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No-regret learning in the context of normal-form games (NFGs) has been 

studied extensively
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When all players learn using no-regret dynamics 

(e.g., MWU), the empirical frequency of play 

converges to the set of coarse correlated equilibria

Landmark result in theory of learning in games:

Even more, in two-player zero-sum games, the average 

strategies converge to the set of Nash equilibria



As of today, learning is by far the most scalable way of 
computing game-theoretic solutions and equilibria in 

large games

1. Linear time strategy updates

2. Each agent learns in parallel

3. Can often be implemented in a decentralized way



Over the past decade, faster and faster no-regret dynamics have been 

developed for normal-form games

• Per-player regret bound:
•✅ Polylog dependence on the number of 

actions

•✅ Polylog(T) dependence on time

• Sum of players’ regrets
•✅ Polylog dependence on #actions

•✅ Constant dependence on time 

•✅ Last-strategy convergence* (2pl 0sum)

⭐Most studied algorithm as of today: Optimistic Multiplicative Weights Update (OMWU)

Implies ෨𝑂
1

𝑇
convergence to coarse 

correlated equilibrium in self-play

[Daskalakis et al. ‘21]

Implies 𝑂
1

𝑇
convergence to Nash eq. in 

two-player zero-sum games

[Syrgkanis et al. ‘15]

[Hsieh et al. ’21; Wei et al. ‘21]



However, normal-form games are a rather limited model 
of strategic interaction

All players act once and simultaneously

No sequential actions

No observations about other players’ actions



Extensive-Form Games (EFGs)

EFGs capture both sequential and simultaneous moves, as 

well as imperfect information and stochastic moves

Each player faces a tree-form decision problem

Very expressive model of interaction

Examples of EFGs: chess, poker, bridge, security games, …



Extensive-Form Games (EFGs)

Observation points

Decision points
• Decision points:

The decision maker picks one 

action from a set of available 

actions

• Observation points:
The decision maker observes 

a signal drawn from a set of 

possible signals

Decision and observation 

points form a tree
+$20

Example: decision problem of Player 1 in Kuhn poker



⚡Good news: there exists a way of representing strategies in EFGs so that:

• Each player’s strategy set is a low-dimensional convex polytope (“sequence-

form polytope”)

• Utility functions are multilinear

This enables online learning in extensive-form games, as 

well as other convex optimization techniques

Representing strategies in extensive-form games in a way that is optimization-

and learning-friendly is not a priori 100% obvious



Reality: online learning results for EFGs are harder to come by, due to their 

more intricate strategy sets

• Per-player regret bound:
•✅ Polylog dependence on the number of 

actions

•✅ Polylog(T) dependence on time

• Sum of players’ regrets
•✅ Polylog dependence on #actions

•✅ Constant dependence on time 

•✅ Last-strategy convergence*

Normal-Form Games Extensive-Form Games

❌Not known

🟨 Less is known



For example, all these were all developed later for EFGs than NFGs (and 
sometimes only with weaker guarantees):

• Good distance measures [Hoda et al. ‘10; Kroer et al. ‘15; Farina et al. ‘21]

• Efficient optimistic algorithms [Farina et al. ‘19]

• Last-iterate convergence [Wei et al. ’21, Lee et al. ’21]

For many years, the EFG community has been “chasing” the NFG community, extending 

NFG breakthroughs to EFGs, when possible

In fact, this paper was born from our desire to extend the 

polylog(T) regret bounds by [Daskalakis et al. ‘21] to EFGs.



For example, all these were all developed later for EFGs than NFGs (and 
sometimes only with weaker guarantees):

• Good distance measures [Hoda et al. ‘10; Kroer et al. ‘15; Farina et al. ‘21]

• Efficient optimistic algorithms [Farina et al. ‘19]

• Last-iterate convergence [Wei et al. ’21, Lee et al. ’21]

For many years, the EFG community has been “chasing” the NFG community, extending 

NFG breakthroughs to EFGs, when possible

Does it have to be like that? Or can we somehow bridge the gap and inherit 

the best properties of NFG algorithms also in EFGs?



Can we somehow bridge the gap?

Folklore result: any EFG can be converted into an equivalent NFG where each 

player’s action set is the set of all deterministic policies in their tree-form 

decision problem. So, if we applied OMWU to that….

Catch: the number of such policies is exponential in each player’s tree size

The common wisdom is wrong

Common wisdom: because of the exponential blowup, the above approach is 

a computational dead end

⚡Consequence: specialized techniques were developed for EFGs, and 
progress on EFGs and NFGs follows separate tracks for decades



We call our algorithm Kernelized OMWU (KOMWU)

This paper: It is possible to simulate OMWU on the normal-

form equivalent of an EFGs, in linear time per iteration in the 

tree size, via a kernel trick



In fact, kernelized OMWU applies to any polyhedral domain with

0/1-coordinate vertices Ω ⊆ ℝ𝑑

Main theorem: OMWU on the set of vertices of Ω can be 

simulated using 𝑑 + 1 evaluations of the kernel at each iteration

So, if each kernel evaluation can be performed in 
poly(d) time, OMWU can be simulated in poly(d) time



KOMWU closes part of the gap between learning in NFGs and EFGs

• It achieves all the strong properties of OMWU there were so far only 

known to be achievable efficiently in NFGs (including polylog regret)

• …as well as any future regret bounds that might get proven for OMWU!

As an unexpected byproduct, KOMWU obtains new state-of-the-art regret 

bounds among all online learning algorithms for extensive-form problems

Improved dependence 
on the ℓ1 norm of the 
strategy space  (half of 

the exponent)

Near-optimal O(polylog 
T) regret bound



Preliminaries
Online learning & normal-form games



Online Learning

Given a finite section of actions 𝐴, consider the following abstract 
model of a decision maker

• At each time t, the decision maker selects a distribution

𝜆(𝑡) ∈ Δ 𝐴 ≔ 𝜆 ∈ ℝ≥0
𝐴 :

𝑎∈𝐴
𝜆 𝑎 = 1

• Then, the environment picks a reward vector 𝑟(𝑡) ∈ ℝ≥0 and shows it to the 
decision maker

• Utility of decision maker is then the inner product ⟨𝜆 𝑡 , 𝑟(𝑡)⟩

Quality metric: regret 𝑅𝑇 ≔ max
ො𝑎∈Δ 𝐴

σ𝑡=1
𝑇 ො𝑎, 𝑟 𝑡 −σ𝑡=1

𝑇 𝜆(𝑡), 𝑟 𝑡



Decision-making algorithms that guarantee sublinear regret in T in the 

worst case converge to equilibrium in games

Multiplicative weights update (MWU) is the most well-studied 

algorithm with that property

𝜆(1) ≔
1

𝐴
𝟏 ∈ Δ 𝐴

For 𝑡 = 1, 2, …

Output distribution 𝜆(𝑡)

Observe reward vector 𝑟(𝑡) ∈ ℝ𝐴

Set 𝜆 𝑡+1 𝑎 ≔
𝜆(𝑡) 𝑎 ⋅𝑒𝜂 𝑟 𝑡 [𝑎]

σ
𝑎′∈𝐴

𝜆(𝑡) 𝑎′ ⋅𝑒𝜂 𝑟 𝑡 [𝑎′]

Optimistic version obtained 

by replacing 𝑟 𝑡 with

2𝑟 𝑡 − 𝑟(𝑡−1)



Normal-Form Games

• Simultaneous, nonsequential games

• Each player 𝑖 picks an action from a finite set 𝐴𝑖, and received a payoff 
that depends on the combination of actions

• Strategy for each player: probability distribution 𝜆𝑖 over their actions 𝐴𝑖

Learning in games: each player repeatedly plays the game picking their 

distribution according to a learning algorithm

After each repetition, the reward vector of each agent is the gradient of the 

expected utility of that agent given the strategies of all other players



Polyhedral Convex Games



Polyhedral Convex Games

Idea: in a polyhedral convex game, the set of “strategies” of each player is 

given as a convex polytope Ω𝑖 ⊆ ℝ𝑑𝑖

Γ = (𝑚, {Ω𝑖}, {ഥ𝑈𝑖})

Number of players
Multilinear utility function 
for player 𝑖

ഥ𝑈𝑖: Ω1 ×⋯× Ω𝑚 → [0, 1]

💡the concepts of learning agent and 

equilibria directly extend to polyhedral 

games by replacing each Δ(𝐴𝑖) with Ω𝑖

⚡Extensive-form games are polyhedral 

convex games

Convex games: [Gordon et al. ’08]



Polyhedral convex games can always be converted into an equivalent NFG in 

which each player 𝑖’s action set is the set of vertices of Ω𝑖

Change of variable: instead of picking a 𝑥 ∈ Ω𝑖, we instead pick convex 

combination coefficients 𝜆𝑖 ∈ Δ(𝑉𝑖) over the vertices 𝑉𝑖 of Ω𝑖

This is what people mean when they talk about “the 
normal-form equivalent of an extensive-form game”



𝜆(1) ≔
1

|𝑉𝑖|
𝟏 ∈ ℝ𝑉𝑖

For 𝑡 = 1, 2, …

Play mixed strategy Ω𝑖 ∋ 𝑥(𝑡) ≔ σ𝑣 ∈ 𝑉𝑖
𝜆(𝑡) 𝑣 ⋅ 𝑣

Observe reward vector 𝑟(𝑡) ∈ ℝ𝑑

Set 𝜆 𝑡+1 𝑣 ≔
𝜆(𝑡) 𝑣 ⋅𝑒𝜂 ⟨𝑟 𝑡 ,𝑣⟩

σ
𝑣′∈𝑉𝑖

𝜆(𝑡) 𝑣′ ⋅𝑒𝜂 ⟨𝑟 𝑡 ,𝑣′⟩

The process of learning in the normal-form equivalent using MWU can be 

written directly as MWU that tracks regret over the vertices

Vertex MWU algorithm

Setup
Ωi ⊆ ℝ𝑑

𝑉𝑖 vertices of Ωi



𝜆(1) ≔
1

|𝑉𝑖|
𝟏 ∈ ℝ𝑉𝑖

For 𝑡 = 1, 2, …

Play mixed strategy Ω𝑖 ∋ 𝑥(𝑡) ≔ σ𝑣 ∈ 𝑉𝑖
𝜆(𝑡) 𝑣 ⋅ 𝑣

Observe reward vector 𝑟(𝑡) ∈ ℝ𝑑

Set 𝜆 𝑡+1 𝑣 ≔
𝜆(𝑡) 𝑣 ⋅𝑒𝜂 ⟨𝑟 𝑡 ,𝑣⟩

σ
𝑣′∈𝑉𝑖

𝜆(𝑡) 𝑣′ ⋅𝑒𝜂 ⟨𝑟 𝑡 ,𝑣′⟩

The process of learning in the normal-form equivalent using MWU can be 

written directly as MWU that tracks regret over the vertices

Vertex MWU algorithm
As usual, vertex 

OMWU is analogous

Vertex OMWU 

guarantees polylog T 

regret when used by 

all players

Setup
Ωi ⊆ ℝ𝑑

𝑉𝑖 vertices of Ωi



𝜆(1) ≔
1

|𝑉𝑖|
𝟏 ∈ ℝ𝑉𝑖

For 𝑡 = 1, 2, …

Play mixed strategy Ω𝑖 ∋ 𝑥(𝑡) ≔ σ𝑣 ∈ 𝑉𝑖
𝜆(𝑡) 𝑣 ⋅ 𝑣

Observe reward vector 𝑟(𝑡) ∈ ℝ𝑑

Set 𝜆 𝑡+1 𝑣 ≔
𝜆(𝑡) 𝑣 ⋅𝑒𝜂 ⟨𝑟 𝑡 ,𝑣⟩

σ
𝑣′∈𝑉𝑖

𝜆(𝑡) 𝑣′ ⋅𝑒𝜂 ⟨𝑟 𝑡 ,𝑣′⟩

Main question of this 

paper:

Can Vertex (O)MWU 

be simulated 

efficiently?

Vertex MWU algorithm

The process of learning in the normal-form equivalent using MWU can be 

written directly as MWU that over the set of vertices

Setup
Ωi ⊆ ℝ𝑑

𝑉𝑖 vertices of Ωi



𝜆(1) ≔
1

|𝑉𝑖|
𝟏 ∈ ℝ𝑉𝑖

For 𝑡 = 1, 2, …

Play mixed strategy Ω𝑖 ∋ 𝑥(𝑡) ≔ σ𝑣 ∈ 𝑉𝑖
𝜆(𝑡) 𝑣 ⋅ 𝑣

Observe reward vector 𝑟(𝑡) ∈ ℝ𝑑

Set 𝜆 𝑡+1 𝑣 ≔
𝜆(𝑡) 𝑣 ⋅𝑒𝜂 ⟨𝑟 𝑡 ,𝑣⟩

σ
𝑣′∈𝑉𝑖

𝜆(𝑡) 𝑣′ ⋅𝑒𝜂 ⟨𝑟 𝑡 ,𝑣′⟩

Vertex MWU algorithm

Setup
Ωi ⊆ ℝ𝑑

𝑉𝑖 vertices of Ωi

Main theorem

When Ω𝑖 has 0/1-coordinate 

vertices, Vertex MWU can be 

implemented using d+1

evaluations of the 0/1-

polyhedral kernel at each 

iteration

Crucially independent on the number of vertices of Ω𝑖!

As long as the kernel function can be evaluated efficiently, 
then Vertex (O)MWU can be simulated in polynomial time



The 0/1-Polyhedral Kernel



Setup
Ω ⊆ ℝ𝑑

𝑉 vertices of Ω
𝑉 ⊆ {0, 1}𝑑

Definition (0/1-feature map of Ω)

𝜙Ω ∶ ℝ𝑑 → ℝ𝑉,                        𝜙Ω 𝑥 𝑣 ≔ ς𝑘:𝑣 𝑘 =1𝑥[𝑘]

Given any vector, for each vertex it computes the product 

of the coordinates that are hot for that vertex

Definition (0/1-polyhedral kernel of Ω)

𝐾Ω ∶ ℝ𝑑 × ℝ𝑑 →ℝ,    𝐾Ω 𝑥, 𝑦 ≔ 𝜙Ω 𝑥 ,𝜙Ω 𝑦 = σ𝑣∈𝑉ς𝑘:𝑣 𝑘 =1𝑥 𝑘 ⋅ 𝑦[𝑘]



Let’s see how the feature map and the kernel help 
simulate Vertex MWU



Idea #1 𝜆(1) ≔
1

|𝑉|
𝟏 ∈ ℝ𝑉

For 𝑡 = 1, 2, …

Play 𝑥(𝑡) ≔ σ𝑣 ∈ 𝑉𝑖
𝜆(𝑡) 𝑣 ⋅ 𝑣

Observe reward 𝑟(𝑡) ∈ ℝ𝑑

Set 𝜆 𝑡+1 𝑣 ≔
𝜆(𝑡) 𝑣 ⋅𝑒𝜂 ⟨𝑟 𝑡 ,𝑣⟩

σ
𝑣′∈𝑉

𝜆(𝑡) 𝑣′ ⋅𝑒𝜂 ⟨𝑟 𝑡 ,𝑣′⟩

Vertex MWU algorithm

Setup
Ω ⊆ ℝ𝑑

𝑉 vertices of Ω
𝑉 ⊆ {0,1}𝑑

Lemma 1: At all times t, 𝜆 𝑡 is 

proportional to the feature 

map of the vector

ℝ𝑑 ∋ 𝑏 𝑡 ≔ exp 𝜂

𝜏=1

𝑡−1

𝑟 𝜏

Recall (feature map):
𝜙Ω ∶ ℝ𝑑 → ℝ𝑉,    𝜙Ω 𝑥 𝑣 ≔ ς𝑘:𝑣 𝑘 =1 𝑥[𝑘]

Proof: by induction

Consequence: by keeping track of 𝑏(𝑡) we 

are implicitly keeping track of 𝜆(𝑡) as well

…So, no need to actually perform the update on 
line 5 explicitly

5

3



Idea #1 𝜆(1) ≔
1

|𝑉|
𝟏 ∈ ℝ𝑉

For 𝑡 = 1, 2, …

Play 𝑥(𝑡) ≔ σ𝑣 ∈ 𝑉𝑖
𝜆(𝑡) 𝑣 ⋅ 𝑣

Observe reward 𝑟(𝑡) ∈ ℝ𝑑

Set 𝜆 𝑡+1 𝑣 ≔
𝜆(𝑡) 𝑣 ⋅𝑒𝜂 ⟨𝑟 𝑡 ,𝑣⟩

σ
𝑣′∈𝑉

𝜆(𝑡) 𝑣′ ⋅𝑒𝜂 ⟨𝑟 𝑡 ,𝑣′⟩

Vertex MWU algorithm

Setup
Ω ⊆ ℝ𝑑

𝑉 vertices of Ω
𝑉 ⊆ {0,1}𝑑

Lemma 1: At all times t, 𝜆 𝑡 is 

proportional to the feature 

map of the vector

ℝ𝑑 ∋ 𝑏 𝑡 ≔ exp 𝜂

𝜏=1

𝑡−1

𝑟 𝜏

Recall (feature map):
𝜙Ω ∶ ℝ𝑑 → ℝ𝑉,    𝜙Ω 𝑥 𝑣 ≔ ς𝑘:𝑣 𝑘 =1 𝑥[𝑘]

Proof: by induction

Consequence: by keeping track of 𝑏(𝑡) we 

are implicitly keeping track of 𝜆(𝑡) as well

…So, no need to actually perform the update on 
line 5 explicitly

5

3

Remaining obstacle: how can 
we evaluate line 3 with only 

implicit access to 𝜆(𝑡) via 𝑏(𝑡)?



Idea #2 𝜆(1) ≔
1

|𝑉|
𝟏 ∈ ℝ𝑉

For 𝑡 = 1, 2, …

Play 𝑥(𝑡) ≔ σ𝑣 ∈ 𝑉𝑖
𝜆(𝑡) 𝑣 ⋅ 𝑣

Observe reward 𝑟(𝑡) ∈ ℝ𝑑

Set 𝜆 𝑡+1 𝑣 ≔
𝜆(𝑡) 𝑣 ⋅𝑒𝜂 ⟨𝑟 𝑡 ,𝑣⟩

σ
𝑣′∈𝑉

𝜆(𝑡) 𝑣′ ⋅𝑒𝜂 ⟨𝑟 𝑡 ,𝑣′⟩

Vertex MWU algorithm

Setup
Ω ⊆ ℝ𝑑

𝑉 vertices of Ω
𝑉 ⊆ {0,1}𝑑Lemma 1: At all times t, 𝜆 𝑡 is 

proportional to the feature map 

of the vector

ℝ𝑑 ∋ 𝑏 𝑡 ≔ exp 𝜂

𝜏=1

𝑡−1

𝑟 𝜏

5

3

Lemma 2: At all times t, 𝑥 𝑡 can be reconstructed from 𝑏(𝑡) as

𝑥(𝑡) = 1 −
𝐾Ω 𝑏 𝑡 , 𝟏 − 𝑒1

𝐾Ω 𝑏 𝑡 , 𝟏
, … , 1 −

𝐾Ω(𝑏
𝑡 , 𝟏 − 𝑒𝑑)

𝐾Ω(𝑏
𝑡 , 𝟏)

Proof: extends a nice and simple insight of Takimoto and Warmuth

(d+1 kernel 
evaluations)



𝜆(1) ≔
1

|𝑉|
𝟏 ∈ ℝ𝑉

For 𝑡 = 1, 2, …

Play 𝑥(𝑡) ≔ σ𝑣 ∈ 𝑉𝑖
𝜆(𝑡) 𝑣 ⋅ 𝑣

Observe reward 𝑟(𝑡) ∈ ℝ𝑑

Set 𝜆 𝑡+1 𝑣 ≔
𝜆(𝑡) 𝑣 ⋅𝑒𝜂 ⟨𝑟 𝑡 ,𝑣⟩

σ
𝑣′∈𝑉

𝜆(𝑡) 𝑣′ ⋅𝑒𝜂 ⟨𝑟 𝑡 ,𝑣′⟩

Vertex MWU algorithm

Setup
Ω ⊆ ℝ𝑑

𝑉 vertices of Ω
𝑉 ⊆ {0,1}𝑑

𝑏(1) ≔ 0 ∈ ℝ𝑑
𝑏(1) ≔ 𝟏 ∈ ℝ𝑑

For 𝑡 = 1, 2, …

Play 𝑥(𝑡) ≔ 1−
𝐾Ω 𝑏 𝑡 ,𝟏−𝑒1

𝐾Ω 𝑏 𝑡 ,𝟏
, … , 1 −

𝐾Ω(𝑏
𝑡 ,𝟏−𝑒𝑑)

𝐾Ω(𝑏
𝑡 ,𝟏)

Observe reward 𝑟(𝑡) ∈ ℝ𝑑

Set 𝑏 𝑡+1 ≔ exp 𝜂 σ𝜏=1
𝑡 𝑟 𝜏

Kernelized MWU algorithm
Setup

Ω ⊆ ℝ𝑑

𝑉 vertices of Ω
𝑉 ⊆ {0,1}𝑑



Kernel in Extensive-Form Games



In order to see an intuition for how to evaluate the kernel 
in extensive-form games, it is important to

understand the geometry of the sequence-form strategy 
sets 𝛺𝑖



Strategies in Extensive-Form Games

⭐ First attempt:

Assign local probabilities 
at each decision point

1.0

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

✔ Set of strategies is convex

❌ Expected utility is not linear

Reason: prob. of reaching a 

terminal state is product of     

variables

Products = non-convexity 😪

``Behavioral strategies’’



Strategies in Extensive-Form Games

⭐ Second attempt:

Store  probabilities for whole 
sequences of actions

✔ Set of strategies is convex

✔ Expected utility is a

linear function

``Sequence-form strategies’’

1.0

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

1.0

0.1 0.9

0.08 0.02

0.5 0.5

0.2 0.3

0.75 0.25

0.075 0.675

⭐ Consistency constraints

1. Entries all non-negative
2. Root sequence has probability 1.0
3. Probability mass conservation

Children

Parent

[Romanovskii, Reduction of a game with complete memory to a matrix game, 1962]
[Koller et al., Fast algorithms for finding randomized strategies in game trees, STOC 1994]

Convex polytope 𝛀𝒊



Kernel of Ω𝑖

Theorem: given any 𝑥, 𝑦 we can evaluate the kernel 𝐾Ω𝑖
(𝑥, 𝑦) in time 

linear in the number of edges of the tree-form decision problem

Corollary: we can implement KOMWU with quadratic time per 
iteration in the decision tree size



Intuition

⭐ Idea: Sequence-form strategy spaces have 
a strong bottom up combinatorial structure!

𝑄1

𝑋1

𝑄2

𝑋2

𝑄 = 𝑄1 × 𝑄2

Any 𝑞1, 𝑞2 is a valid s.f. strategy

⭐ Cartesian Products

𝑋

𝑄1 𝑄2

𝜆 1 − 𝜆

Any 𝜆, 1 − 𝜆, 𝜆𝑞1, (1 − 𝜆)𝑞2 is a valid
s.f. strategy

𝑄 = conv

1
0
𝑄1
0

,

0
1
0
𝑄2

⭐ Convex Hulls



Intuition

• We exploit the combinatorial structure by introducing “partial 
kernels” for subtrees of the tree-form decision problem

• At every decision point X, the kernel for the subtree rooted at X is a 
weighted sum of the kernels rooted in each of the child subtrees

• At every observation point Y, the kernel for the subtree rooted at Y is 
the product of the kernels rooted in each of the child subtrees

• This gives a linear-time bottom-up computation of the kernel



Kernel of Ω𝑖

Theorem: given any 𝑥, 𝑦 we can evaluate the kernel 𝐾Ω𝑖
(𝑥, 𝑦) in time 

linear in the number of edges of the tree-form decision problem

Corollary: we can implement KOMWU with quadratic time per 
iteration in the decision tree size



Kernel of Ω𝑖

Can we do better than quadratic iterations?

Remember: At all times t, 𝑥 𝑡 can be reconstructed from 𝑏(𝑡) as

𝑥(𝑡) = 1 −
𝐾Ω 𝑏 𝑡 , 𝟏 − 𝑒1

𝐾Ω 𝑏 𝑡 , 𝟏
, … , 1 −

𝐾Ω(𝑏
𝑡 , 𝟏 − 𝑒𝑑)

𝐾Ω(𝑏 𝑡 , 𝟏)

Can we amortize the cost of computing those d + 1 
kernels?



Kernel of Ω𝑖

Corollary: we can implement KOMWU with linear time per iteration in 
the decision tree size, by amortizing the complexity of the d+1 kernel 

evaluation by reusing intermediate computations



In summary, in extensive-form games KOMWU guarantees:
• Linear-time iterations
• Polylog regret when used by all players in the EFG (for the first time)
• More favorable regret bounds than all prior known EFG algorithms
• Future proof: if the analysis of OMWU’s regret is further improved for NFGs, 

the improvement will propagate to EFGs



Summary and Open Questions



Summary

• We introduced Kernelized OMWU

• It simulates running OMWU on the vertices of a 0/1-polyhedral set 
via black-box access to a kernel function

• The kernel function can be evaluated in linear time in the size of the 
tree-form decision problem in extensive-form games

• It defies a long held common wisdom about extensive-form games…

• … and leads to new state-of-the-art regret bounds for EFGs



Other sets for which the kernel can be 
evaluated efficiently
• Unit hypercube Ω = [0,1]𝑛

𝐾Ω 𝑥, 𝑦 = 1 + 𝑥1𝑦1 ⋯(1 + 𝑥𝑛𝑦𝑛)

• Set of flows in a DAG (dynamic programming on topological ordering)

• Doubly stochastic matrices (only approximate computation)

• N-sets: co{𝑥 ∈ {0,1}𝑑: | 𝑥 |1 = 𝑛}
• Dynamic programming

• Spanning trees

• In many cases, KOMWU unifies existing approaches for particular 
combinatorial sets under a unified framework



Inspirations

• We are especially indebted to the work by Takimoto and Warmuth on 
path kernels for graphs for some of the precursor work

• The kernel used by KOMWU can be seen as a significant 
generalization of Takimoto and Warmuth’s path kernel for DAGs



Open Questions

What can be said beyond 0/1-coordinate vertices? Can we somehow 

develop a more advanced kernel function?

Can near-optimal regret bounds be guaranteed for general convex games?

Thanks!


