards AND feedback.)
(B) Observe reward rewX

t (iXt ). (Collisions affect rewards but NOT feedback.)
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Weakly Detectable vs Undetectable Collisions

Collisions may be weakly detectable or undetectable.
(A) Observe reward rewt(X ). (Collisions affect rewards AND feedback.)
(B) Observe reward rewX

t (iXt ). (Collisions affect rewards but NOT feedback.)

Questions:

Are these models equivalent?
How do they compare to settings with “arbitrary” collision behavior?

Answers:

Õ(T 1/2) regret is possible in both. But Õ(1/∆) requires weak detectability.

With undetectable collisions, Pareto optimal gap dependence ranges from
Õ(T 1/2) to Õ(∆−2). These are attained by collision-free algorithms.

Corollary: Õ(
√
T ) is the minimax regret in any feedback model. For

gap-dependence, weakly detectable is easiest and undetectable is hardest.
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Õ(T 1/2) regret is possible in both. But Õ(1/∆) requires weak detectability.
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Õ(T 1/2) to Õ(∆−2). These are attained by collision-free algorithms.

Corollary: Õ(
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Optimal Algorithms with Weakly Detectable Collisions

Idea of [Huang-Combes-Trinh 21] (see also [Pacchiano-Bartlett-Jordan 21]).
First step: players agree on a “decent” arm with pj ≥ maxi pi/2.

Now, aj will be used for communication.
If I want to communicate, I play aj for Õ(1/pj) timesteps.
If I observe no reward, I “found” someone else to communicate with.
We now exchange bits via Õ(1/pj)-length blocks of zero reward on aj .

Because pj ≥ maxi pi/2, the regret is only O(pj) per timestep. Hence communication
cost is just Õ(1) per bit, regardless of pj .

This is surprising and cool! But it is still not really decentralized. Rather, it shows
that weak detection still allows players to find each other and communicate.

Explicit communication protocols are brittle. What if the effect of collisions varies
unpredictably or is just extremely negative?
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T 1/2 Minimax Regret with No Collisions

With undetectable collisions, communication is truly impossible.

In fact is possible to have no collisions at all. Such algorithms work under any
collision behavior.

Theorem (Bubeck-Budzinski 20 and Bubeck-Budzinski-S. 21)

There is a algorithm with no collisions and Õ(
√
T ) regret. More precisely,

max
p

E[RT ] = O
(
mK 11/2

√
T logT

)
,

P (there is ever a collision) = O(T−2).

The log is real: Θ(
√
T logT ) is optimal even with full feedback [Bubeck-Budzinski 20].

Definition of full feedback: all K ×m × T rewards are independent. I.e. Player X and
Y ’s observations of arm 1 are independent.
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Topological Obstruction for 2 players and 3 arms

For illustration, work in the plane P = {p1 + p2 + p3 = constant} with full feedback.

Undetectability means Player Y ’s decisions do not influence Player X at all.

Hence the protocol consists of pre-specified functions

(f X1 , f
Y
1 , . . . , f XT , f

Y
T ) : P → {1, 2, 3}.

Full feedback ensures the estimates p̂X
t , p̂Y

t are within
Õ(t−1/2) of each other.

Topological obstruction: cannot always play the top 2
arms without colliding for some p.

M. Sellke Multi-Player Bandits without Communication 12 / 21



Topological Obstruction for 2 players and 3 arms

For illustration, work in the plane P = {p1 + p2 + p3 = constant} with full feedback.

Undetectability means Player Y ’s decisions do not influence Player X at all.

Hence the protocol consists of pre-specified functions

(f X1 , f
Y
1 , . . . , f XT , f

Y
T ) : P → {1, 2, 3}.

Full feedback ensures the estimates p̂X
t , p̂Y

t are within
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Collision-Free Solution for 2 players and 3 arms

Idea of [Bubeck-Budzinski 20]: separate (1, 3) and (3, 1) with a padding layer.

Padding width
√

log T
t .

Estimates pX
t ,pY

t close =⇒ land in adjacent regions.

With suitable padding labels, this ensures no collisions.

Random angle =⇒ Õ(
√
T ) extra regret for any p.

Outside padding, just greedy. Hence Õ(
√
T ) regret. Bandit feedback is harder.

Larger (K ,m): need to generalize this picture.
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√
T ) extra regret for any p.

Outside padding, just greedy. Hence Õ(
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General Collision-Free Strategy

General partition in the case (K ,m) = (3, 2):

Regions form a tree, defined by arm inequalities added in order.

Example region: {1, 3, 5} >2 {4, 8} >3 {2, 6} >1 {7, 9, 10}.
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Computing With the Partition

Never compute the full partition tree. (More than K ! regions...)

Luckily, computing the correct region for any estimate p̂X
t ∈ [0, 1]K is efficient.

Repeatedly add new inequalities to separate arms that might be in top m.
Once top m and bottom K −m are determined, stop. E.g. for (K ,m) = (10, 5):

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
→ {1, 2, 3, 4, 5, 6, 8} >1 {7, 9, 10}
→ {1, 3, 5} >2 {2, 4, 6, 8} >1 {7, 9, 10}
→ {1, 3, 5} >2 {4, 8} >3 {2, 6} >1 {7, 9, 10}.

Generalization of padding layers using random threshold τ > 0:
If margin for new inequality is above τ , add it.
If margin is well below τ , try next potential inequality.
If margin is barely below τ , stop early (enter padding).
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Large Gaps Still Incur Regret T 1/2

In both constructions, the Õ(T 1/2) extra regret from padding applies for all gaps ∆.

How to improve things for large gaps? Push the padding somewhere else!
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A Modified Gap-Dependent Algorithm

Idea: designate those p with ∆(p) & ∆1 as safe zones with no padding.

∆(p)� ∆1: zero regret once t � Õ
(

1
∆2

1

)
.

∆(p)� ∆1: padding cost increases.

√
T →

√
T

∆1
.

Why? Padding around the safe zone is “less random”.

Better performance for large gaps. Worse for small gaps.

RT ,∆ ≤

{
Õ (1/∆1), ∆ ≥ ∆1

Õ
(√

T/∆1

)
, ∆ ≤ ∆1.
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Pareto Optimal Gap Dependence

More generally, use a sequence 1 ≥ ∆1 ≥ · · · ≥ ∆J ≥ T−1/2. Use ∆j once t � ∆−2
j .

Theorem (Liu-S. 22)

The Pareto-optimal regret guarantees with undetectable collisions are:

RT ,∆ ≤ Õ

(
1

∆i ·∆i+1

)
, ∆ ∈ [∆i ,∆i+1].

(Up to poly(K , log(T )) factors.)

Example: with bounded ratios ∆i
∆i+1

= O(1), regret is RT ,∆ = Õ(∆−2).

Several consequences of Pareto optimality. For example:

Corollary (Liu-S. 22)

Suppose RT ≤ T 0.51. Then RT ,∆ & T 1/2 for all ∆ . T−0.01.
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A One-Step Lower Bound

Assume (K ,m) = (3, 2). Consider
√
T points equally spaced on a constant-size circle.

Topological obstruction: for any labelling, there is a
FAIL with constant regret. Meaning either:

1 There is a collision, OR
2 The worst two actions are played.

The estimates p̂X
t , p̂Y

t are basically adjacent points...

Each FAIL point has some gap ∆.

By dyadic pigeonhole, there exists a gap ∆J with Ω̃(T ) FAILs across 1 ≤ t ≤ T .

There are ≈ ∆J

√
T points on the circle with gap ≈ ∆J to absorb the FAILs. Hence

RT ,∆J
&

T

∆J

√
T

=

√
T

∆J
.
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A General Lower Bound: Set TJ = ∆−2
J and Repeat

M. Sellke Multi-Player Bandits without Communication 20 / 21



Summary

For multiplayer bandit, collision details matter!

Weak detectability: implicit communication allows “best case” regret

E[RT ] . min(
√
T , log(T )/∆).

Undetectable collisions yields maximal regret. Pareto optima include
√
T and

∆−2. Achieved with no collisions at all.
Many directions aren’t well understood.

Non-stochastic rewards? Network structure?
Implications for complex RL problems?
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