Kernelized Multiplicative Weights for 0/1-Polyhedral Games

Bridging the Gap Between
Learning in Extensive-Form and Normal-Form Games

No-regret learning in the context of normal-form games (NFGs) has been studied extensively

Landmark result in theory of learning in games:

When all players learn using no-regret dynamics (e.g., MWU), the empirical frequency of play converges to the set of coarse correlated equilibria

Even more, in two-player zero-sum games, the average strategies converge to the set of Nash equilibria

As of today, learning is by far the most scalable way of computing game-theoretic solutions and equilibria in large games

1. Linear time strategy updates
2. Each agent learns in parallel
3. Can often be implemented in a decentralized way

Over the past decade, faster and faster no-regret dynamics have been developed for normal-form games

Most studied algorithm as of today: Optimistic Multiplicative Weights Update (OMWU)

- Per-player regret bound:
- \checkmark Polylog dependence on the number of actions
- \checkmark Polylog(T) dependence on time

Implies $\tilde{O}\left(\frac{1}{T}\right)$ convergence to coarse correlated equilibrium in self-play
[Daskalakis et al. '21]

- Sum of players' regrets
- \checkmark Polylog dependence on \#actions
- \checkmark Constant dependence on time [Syrgkanis et al. '15]
- \checkmark Last-strategy convergence* (2pl 0sum)
[Hsieh et al. '21; Wei et al. '21]

However, normal-form games are a rather limited model of strategic interaction

All players act once and simultaneously
No sequential actions
No observations about other players' actions

Extensive-Form Games (EFGs)

Each player faces a tree-form decision problem

EFGs capture both sequential and simultaneous moves, as well as imperfect information and stochastic moves

Very expressive model of interaction
Examples of EFGs: chess, poker, bridge, security games, ...

Extensive-Form Games (EFGs)

Example: decision problem of Player 1 in Kuhn poker

- Decision points:

The decision maker picks one action from a set of available actions

- Observation points:

The decision maker observes a signal drawn from a set of possible signals

Decision and observation points form a tree

Representing strategies in extensive-form games in a way that is optimizationand learning-friendly is not a priori 100% obvious

4 Good news: there exists a way of representing strategies in EFGs so that:

- Each player's strategy set is a low-dimensional convex polytope ("sequenceform polytope")
- Utility functions are multilinear

This enables online learning in extensive-form games, as well as other convex optimization techniques

Reality: online learning results for EFGs are harder to come by, due to their more intricate strategy sets

Normal-Form Games

Extensive-Form Games

- Per-player regret bound:
- \checkmark Polylog dependence on the number of actions
- ∇ Polylog(T) dependence on time

\mathbf{X} Not known

- Sum of players' regrets
- Polylog dependence on \#actions
- Constant dependence on time
- \checkmark Last-strategy convergence*

For many years, the EFG community has been "chasing" the NFG community, extending NFG breakthroughs to EFGs, when possible

For example, all these were all developed later for EFGs than NFGs (and sometimes only with weaker guarantees):

- Good distance measures [Hoda et al. '10; Kroer et al. '15; Farina et al. '21]
- Efficient optimistic algorithms [Farina et al. '19]
- Last-iterate convergence [Wei et al. '21, Lee et al. '21]

In fact, this paper was born from our desire to extend the
polylog(T) regret bounds by [Daskalakis et al. '21] to EFGs.

For many years, the EFG community has been "chasing" the NFG community, extending NFG breakthroughs to EFGs, when possible

For example, all these were all developed later for EFGs than NFGs (and sometimes only with weaker guarantees):

- Good distance measures [Hoda et al. '10; Kroer et al. '15; Farina et al. '21]
- Efficient optimistic algorithms [Farina et al. '19]
- Last-iterate convergence [Wei et al. '21, Lee et al. '21]

Does it have to be like that? Or can we somehow bridge the gap and inherit the best properties of NFG algorithms also in EFGs?

Can we somehow bridge the gap?

Folklore result: any EFG can be converted into an equivalent NFG where each player's action set is the set of all deterministic policies in their tree-form decision problem. So, if we applied OMWU to that....

Catch: the number of such policies is exponential in each player's tree size
Common wisdom: because of the exponential blowup, the above approach is a computational dead end

> 4 Consequence: specialized techniques were developed for EFGs, and progress on EFGs and NFGs follows separate tracks for decades

The common wisdom is wrong

This paper: It is possible to simulate OMWU on the normalform equivalent of an EFGs, in linear time per iteration in the tree size, via a kernel trick

In fact, kernelized OMWU applies to any polyhedral domain with $0 / 1$-coordinate vertices $\Omega \subseteq \mathbb{R}^{d}$

Main theorem: OMWU on the set of vertices of Ω can be simulated using $d+1$ evaluations of the kernel at each iteration

So, if each kernel evaluation can be performed in poly(d) time, OMWU can be simulated in poly(d) time

KOMWU closes part of the gap between learning in NFGs and EFGs

- It achieves all the strong properties of OMWU there were so far only known to be achievable efficiently in NFGs (including polylog regret)
- ...as well as any future regret bounds that might get proven for OMWU!

As an unexpected byproduct, KOMWU obtains new state-of-the-art regret bounds among all online learning algorithms for extensive-form problems

Kernelized Multiplicative Weights for 0/1-Polyhedral Games

Algorithm		Per-player regret bound	Last-iter. conv. ${ }^{\dagger}$	Near-optimal O(polylog T) regret bound		
CFR (regret matching / regret matching ${ }^{+}$)	(Zinkevich et al., 2007)	$\mathcal{O}\left(\sqrt{A}\\|Q\\|_{1} T^{1 / 2}\right)$	no			
CFR (MWU)	(Zinkevich et al., 2007)	$\mathcal{O}\left(\sqrt{\log A}\\|Q\\|_{1} T^{1 / 2}\right)$	no			
FTRL / OMD (dilated entropy)	(Kroer et al., 2020)	$\mathcal{O}\left(\sqrt{\log A} 2^{D / 2}\\|Q\\|_{1} T^{1 / 2}\right)$				
FTRL / OMD (dilatable global entropy)	(Farina et al., 2021a) (this paper)	$\mathcal{O}\left(\sqrt{\log A}\\|Q\\|_{1} T^{1 / 2}\right)$		Improved dependence on the ℓ_{1} norm of the strategy space (half of the exponent)		
Kernelized MWU		$\mathcal{O}\left(\sqrt{\log A} \sqrt{\\|Q\\|_{1}}\right.$ I ${ }^{\text {I }}$				
Optimistic FTRL / OMD (dilated entropy)	(Kroer et al., 2020)	$\mathcal{O}\left(\sqrt{m} \log (A) 2^{D}\\|Q\\|_{1}^{2} T^{1 / 4}\right)$				
Optimistic FTRL / OMD (dilatable gl. ent.)	(Farina et al., 2021a)	$\mathcal{O}\left(\sqrt{m} \log (A)\\|Q\\|_{1}^{2} T^{1 / 4}\right)$	no			
Kernelized OMWU	(this paper)	$\mathcal{O}\left(m \log (A)\\|Q\\|_{1} \operatorname{Tog}^{4}(T)\right)$	yes			

Preliminaries
Online learning \& normal-form games

Online Learning

Given a finite section of actions A, consider the following abstract model of a decision maker

- At each time t, the decision maker selects a distribution

$$
\lambda^{(t)} \in \Delta(A):=\left\{\lambda \in \mathbb{R}_{\geq 0}^{A}: \sum_{a \in A} \lambda[a]=1\right\}
$$

- Then, the environment picks a reward vector $r^{(t)} \in \mathbb{R}_{\geq 0}$ and shows it to the decision maker
- Utility of decision maker is then the inner product $\left\langle\lambda^{(t)}, r^{(t)}\right\rangle$

Quality metric: regret $R^{T}:=\max _{\hat{a} \in \Delta(A)} \sum_{t=1}^{T}\left\langle\hat{a}, r^{(t)}\right\rangle-\sum_{t=1}^{T}\left\langle\lambda^{(t)}, r^{(t)}\right\rangle$

Decision-making algorithms that guarantee sublinear regret in \boldsymbol{T} in the worst case converge to equilibrium in games

Multiplicative weights update (MWU) is the most well-studied algorithm with that property
$\lambda^{(1)}:=\frac{1}{|A|} \mathbf{1} \in \Delta(A)$
For $t=1,2, \ldots$
Output distribution $\lambda^{(t)}$
Observe reward vector $r^{(t)} \in \mathbb{R}^{A}$
Optimistic version obtained by replacing $r^{(t)}$ with

$$
2 r^{(t)}-r^{(t-1)}
$$

Normal-Form Games

- Simultaneous, nonsequential games
- Each player i picks an action from a finite set A_{i}, and received a payoff that depends on the combination of actions
- Strategy for each player: probability distribution λ_{i} over their actions A_{i}

Learning in games: each player repeatedly plays the game picking their distribution according to a learning algorithm

After each repetition, the reward vector of each agent is the gradient of the expected utility of that agent given the strategies of all other players

Polyhedral Convex Games

Polyhedral Convex Games

Idea: in a polyhedral convex game, the set of "strategies" of each player is given as a convex polytope $\Omega_{i} \subseteq \mathbb{R}^{d_{i}}$

Q the concepts of learning agent and equilibria directly extend to polyhedral games by replacing each $\Delta\left(A_{i}\right)$ with Ω_{i}

4 Extensive-form games are polyhedral convex games

Polyhedral convex games can always be converted into an equivalent NFG in which each player i 's action set is the set of vertices of Ω_{i}

This is what people mean when they talk about "the normal-form equivalent of an extensive-form game"

Change of variable: instead of picking a $x \in \Omega_{i}$, we instead pick convex combination coefficients $\lambda_{i} \in \Delta\left(V_{i}\right)$ over the vertices V_{i} of Ω_{i}

The process of learning in the normal-form equivalent using MWU can be written directly as MWU that tracks regret over the vertices

Vertex MWU algorithm	
$\lambda^{(1)}:=\frac{1}{\left\|V_{i}\right\|} \mathbf{1} \in \mathbb{R}^{V_{i}}$	Setup $\Omega_{i} \subseteq \mathbb{R}^{d}$ V_{i} vertices of Ω_{i}
For $t=1,2, \ldots$	
Play mixed strategy $\Omega_{i} \ni x^{(t)}:=\sum_{v \in V_{i}} \lambda^{(t)}[v] \cdot v$	
Observe reward vector $r^{(t)} \in \mathbb{R}^{d}$	
Set $\lambda^{(t+1)}[v]:=\frac{\lambda^{(t)}[v] \cdot e^{\eta\left\langle r^{(t), v\rangle}\right.}}{\sum_{v^{\prime} \in V_{i}} \lambda^{(t)}\left[v^{\prime}\right] \cdot e^{\eta\left\langle r^{\left.(t), v^{\prime}\right\rangle}\right.}}$	

The process of learning in the normal-form equivalent using MWU can be written directly as MWU that tracks regret over the vertices

Vertex MWU algorithm

$\lambda^{(1)}:=\frac{1}{\left|V_{i}\right|} \mathbf{1} \in \mathbb{R}^{V_{i}}$

As usual, vertex OMWU is analogous

Vertex OMWU guarantees polylog T regret when used by
all players

Set $\lambda^{(t+1)}[v]:=\frac{\lambda^{(t)}[v] \cdot e^{\eta\left\langle r^{(t)}, v\right\rangle}}{\sum_{v^{\prime} \in V_{i}}{ }^{\lambda(t)}\left[v^{\prime}\right] \cdot e^{\eta\left\langle r^{(t)}, v^{\prime}\right\rangle}}$

The process of learning in the normal-form equivalent using MWU can be written directly as MWU that over the set of vertices

Vertex MWU algorithm

$\lambda^{(1)}:=\frac{1}{\left|V_{i}\right|} \mathbf{1} \in \mathbb{R}^{V_{i}}$
For $t=1,2, \ldots$
Play mixed strategy $\Omega_{i} \ni x^{(t)}:=\sum_{v \in V_{i}} \lambda^{(t)}[v] \cdot v$
Observe reward vector $r^{(t)} \in \mathbb{R}^{d}$
Set $\lambda^{(t+1)}[v]:=\frac{\lambda^{(t)}[v] \cdot e^{\eta\left\langle r^{(t)}, v\right\rangle}}{\sum_{v^{\prime} \in V_{i}}{ }^{\lambda(t)}\left[v^{\prime}\right] \cdot e^{\eta\left\langle r^{(t)}, v^{\prime}\right\rangle}}$

Main question of this paper:

Can Vertex (O)MWU be simulated efficiently?

Vertex MWU algorithm

Main theorem

When Ω_{i} has 0/1-coordinate vertices, Vertex MWU can be implemented using $d+1$ evaluations of the $0 / 1$ polyhedral kernel at ea h iteration

$$
\lambda^{(1)}:=\frac{1}{\left|V_{i}\right|} \mathbf{1} \in \mathbb{R}^{V_{i}}
$$

For $t=1,2, \ldots$
Play mixed strategy $\Omega_{i} \ni x^{(t)}:=\sum_{v \in V_{i}} \lambda^{(t)}[v] \cdot v$
Observe reward vector $r^{(t)} \in \mathbb{R}^{d}$
Set $\lambda^{(t+1)}[v]:=\frac{\lambda^{(t)}[v] \cdot e^{\eta\left\langle r^{(t)}, v\right\rangle}}{\sum_{v^{\prime} \in V_{i}}{ }^{\lambda(t)}\left[v^{\prime}\right] \cdot e^{\eta\left\langle r^{(t)}, v^{\prime}\right\rangle}}$

Crucially independent on the number of vertices of Ω_{i} !
As long as the kernel function can be evaluated efficiently, then Vertex (O)MWU can be simulated in polynomial time

The 0/1-Polyhedral Kernel

```
    Setup
\Omega\subseteq\mp@subsup{\mathbb{R}}{}{d}
vertices of \Omega
V\subseteq{0,1}}\mp@subsup{}{}{d
```

Definition (0/1-feature map of Ω)

$$
\phi_{\Omega}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{V},
$$

$$
\phi_{\Omega}(x)[v]:=\prod_{k: v[k]=1} x[k]
$$

Given any vector, for each vertex it computes the product of the coordinates that are hot for that vertex

Definition (0/1-polyhedral kernel of Ω)

$$
K_{\Omega}: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}, \quad K_{\Omega}(x, y):=\left\langle\phi_{\Omega}(x), \phi_{\Omega}(y)\right\rangle=\sum_{v \in V} \prod_{k: v[k]=1} x[k] \cdot y[k]
$$

Let's see how the feature map and the kernel help simulate Vertex MWU

Vertex MWU algorithm

Idea \#1

Recall (feature map):
$\phi_{\Omega}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{V}, \quad \phi_{\Omega}(x)[v]:=\prod_{k: v[k]=1} x[k]$

Lemma 1: At all times $\mathrm{t}, \lambda^{(t)}$ is proportional to the feature map of the vector

$$
\mathbb{R}^{d} \ni b^{(t)}:=\exp \left\{\eta \sum_{\tau=1}^{t-1} r^{(\tau)}\right\}
$$

Consequence: by keeping track of $b^{(t)}$ we are implicitly keeping track of $\lambda^{(t)}$ as well
...So, no need to actually perform the update on line 5 explicitly

Vertex MWU algorithm

Idea \#1

Recall (feature map):
$\phi_{\Omega}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{V}, \quad \phi_{\Omega}(x)[v]:=\prod_{k: v[k]=1} x[k]$

Lemma 1: At all times $\mathrm{t}, \lambda^{(t)}$ is proportional to the feature map of the vector

Remaining obstacle: how can we evaluate line 3 with only implicit access to $\lambda^{(t)}$ via $b^{(t)}$?

$$
\lambda^{(1)}:=\frac{1}{|V|} \mathbf{1} \in \mathbb{R}^{V}
$$

$$
\text { For } t=1,2, \ldots
$$

Setup
$\Omega \subseteq \mathbb{R}^{d}$
V vertices of Ω $V \subseteq\{0,1\}^{d}$
(3) Play $x^{(t)}:=\sum_{v \in V_{i}} \lambda^{(t)}[v] \cdot v$

Observe reward $r^{(t)} \in \mathbb{R}^{d}$
5 Set $\lambda^{(t+1)}[v]:=\frac{\lambda^{(t)}[v] \cdot e^{\eta\left\langle r^{(t)}, v\right\rangle}}{\sum_{v^{\prime} \in V}{ }^{\lambda(t)}\left[v^{\prime}\right] \cdot e^{\eta\left\langle r^{(t)}, v^{\prime}\right\rangle}}$

Consequence: by keeping track of $b^{(t)}$ we are implicitly keeping track of $\lambda^{(t)}$ as well
...So, no need to actually perform the update on line 5 explicitly

Vertex MWU algorithm

Idea \#2

Lemma 1: At all times $t, \lambda^{(t)}$ is proportional to the feature map of the vector

$$
\mathbb{R}^{d} \ni b^{(t)}:=\exp \left\{\eta \sum_{\tau=1}^{t-1} r^{(\tau)}\right\}
$$

$$
\lambda^{(1)}:=\frac{1}{|V|} \mathbf{1} \in \mathbb{R}^{V}
$$

$$
\text { For } t=1,2, \ldots
$$

Setup
$\Omega \subseteq \mathbb{R}^{d}$
V vertices of Ω $V \subseteq\{0,1\}^{d}$
(3) Play $x^{(t)}:=\sum_{v \in V_{i}} \lambda^{(t)}[v] \cdot v$

Observe reward $r^{(t)} \in \mathbb{R}^{d}$
5 Set $\lambda^{(t+1)}[v]:=\frac{\lambda^{(t)}[v] \cdot e^{\eta\left\langle r^{(t)}, v\right\rangle}}{\sum_{v^{\prime} \in V} \lambda^{(t)}\left[v^{\prime}\right] \cdot e^{\eta\left\langle r^{(t)}, v^{\prime}\right\rangle}}$

Lemma 2: At all times $\mathrm{t}, x^{(t)}$ can be reconstructed from $b^{(t)}$ as

$$
x^{(t)}=\left(1-\frac{K_{\Omega}\left(b^{(t)}, \mathbf{1}-e_{1}\right)}{K_{\Omega}\left(b^{(t)}, \mathbf{1}\right)}, \ldots, 1-\frac{K_{\Omega}\left(b^{(t)}, \mathbf{1}-e_{d}\right)}{K_{\Omega}\left(b^{(t)}, \mathbf{1}\right)}\right)
$$

Vertex MWU algorithm	Kernelized MWU algorithm
$\lambda^{(1)}:=\frac{1}{\|V\|} \mathbf{1} \in \mathbb{R}^{V}$ Setup For $t=1,2, \ldots$ $\Omega \subseteq \mathbb{R}^{d}$ V vertices of $\Omega_{V \subseteq\{0,1\}^{d}}$	$b^{(1)}:=\mathbf{1} \in \mathbb{R}^{d}$ Setup $\Omega \subseteq \mathbb{R}^{d}$ V vertices of $\Omega^{V \subseteq\{0,1\}^{d}}$ For $t=1,2, \ldots$
$\text { Play } x^{(t)}:=\sum_{v \in V_{i}} \lambda^{(t)}[v] \cdot v$ Observe reward $r^{(t)} \in \mathbb{R}^{d}$ Set $\lambda^{(t+1)}[v]:=\frac{\lambda^{(t)}[v] \cdot e^{\eta\left\langle r^{(t)}, v\right\rangle}}{\sum_{v^{\prime} \in V} \lambda^{(t)}\left[v^{\prime}\right] \cdot e^{\eta\left\langle r^{(t)}, v^{\prime}\right\rangle}}$	Play $x^{(t)}:=\left(1-\frac{K_{\Omega}\left(b^{(t)}, \mathbf{1}-e_{1}\right)}{K_{\Omega}\left(b^{(t)}, \mathbf{1}\right)}, \ldots, 1-\frac{K_{\Omega}\left(b^{(t)}, \mathbf{1}-e_{d}\right)}{K_{\Omega}\left(b^{(t)}, \mathbf{1}\right)}\right)$ Observe reward $r^{(t)} \in \mathbb{R}^{d}$ Set $b^{(t+1)}:=\exp \left\{\eta \sum_{\tau=1}^{t} r^{(\tau)}\right\}$

Kernel in Extensive-Form Games

In order to see an intuition for how to evaluate the kernel in extensive-form games, it is important to understand the geometry of the sequence-form strategy sets Ω_{i}

Strategies in Extensive-Form Games

First attempt:

"Behavioral strategies"

Assign local probabilities at each decision point
\checkmark Set of strategies is convex
X Expected utility is not linear
Reason: prob. of reaching a terminal state is product of variables
Products = non-convexity

Strategies in Extensive-Form Games

Second attempt:
Store probabilities for whole sequences of actions
\checkmark Set of strategies is convex
\checkmark Expected utility is a linear function

Consistency constraints

1. Entries all non-negative
2. Root sequence has probability 1.0
3. Probability mass conservation

Kernel of Ω_{i}

Theorem: given any x, y we can evaluate the kernel $K_{\Omega_{i}}(x, y)$ in time linear in the number of edges of the tree-form decision problem

Corollary: we can implement KOMWU with quadratic time per iteration in the decision tree size

Intuition

Idea: Sequence-form strategy spaces have a strong bottom up combinatorial structure!

Any $\left(q_{1}, q_{2}\right)$ is a valid s.f. strategy

$$
Q=Q_{1} \times Q_{2}
$$

Cartesian Products

Any $\left(\lambda, 1-\lambda, \lambda q_{1},(1-\lambda) q_{2}\right)$ is a valid s.f. strategy

$$
Q=\operatorname{conv}\left(\left(\begin{array}{c}
1 \\
0 \\
Q_{1} \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
0 \\
Q_{2}
\end{array}\right)\right)
$$

Intuition

- We exploit the combinatorial structure by introducing "partial kernels" for subtrees of the tree-form decision problem
- At every decision point X, the kernel for the subtree rooted at X is a weighted sum of the kernels rooted in each of the child subtrees
- At every observation point Y, the kernel for the subtree rooted at Y is the product of the kernels rooted in each of the child subtrees
- This gives a linear-time bottom-up computation of the kernel

Kernel of Ω_{i}

Theorem: given any x, y we can evaluate the kernel $K_{\Omega_{i}}(x, y)$ in time linear in the number of edges of the tree-form decision problem

Corollary: we can implement KOMWU with quadratic time per iteration in the decision tree size

Kernel of Ω_{i}

Can we do better than quadratic iterations?

Remember: At all times $\mathrm{t}, x^{(t)}$ can be reconstructed from $b^{(t)}$ as

$$
x^{(t)}=\left(1-\frac{K_{\Omega}\left(b^{(t)}, \mathbf{1}-e_{1}\right)}{K_{\Omega}\left(b^{(t)}, \mathbf{1}\right)}, \ldots, 1-\frac{K_{\Omega}\left(b^{(t)}, \mathbf{1}-e_{d}\right)}{K_{\Omega}\left(b^{(t)}, \mathbf{1}\right)}\right)
$$

Can we amortize the cost of computing those $\mathrm{d}+1$ kernels?

Kernel of Ω_{i}

Corollary: we can implement KOMWU with linear time per iteration in the decision tree size, by amortizing the complexity of the $d+1$ kernel evaluation by reusing intermediate computations

In summary, in extensive-form games KOMWU guarantees:

- Linear-time iterations
- Polylog regret when used by all players in the EFG (for the first time)
- More favorable regret bounds than all prior known EFG algorithms
- Future proof: if the analysis of OMWU's regret is further improved for NFGs, the improvement will propagate to EFGs

Summary and Open Questions

Summary

- We introduced Kernelized OMWU
- It simulates running OMWU on the vertices of a 0/1-polyhedral set via black-box access to a kernel function
- The kernel function can be evaluated in linear time in the size of the tree-form decision problem in extensive-form games
- It defies a long held common wisdom about extensive-form games...
- ... and leads to new state-of-the-art regret bounds for EFGs

Other sets for which the kernel can be evaluated efficiently

- Unit hypercube $\Omega=[0,1]^{n}$

$$
K_{\Omega}(x, y)=\left(1+x_{1} y_{1}\right) \cdots\left(1+x_{n} y_{n}\right)
$$

- Set of flows in a DAG (dynamic programming on topological ordering)
- Doubly stochastic matrices (only approximate computation)
- N-sets: $\operatorname{co}\left\{x \in\{0,1\}^{d}:\|x\|_{1}=n\right\}$
- Dynamic programming
- Spanning trees
- In many cases, KOMWU unifies existing approaches for particular combinatorial sets under a unified framework

Inspirations

- We are especially indebted to the work by Takimoto and Warmuth on path kernels for graphs for some of the precursor work
- The kernel used by KOMWU can be seen as a significant generalization of Takimoto and Warmuth's path kernel for DAGs

Open Questions

What can be said beyond 0/1-coordinate vertices? Can we somehow develop a more advanced kernel function?

Can near-optimal regret bounds be guaranteed for general convex games?

Thanks!

