When is an Offline Two-Player Zero-Sum Markov Game Solvable?

Simon S. Du

05-04-2022 Simons Institute

Acknowledgement

Qiwen Cui University of Washington

Two-Player Zero-Sum Markov Games

- Two players compete against each other. Each has a strategy.
- Goal: find a Nash Equilibrium
- Nash Equilibrium: a pair of strategies that no player can do better by unilaterally changing the policy.
- Applications: poker, Go, chess, computer games, investment,

Offline Reinforcement Learning

Figure credit: Berkeley AI Research Blog

- Lots of available offline data from prior experience. Fresh samples are expensive
- This Talk: When can we learn a Nash Equilibrium in offline two-player zero-sum Markov games?

Single-Agent Reinforcement Learning

Repeat H times H: planning horizon / Episode length A policy π : π : States(S) \rightarrow Actions (A), $a = \pi(s)$

Goal: maximize value function

 $\mathbf{V}^{\pi}(\mathbf{s}_1) = \mathbb{E}[r_1 + r_2 + \cdots + r_H]$

Near-optimal policy:

$$V^*(s_1) - V^{\pi}(s_1) \le \epsilon$$

 $V^* = V^{\pi^*}$: value function of opt policy

Tabular Markov Decision Process

Assumptions:

- 1. # of States $S < \infty$
- 2. # of actions $A < \infty$
- 3. Bounded rewards:

 $0 \leq r_h \leq 1, h = 1, \ldots, H$

Sample complexity depends on $(S, A, H, 1/\epsilon)$

Offline Single-Agent Reinforcement Learning

Offline Data: *n* (state, action, reward, next state) tuples:

$$D = \{ (s_h^i, a_h^i, r_h^i, s_{h+1}^i) \}_{h \in [H]}^{i \in [n]} \overset{i.i.d.}{\sim} d^{\rho}$$

- ρ is the data-collection / behavior policy
- $d_h^{\rho}(s, a)$ is the state-action distribution induced by ρ and transition *P*.
- Goal: learn a policy π from D such that $V^*(s_1) - V^{\pi}(s_1) \le \epsilon$

cy past interactions deploy learned policy in new scenarios

big dataset from

Under what conditions on d^{ρ} we can learn a near-optimal policy?

train for

many epochs

offline reinforcement learning

Dataset Coverage and Results

Single Policy Coverage Assumption

Necessary and Sufficient

- The behavior policy only covers a single optimal policy.
- There exists some constant C_{single} such that $\frac{d_h^{\pi^*}(s,a)}{d_h^{\rho}(s,a)} \leq C_{\text{single}}$

for every (*s*, *a*) [LSAB19,JYW20].

- $1 \le C_{single} \le \infty$
- Algorithmic idea: **Pessimism**. Penalize uncertain policies [JYW20,RZMJR21]. More later.
- Near-optimal bounds: $\widetilde{\Theta}(\frac{SH^3C_{\text{single}}}{\epsilon^2})$ [XJWXB21].

Two-Player Zero-Sum Markov Games

Min player (b_1, b_2, \dots, b_H) : min $\mathbb{E}[r_1 + \cdots r_H]$

Special case of Markov games with H = 1 and a fixed state. Only reward r(a, b) matters.

Tabular Two-Player Zero-Sum Markov Games

Assumptions:

- 1. # of States $S < \infty$
- 2. Max player # of actions $A < \infty$
- 3. Min player # of actions $\mathbf{B} < \infty$
- 4. Bounded rewards:

 $0 \leq r_h \leq 1, h = 1, \dots, H$

Sample complexity depends on $(S, A, B, H, 1/\epsilon)$

Value Function, Best Response and Duality Gap

• Policy pair: (μ, ν)

Max player policy μ and min player policy ν . $\mu: S \to \Delta(A), \nu: S \to \Delta(B)$.

• Q-function and Value Function:

$$Q_{h}^{\mu,\nu}(s,a,b) = \mathbb{E}[r_{h} + r_{h+1} + \cdots + r_{H} | s_{h} = s, a_{h} = a, b_{h} = b, \mu, \nu]$$
$$V_{h}^{\mu,\nu}(s) = \mathbb{E}[r_{h} + r_{h+1} + \cdots + r_{H} | s_{h} = s, \mu, \nu]$$

- Best response value for Max-player: Given μ , $V_h^{\mu,*}(s_h) = \min V_h^{\mu,\nu}(s_h)$
- Best response value for Min-player: Given ν , $V_h^{*,\nu}(s_h) = \max_{\mu} V_h^{\mu,\nu}(s_h)$
- Nash Equilibrium (μ^*, ν^*) : $V_h^{\mu^*, \nu^*}(s_h) = V_h^{\mu^*, *}(s_h) = V_h^{*, \nu^*}(s_h)$ [Shapley, 53].

• **Duality gap:** Gap
$$(\mu, \nu) = V_1^{*,\nu}(s_1) - V_1^{\mu,*}(s_1)$$

Goal: find $(\boldsymbol{\mu}, \boldsymbol{\nu})$ such that $\text{Gap}(\boldsymbol{\mu}, \boldsymbol{\nu}) \leq \epsilon$

Offline Two-Player Zero-Sum Markov Game

Offline Data: *n* (state, action, reward, next state) tuples:

$$D = \{ (s_h^i, a_h^i, b_h^i, r_h^i, s_{h+1}^i) \}_{h \in [H]}^{i \in [n]} \overset{i.i.d.}{\sim} d^{\rho}$$

- ρ : data-collection /behavior policy pair
- $d_h^{\rho}(s, a, b)$ is the state-action distribution induced by ρ and transition *P*.
- Goal: learn a policy pair (μ, ν) from *D*:

 $\operatorname{Gap}(\mu,\nu) \leq \epsilon$

Under what conditions on *d*^{*p*} we can learn a near Nash Equilibrium?

What about single policy-pair coverage?

 $\frac{d_h^{(\mu^*,\nu^*)}(s,a,b)}{d_h^{\rho}(s,a,b)} \leq \mathbf{C}_{\text{single}}$

Counter Example for Single Strategy Coverage

Unilateral Coverage Assumption

Nash Equilibrium: (a_1, b_1)

- For a Nash Equilibrium (μ*, ν*), the behavior policy covers (μ*, ν) and (μ, ν*) for all μ and ν.
- There exists some constant $C_{\text{unilateral}}$ such that $\frac{d_h^{\mu^*,\nu}(s,a,b)}{d_h^{\rho}(s,a,b)}$, $\frac{d_h^{\mu,\nu^*}(s,a,b)}{d_h^{\rho}(s,a,b)} \leq C_{\text{unilateral}}$ for every (s, a, b) and (μ, ν) .
- $A + B \leq \mathbf{C}_{\text{unilateral}} \leq \infty$

Covered or not doesn't matter.

A Weaker Assumption Than Unilateral Coverage?

- A slightly weaker assumption: there exists **at most one** deterministic μ or ν such that the behavior policy ρ **does not cover** (μ^*, ν) or (μ, ν^*).
- We cannot differentiate Game 1 or Game 2 without information of (a_2, b_1) .

Algorithm for Two-Player Zero-Sum Bandits

$\boldsymbol{b_1}$ **b**₂ $\boldsymbol{b}_{\mathrm{B}}$... [0.7, [0.8, [0.4, a_1 1] 0.8] 0.6 Max [0.4, [0, [0.6, a_2 Player 0.1] ... 0.7] 0.7] [0.2, [0.1, a_A 0.4] 0.31

Min Player

• Estimate $r(a, b) \in [\underline{r}(a, b), \overline{r}(s, a)] \forall (a, b)$.

Pessimism

- Computer NE $(\underline{\mu}, \underline{\nu})$ for $\underline{r}(\cdot, \cdot)$.
- Computer NE $(\overline{\mu}, \overline{\nu})$ for $\overline{r}(\cdot, \cdot)$.
- Output $(\underline{\mu}, \overline{\nu})$.

Result for Two-Player Zero-Sum Bandits

Theorem

- Sample complexity with unilateral coverage: $\tilde{O}(\frac{ABC_{unilateral}}{c^2})$
- Sample complexity with uniform coverage: $\tilde{O}(\frac{c_{\text{unif}}}{c^2})$
- Sample complexity for turn-based game with unilateral coverage: $\tilde{O}(\frac{C_{\text{unilateral}}}{c^2})$
- Unilateral assumption is sufficient.
- Lower bounds (from single-agent bandits)
 - Sample complexity with unilateral coverage: $\Omega(\frac{C_{\text{unilateral}}}{\epsilon^2})$
 - Sample complexity with uniform coverage: $\Omega(\frac{C_{\text{unif}}}{\epsilon^2})$
 - Sample complexity for turn-based game with unilateral coverage: $\Omega(\frac{C_{\text{unilateral}}}{\epsilon^2})$

Match

Algorithm for Markov Games

Max Player		<i>b</i> ₁	b ₂	•••	b _B
	<i>a</i> ₁	[0.4, 0.6]	[0.8, 1]	•••	[0.7 <i>,</i> 0.8]
	<i>a</i> ₂	[0, 0.1]	[0.4 <i>,</i> 0.7]	•••	[0.6 <i>,</i> 0.7]
	•••		•••	•••	
	a_A	[0.1 <i>,</i> 0.3]	[0.2 <i>,</i> 0.4]	•••	

Min Player

Confidence for one state *s* at one step *h*

• Estimate transition and reward using the dataset: $\widehat{P_h}(s'|s, a, b), \hat{r}(s, a, b)$

- Set $\underline{V}_{H+1}(s) = \overline{V}_{H+1}(s) \leftarrow 0, \forall s$.
- For h= H,H-1,,1:

• $\underline{Q_h}(s, a, b) \leftarrow \hat{r}(s, a, b)$ + $\langle \hat{P_h}(\cdot | s, a, b), \underline{V_{h+1}}(\cdot) \rangle$ - bonus_h (s, a, b)

- Computer NE $(\underline{\mu}_h, \underline{\nu}_h)$ for $\underline{Q}_h(\cdot, \cdot, \cdot)$.
- $\underline{V}_h(s) \leftarrow \mathbb{E}_{(a,b) \sim (\underline{\mu}_h, \underline{\nu}_h)}[\underline{Q}_h(s, a, b)]$
- Similarly get \overline{Q}_h with +**bonus**_h, \overline{V}_h , $(\overline{\mu_h}, \overline{\nu_h})$
- Output $(\mu, \overline{\nu})$.

University of Washington

DP Step

Result for Two-Player Zero-Sum Markov Games

Theorem

If the bonus is constructed using a **reference function** and **Bernstein bound**:

- with unilateral coverage: $\tilde{O}(\frac{SABH^3C_{unilateral}}{\epsilon^2})$
- with uniform coverage: $\tilde{O}(\frac{SH^3C_{unif}}{\epsilon^2})$
- for turn-based game with unilateral coverage: $\tilde{O}(\frac{SH^3C_{\text{unilateral}}}{\epsilon^2})$
- Unilateral assumption is sufficient for Markov games.
- Lower bounds (from single-agent RL)
 - with unilateral coverage: $\Omega(\frac{SH^3C_{unilateral}}{\epsilon^2})$ Match
 - with uniform coverage: $\Omega(\frac{SH^3C_{unif}}{\epsilon^2})$
 - for turn-based game with unilateral coverage: $\Omega(\frac{SH^3C_{unilateral}}{c^2})$

Summary and Open Problems

First theoretical study on two-player zero-sum Markov games

- Single-policy coverage not sufficient: separation between single-agent and two-player
- Unilateral coverage: sufficient and cannot be weakened.
- Algorithms based on pessimism for both players
 - Polynomial bound for unilateral coverage.
 - Near-optimal bounds for (1) uniform coverage, (2) unilateral coverage + turn-based games.
- Concurrent work also studied linear MDP [ZXTWZWY22].

Future Directions

- Improve bound under unilateral coverage (now *AB* factor gap).
- General sum in multi-agent games (online setting [ZMB21, JLWY21, ...]).

Upcoming Work!

Thank You

Analysis

- Confidence interval length: $bonus(a, b) \approx \sqrt{\frac{1}{n(a,b)}} \approx \sqrt{\frac{1}{nd^{\rho}(a,b)}}$. • $r(\mu^*, \nu^*) \leq r(\mu^*, \nu)$ (by the defin of ν^*)
- $r(\underline{\mu},*) \ge \underline{r}(\underline{\mu},*) \ge \underline{r}(\underline{\mu},\underline{\nu}) \ge \underline{r}(\mu^*,\underline{\nu})$ (by the defines of of \underline{r} and $\underline{\nu}$)
- $r(\mu^*, \nu^*) r(\underline{\mu}, *) \le r(\mu^*, \underline{\nu}) \underline{r}(\mu^*, \underline{\nu}) \le \mathbb{E}_{(a,b) \sim (\mu^*, \underline{\nu})}[bonus(a, b)]$
- Similarly, $r(*, \overline{\nu}) r(\mu^*, \nu^*) \le \mathbb{E}_{(a,b) \sim (\overline{\mu}, *)}[bonus(a, b)]$
- $\operatorname{Gap}\left(\underline{\mu}, \overline{\nu}\right) \leq \mathbb{E}_{(a,b)\sim(\mu^*,\underline{\nu})}[\operatorname{bonus}(a,b)] + \mathbb{E}_{(a,b)\sim(\overline{\mu},*)}[\operatorname{bonus}(a,b)]$
- Then use Cauchy-Schwartz