When is an Offline Two-Player Zero-Sum Markov Game Solvable?

Simon S. Du

05-04-2022
Simons Institute

Acknowledgement

Qiwen Cui
University of Washington

Two-Player Zero-Sum Markov Games

- Two players compete against each other. Each has a strategy.
- Goal: find a Nash Equilibrium
- Nash Equilibrium: a pair of strategies that no player can do better by unilaterally changing the policy.
- Applications: poker, Go, chess, computer games, investment,

Offline Reinforcement Learning

reinforcement learning
offline reinforcement learning

deploy learned policy in new scenarios
Figure credit: Berkeley AI Research Blog

- Lots of available offline data from prior experience. Fresh samples are expensive
- This Talk: When can we learn a Nash Equilibrium in offline two-player zero-sum Markov games?

Single-Agent Reinforcement Learning

Repeat \mathbf{H} times H: planning horizon / Episode length

A policy π :
π : States(S) \rightarrow Actions (A), $\mathrm{a}=\pi(s)$
Goal: maximize value function

$$
\mathrm{V}^{\pi}\left(\mathrm{s}_{1}\right)=\mathbb{E}\left[r_{1}+r_{2}+\cdots r_{H}\right]
$$

Near-optimal policy:

$$
V^{*}\left(s_{1}\right)-V^{\pi}\left(s_{1}\right) \leq \epsilon
$$

$V^{*}=V^{\pi^{*}}:$ value function of opt policy

Tabular Markov Decision Process

Assumptions:

1. \# of States $S<\infty$
2. \# of actions $\mathbf{A}<\infty$
3. Bounded rewards:

$$
0 \leq r_{h} \leq 1, h=1, \ldots, H
$$

Sample complexity depends on

$$
(S, A, H, 1 / \epsilon)
$$

Offline Single-Agent Reinforcement Learning

offline reinforcement learning
Offline Data: n (state, action, reward, next state) tuples:

$$
D=\left\{\left(s_{h}^{i}, a_{h}^{i}, \mathrm{r}_{h}^{i}, s_{h+1}^{i}\right)\right\}_{h \in[H]}^{i \in[n]} \underset{\sim}{i . i . d .} d^{\rho}
$$

- ρ is the data-collection / behavior policy
- $d_{h}^{\rho}(s, a)$ is the state-action distribution induced by ρ and transition P.
- Goal: learn a policy π from D such that

$$
V^{*}\left(s_{1}\right)-V^{\pi}\left(s_{1}\right) \leq \epsilon
$$

Under what conditions on d^{ρ} we can learn a near-optimal policy?

Dataset Coverage and Results

Single Policy Coverage Assumption

- The behavior policy only covers a single optimal policy.
- There exists some constant $\mathbf{C}_{\text {single }}$ such that $\frac{d_{h}^{\pi^{*}(s, a)}}{d_{h}^{\rho}(s, a)} \leq \mathbf{C}_{\text {single }}$ for every (s, a) [LSAB19,JYW20].
- $1 \leq \mathbf{C}_{\text {single }} \leq \infty$
- Algorithmic idea: Pessimism. Penalize uncertain policies [JYW20,RZMJR21]. More later.
- Near-optimal bounds: $\widetilde{\Theta}\left(\frac{S H^{3} \mathbf{C}_{\text {single }}}{\epsilon^{2}}\right)$ [XJWXB21].

Two-Player Zero-Sum Markov Games

Zero-Sum Markov Games

Repeat H times, H: planning horizon
Max player $\left(a_{1}, a_{2}, \ldots, a_{H}\right): \max \mathbb{E}\left[r_{1}+\cdots r_{H}\right]$
Min player $\left(b_{1}, b_{2}, \ldots, b_{H}\right): \min \mathbb{E}\left[r_{1}+\cdots r_{H}\right]$

Zero-Sum Bandits

Special case of Markov games with $\mathrm{H}=1$ and a fixed state.
Only reward $r(a, b)$ matters.

Tabular Two-Player Zero-Sum Markov Games

Assumptions:

1. \# of States $S<\infty$
2. Max player \# of actions $\mathbf{A}<\infty$
3. Min player \# of actions $\mathbf{B}<\infty$
4. Bounded rewards:

$$
0 \leq r_{h} \leq 1, h=1, \ldots, H
$$

Sample complexity depends on

$$
(S, A, B, H, 1 / \epsilon)
$$

Value Function, Best Response and Duality Gap

- Policy pair: $(\boldsymbol{\mu}, \boldsymbol{v})$

Max player policy $\boldsymbol{\mu}$ and min player policy $\boldsymbol{v} . \mu: S \rightarrow \Delta(\boldsymbol{A}), v: S \rightarrow \Delta(\boldsymbol{B})$.

- Q-function and Value Function:

$$
\begin{gathered}
Q_{h}^{\mu, v}(s, a, b)=\mathbb{E}\left[r_{h}+r_{h+1}+\cdots r_{H} \mid s_{h}=s, a_{h}=a, b_{h}=b, \mu, v\right] \\
V_{h}^{\mu, v}(s)=\mathbb{E}\left[r_{h}+r_{h+1}+\cdots r_{H} \mid s_{h}=s, \mu, v\right]
\end{gathered}
$$

- Best response value for Max-player: Given $\mu, V_{h}^{\mu, *}\left(s_{h}\right)=\min _{v} V_{h}^{\mu, v}\left(s_{h}\right)$
- Best response value for Min-player: Given $v, V_{h}^{*, v}\left(s_{h}\right)=\max _{\mu} V_{h}^{\mu, v}\left(s_{h}\right)$
- Nash Equilibrium $\left(\boldsymbol{\mu}^{*}, \boldsymbol{v}^{*}\right): V_{h}^{\mu^{*}, \nu^{*}}\left(s_{h}\right)=V_{h}^{\mu^{*}, *}\left(s_{h}\right)=V_{h}^{*, \nu^{*}}\left(s_{h}\right)$ [Shapley, 53].
- Duality gap: $\operatorname{Gap}(\mu, \nu)=V_{1}^{*, v}\left(s_{1}\right)-V_{1}^{\mu, *}\left(s_{1}\right)$

$$
\text { Goal: find }(\boldsymbol{\mu}, \boldsymbol{v}) \text { such that } \operatorname{Gap}(\mu, v) \leq \epsilon
$$

Offline Two-Player Zero-Sum Markov Game

Offline Data: n (state, action, reward, next state) tuples:

$$
D=\left\{\left(s_{h}^{i}, a_{h}^{i}, b_{h}^{i}, \mathrm{r}_{h}^{i}, s_{h+1}^{i}\right)\right\}_{h \in[H]}^{i \in[n]} \underset{\sim}{i . i . d .} d^{\rho}
$$

- ρ : data-collection /behavior policy pair
- $d_{h}^{\rho}(s, a, b)$ is the state-action distribution induced by ρ and transition P.
- Goal: learn a policy pair (μ, v) from D :

$$
\operatorname{Gap}(\mu, v) \leq \epsilon
$$

Under what conditions on d^{ρ} we can learn a near Nash Equilibrium?

What about single policy-pair coverage?

$$
\frac{d_{h}^{\left(\mu^{*}, \nu^{*}\right)}(s, a, b)}{d_{h}^{\rho}(s, a, b)} \leq \mathbf{C}_{\text {single }}
$$

Counter Example for Single Strategy Coverage

Min Player

	b_{1}	b_{2}
\boldsymbol{a}_{1}	0.5	1
$\boldsymbol{a}_{\mathbf{2}}$	0	0.5

Game 1

Min Player

	\boldsymbol{b}_{1}	\boldsymbol{b}_{2}
$\boldsymbol{a}_{\mathbf{1}}$	0.5	0
$\boldsymbol{a}_{\mathbf{2}}$	1	0.5

Game 2

- NE for Game 1: $\left(\boldsymbol{a}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{1}}\right)$, NE for Game 2: $\left(\boldsymbol{a}_{\mathbf{2}}, \boldsymbol{b}_{\mathbf{2}}\right)$

Need to cover $\left(a_{1}, b_{2}\right),\left(a_{2}, b_{1}\right)$

- Covers $\left(\boldsymbol{a}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{1}}\right)$ and $\left(\boldsymbol{a}_{\mathbf{2}}, \boldsymbol{b}_{2}\right)$ with $d^{\rho}\left(a_{1}, b_{1}\right)=d^{\rho}\left(a_{2}, b_{2}\right)=0.5 \Rightarrow \mathbf{C}_{\text {single }}=\mathbf{2}$.
- We cannot differentiate Game 1 or Game 2!

Unilateral Coverage Assumption

Min Player

- For a Nash Equilibrium $\left(\mu^{*}, v^{*}\right)$, the behavior policy covers $\left(\boldsymbol{\mu}^{*}, \boldsymbol{v}\right)$ and $\left(\boldsymbol{\mu}, \boldsymbol{v}^{*}\right)$ for all μ and ν.
- There exists some constant $\mathbf{C}_{\text {unilateral }}$ such that $\frac{d_{h}^{\mu^{*}, v}(s, a, b)}{d_{h}^{\rho}(s, a, b)}, \frac{d_{h}^{\mu, v^{*}}(s, a, b)}{d_{h}^{\rho}(s, a, b)} \leq \mathbf{C}_{\text {unilateral }}$ for every (s, a, b) and (μ, v).
- $A+B \leq \mathbf{C}_{\text {unilateral }} \leq \infty$

Covered or not doesn't matter.
Nash Equilibrium: $\left(a_{1}, b_{1}\right)$

A Weaker Assumption Than Unilateral Coverage?

- A slightly weaker assumption: there exists at most one deterministic μ or v such that the behavior policy ρ does not cover $\left(\mu^{*}, v\right)$ or $\left(\mu, v^{*}\right)$.
- We cannot differentiate Game 1 or Game 2 without information of $\left(a_{2}, b_{1}\right)$.

Algorithm for Two-Player Zero-Sum Bandits

Result for Two-Player Zero-Sum Bandits

Theorem

- Sample complexity with unilateral coverage: $\tilde{O}\left(\frac{A B \mathbf{C}_{\text {unilateral }}}{\epsilon^{2}}\right)$
- Sample complexity with uniform coverage: $\tilde{O}\left(\frac{\mathbf{C}_{\text {unif }}}{\epsilon^{2}}\right)$
- Sample complexity for turn-based game with unilateral coverage: $\tilde{O}\left(\frac{\mathbf{C}_{\text {unilateral }}}{\epsilon^{2}}\right)$
- Unilateral assumption is sufficient.
- Lower bounds (from single-agent bandits)
- Sample complexity with unilateral coverage: $\Omega\left(\frac{\mathbf{C}_{\text {unilateral }}}{\epsilon^{2}}\right)$ Match
- Sample complexity with uniform coverage: $\Omega\left(\frac{\mathbf{C}_{\text {unif }}}{\epsilon^{2}}\right)$

- Sample complexity for turn-based game with unilateral coverage: $\Omega\left(\frac{\mathbf{C}_{\text {unilateral }}}{\epsilon^{2}}\right)$

Algorithm for Markov Games

Min Player

- Estimate transition and reward using the dataset: $\widehat{P_{h}}\left(s^{\prime} \mid s, a, b\right), \hat{r}(s, a, b)$
- Set $\underline{V}_{H+1}(s)=\bar{V}_{H+1}(s) \leftarrow 0, \forall s$.
- For $\mathrm{h}=\mathrm{H}, \mathrm{H}-1, \ldots, 1$:
- $\underline{Q_{h}}(s, a, b) \leftarrow \hat{r}(s, a, b)$
$+\left\langle\widehat{F}_{h}(\cdot \mid s, a, b), \underline{V}_{h+1}(\cdot)\right\rangle-\operatorname{bonus}_{h}(s, a, b)$
- Computer NE $\left(\underline{\mu_{h}}, \underline{v_{h}}\right)$ for $\underline{Q_{h}}(\cdot, \cdot$,$) .$
- $\underline{V}_{h}(s) \leftarrow \mathbb{E}_{(a, b) \sim\left(\underline{\mu_{h}}, \underline{v_{h}}\right)}\left[\underline{Q}_{h}(s, a, b)\right]$
- Similarly get \bar{Q}_{h} with + bonus $_{h}, \bar{V}_{h},\left(\overline{\mu_{h}}, \overline{v_{h}}\right)$
- Output $(\underline{\mu}, \bar{v})$.

Confidence for one state \boldsymbol{s} at one step \boldsymbol{h}

Result for Two-Player Zero-Sum Markov Games

Theorem

If the bonus is constructed using a reference function and Bernstein bound:

- with unilateral coverage: $\tilde{O}\left(\frac{S A B H^{3} \mathbf{C}_{\text {unilateral }}}{\epsilon^{2}}\right)$
- with uniform coverage: $\tilde{O}\left(\frac{S H^{3} \mathbf{C}_{\text {unif }}}{\epsilon^{2}}\right)$
- for turn-based game with unilateral coverage: $\tilde{O}\left(\frac{S H^{3} \mathbf{C}_{\text {unilateral }}}{\epsilon^{2}}\right)$
- Unilateral assumption is sufficient for Markov games.
- Lower bounds (from single-agent RL)
- with unilateral coverage: $\Omega\left(\frac{\mathrm{SH}^{3} \mathbf{C}_{\text {unilateral }}}{\epsilon^{2}}\right)$

Match

- with uniform coverage: $\Omega\left(\frac{\mathrm{SH}^{3} \mathbf{C}_{\mathrm{uni} i}}{\epsilon^{2}}\right)$

- for turn-based game with unilateral coverage: $\Omega\left(\frac{\mathrm{SH}^{3} \mathbf{C}_{\text {unilateral }}}{\epsilon^{2}}\right)$

Summary and Open Problems

First theoretical study on two-player zero-sum Markov games

- Single-policy coverage not sufficient: separation between single-agent and two-player
- Unilateral coverage: sufficient and cannot be weakened.
- Algorithms based on pessimism for both players
- Polynomial bound for unilateral coverage.
- Near-optimal bounds for (1) uniform coverage, (2) unilateral coverage + turn-based games.
- Concurrent work also studied linear MDP [ZXTWZWY22].

Future Directions

- Improve bound under unilateral coverage (now $\boldsymbol{A B}$ factor gap).
- General sum in multi-agent games (online setting [ZMB21, JLWY21, ...]).

Thank You

Analysis

- Confidence interval length: bonus $(a, b) \approx \sqrt{\frac{1}{n(a, b)}} \approx \sqrt{\frac{1}{n d^{\rho}(a, b)}}$.
- $r\left(\mu^{*}, v^{*}\right) \leq r\left(\mu^{*}, \underline{v}\right)$ (by the defn of v^{*})
- $r(\underline{\mu}, *) \geq \underline{r}(\underline{\mu}, *) \geq \underline{r}(\underline{\mu}, \underline{v}) \geq \underline{r}\left(\mu^{*}, \underline{v}\right)$ (by the defns of of \underline{r} and \underline{v})
- $r\left(\mu^{*}, v^{*}\right)-r(\underline{\mu}, *) \leq r\left(\mu^{*}, \underline{v}\right)-\underline{r}\left(\mu^{*}, \underline{v}\right) \leq \mathbb{E}_{(a, b) \sim\left(\mu^{*}, \underline{v}\right)}[\operatorname{bonus}(\mathrm{a}, \mathrm{b})]$
- Similarly, $r(*, \bar{v})-r\left(\mu^{*}, v^{*}\right) \leq \mathbb{E}_{(a, b) \sim(\bar{\mu}, *)}[\operatorname{bonus}(\mathrm{a}, \mathrm{b})]$
- $\operatorname{Gap}(\underline{\mu}, \bar{v}) \leq \mathbb{E}_{(a, b) \sim\left(\mu^{*}, \underline{v}\right)}[\operatorname{bonus}(\mathrm{a}, \mathrm{b})]+\mathbb{E}_{(a, b) \sim(\bar{\mu}, *)}[\operatorname{bonus}(\mathrm{a}, \mathrm{b})]$
- Then use Cauchy-Schwartz

