
No-Regret Learning in Time-Varying Zero-Sum Games

Haipeng Luo1

joint work w. Mengxiao Zhang1, Peng Zhao2, and Zhi-Hua Zhou2

1. University of Southern California
2. Nanjing University



Introduction
Uncoupled learning dynamics for a fixed game is well studied.

What if the game is changing?

in some cases, changes depend on players’ actions (Markov games)

in other cases, changes are only caused by exogenous factors

An example from Éva Tardos’ talk:

(changes come from unserved
packets, determined by players)

(changes come from road con-
structions or accidents, not deter-
mined by players)
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This Talk

Focus: uncoupled learning over a sequence of time-varying zero-sum
normal-form games decided exogenously by the environment.

First part: how to measure performance?

review an existing measure (and argue why it is problematic)

consider/propose three natural measures

Second part: propose one single algorithm that

is parameter-free

achieves strong guarantees under all three measures

recovers best known results when the game is fixed
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Setup
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Time-Varying Zero-Sum Games

For each round t = 1, . . . , T :

environment decides a payoff matrix At ∈ [−1, 1]m×n;

without knowing At, x-player decides a mixed strategy xt ∈ ∆m and
y-player decides a mixed strategy yt ∈ ∆n;

x-player suffers loss x⊤t Atyt and observes Atyt, while y-player receives
reward x⊤t Atyt and observes x⊤t At (mixture feedback).

More applications:

online linear programming (Agrawal-Wang-Ye’14)

adversarial bandits w. knapsacks (Immorlica-Sankararaman-Schapire-Slivkins’18)

Haipeng Luo (USC) Setup 5 / 25



Time-Varying Zero-Sum Games

For each round t = 1, . . . , T :

environment decides a payoff matrix At ∈ [−1, 1]m×n;

without knowing At, x-player decides a mixed strategy xt ∈ ∆m and
y-player decides a mixed strategy yt ∈ ∆n;

x-player suffers loss x⊤t Atyt and observes Atyt, while y-player receives
reward x⊤t Atyt and observes x⊤t At (mixture feedback).

More applications:

online linear programming (Agrawal-Wang-Ye’14)

adversarial bandits w. knapsacks (Immorlica-Sankararaman-Schapire-Slivkins’18)

Haipeng Luo (USC) Setup 5 / 25



Time-Varying Zero-Sum Games

For each round t = 1, . . . , T :

environment decides a payoff matrix At ∈ [−1, 1]m×n;

without knowing At, x-player decides a mixed strategy xt ∈ ∆m and
y-player decides a mixed strategy yt ∈ ∆n;

x-player suffers loss x⊤t Atyt and observes Atyt, while y-player receives
reward x⊤t Atyt and observes x⊤t At (mixture feedback).

More applications:

online linear programming (Agrawal-Wang-Ye’14)

adversarial bandits w. knapsacks (Immorlica-Sankararaman-Schapire-Slivkins’18)

Haipeng Luo (USC) Setup 5 / 25



Time-Varying Zero-Sum Games

For each round t = 1, . . . , T :

environment decides a payoff matrix At ∈ [−1, 1]m×n;

without knowing At, x-player decides a mixed strategy xt ∈ ∆m and
y-player decides a mixed strategy yt ∈ ∆n;

x-player suffers loss x⊤t Atyt and observes Atyt, while y-player receives
reward x⊤t Atyt and observes x⊤t At (mixture feedback).

More applications:

online linear programming (Agrawal-Wang-Ye’14)

adversarial bandits w. knapsacks (Immorlica-Sankararaman-Schapire-Slivkins’18)

Haipeng Luo (USC) Setup 5 / 25



Time-Varying Zero-Sum Games

For each round t = 1, . . . , T :

environment decides a payoff matrix At ∈ [−1, 1]m×n;

without knowing At, x-player decides a mixed strategy xt ∈ ∆m and
y-player decides a mixed strategy yt ∈ ∆n;

x-player suffers loss x⊤t Atyt and observes Atyt, while y-player receives
reward x⊤t Atyt and observes x⊤t At (mixture feedback).

More applications:

online linear programming (Agrawal-Wang-Ye’14)

adversarial bandits w. knapsacks (Immorlica-Sankararaman-Schapire-Slivkins’18)

Haipeng Luo (USC) Setup 5 / 25



Related Work

Cardoso-Abernethy-Wang-Xu’19 (most related):

their feedback is either the entire matrix At, or one entry sampled
from (xt, yt)

Roy-Chen-Balasubramanian-Mohapatra’19:

time-varying convex-concave games

Duvocelle-Mertikopoulos-Staudigl-Vermeulen’21:

time-varying strongly monotone games

Fiez-Sim-Skoulakis-Piliouras-Ratliff’21:

periodic zero-sum games
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First Part: How to Measure Performance?
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Classical Individual Regret

Time-varying At or not, it always makes sense to selfishly minimize regret:

RegxT =

T∑
t=1

x⊤t Atyt − min
x∈∆m

T∑
t=1

x⊤Atyt

RegyT = max
y∈∆n

T∑
t=1

x⊤t Aty −
T∑
t=1

x⊤t Atyt
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Beyond Individual Regret

Any game-theoretic guarantees?

when At = A is fixed, can argue closeness of
(

1
T

∑T
t=1 xt,

1
T

∑T
t=1 yt

)
or even (xT , yT ) to the Nash Equilibria of A.

what can we say when At is changing over time?
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One Proposal: NE-Regret

Cardoso-Abernethy-Wang-Xu’19 proposes Nash Equilibrium regret:

NE-RegT =

∣∣∣∣∣
T∑
t=1

x⊤t Atyt − min
x∈∆m

max
y∈∆n

T∑
t=1

x⊤Aty

∣∣∣∣∣

Issues:

incompatible with classical regret! No algorithm can achieve o(T )
bounds for RegxT , Reg

y
T , and NE-RegT simultaneously [CAWX’19].

we show that it can be Ω(T ) even for “perfect” players!

Consider: At =
(

1 −1
−1 1

)
if t ≤ T/2 or

(
1 −1
1 −1

)
otherwise; even if

both players alway play the Nash, we have

NE-RegT =

∣∣∣∣T2 − min
x∈∆m

max
y∈∆n

x⊤
(
T −T
0 0

)
y

∣∣∣∣ = ∣∣∣∣T2 − 0

∣∣∣∣ = T

2
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Our Proposal: Dynamic NE-Regret
We propose to move the “minmax” inside the summation:

NE-RegT =

∣∣∣∣∣
T∑
t=1

x⊤t Atyt − min
x∈∆m

max
y∈∆n

T∑
t=1

x⊤Aty

∣∣∣∣∣ (CAWX’19)

DynNE-RegT =

∣∣∣∣∣
T∑
t=1

x⊤t Atyt −
T∑
t=1

min
x∈∆m

max
y∈∆n

x⊤Aty

∣∣∣∣∣ (Ours)

the connection is (on the surface) analogous to the classical regret
and its dynamic version

but while RegxT ≤ DynRegxT , DynNE-RegT could be smaller than
NE-RegT

(e.g. DynNE-RegT = 0 if both players alway play Nash)

more importantly, DynNE-RegT is compatible with RegxT (as we will
see)
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Duality Gap

Approaching the minimax values does not imply closeness to Nash.

Thus, another natural measure is the (cumulative) duality gap:

Dual-GapT =

T∑
t=1

(
max
y∈∆n

x⊤t Aty − min
x∈∆m

x⊤Atyt

)

Other possibilities: cumulative ℓ1 distance to Nash (e.g. [RCBM’19])

usually depends on problem-specific constants other than n and m.
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Quick Summary on Performance Measures

We consider the following three measures:

RegxT =
∑T

t=1 x
⊤
t Atyt −minx∈∆m

∑T
t=1 x

⊤Atyt

DynNE-RegT =
∣∣∣∑T

t=1 x
⊤
t Atyt −

∑T
t=1minx∈∆m maxy∈∆n x

⊤Aty
∣∣∣

Dual-GapT =
∑T

t=1

(
maxy∈∆n x

⊤
t Aty −minx∈∆m x⊤Atyt

)

A quick remark: one can show

max
{
RegxT ,Reg

y
T ,DynNE-RegT

}
≤ Dual-GapT ,

but this upper bound can be quite loose.
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Non-Stationarity Measures
No meaningful guarantees can be obtained (on DynNE-RegT and
Dual-GapT ) if the game changes arbitrarily.

To capture the difficulty of the problem, define non-stationarity measures:

variation/variance of games (with Ā = 1
T

∑T
t=1At):

VT =
T∑
t=2

∥At −At−1∥2∞, WT =
T∑
t=1

∥At − Ā∥∞,

variation of Nash Equilibria:

PT = min
∀t,(x∗

t ,y
∗
t )∈ NE of At

T∑
t=2

(
∥x∗t − x∗t−1∥1 + ∥y∗t − y∗t−1∥1

)
,

Vt ≤ 4WT holds always, but they are incomparable with PT .

Goal: whenever (some of) VT ,WT , PT are o(T ), obtain o(T ) bounds
for DynNE-RegT and Dual-GapT
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Second Part: Our Algorithm and Guarantees
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Result Overview

We propose a parameter-free algorithm that obtains the following

simultaneously (when deployed by both players):

Measure Time-Varying Game Fixed Game

Individual Regret

Õ
(√

1 +QT

) Õ(1)

recovers [HAM’21]

Dynamic NE-Reg

Õ
(
min{

√
(1 + VT )(1 + PT ) + PT , 1 +WT }

) Õ(1)

recovers [HAM’21]

Duality Gap

Õ
(
min{T

3
4 (1 +QT )

1
4 , T

1
2 (1 +Q

3
2
T + PTQT )

1
2 }
) Õ(

√
T )

recovers [WLZL’21]

QT = VT +min{PT ,WT }

the last column also holds when At changes O(1) times

robustness: RegxT = Õ(
√
T ) even if y-player behaves arbitrarily
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) Õ(1)

recovers [HAM’21]

Dynamic NE-Reg Õ
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) Õ(1)

recovers [HAM’21]

Duality Gap Õ
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Algorithm Design: Review of RVU for a Fixed Game

For a fixed game (At = A), Syrgkanis-Agarwal-Luo-Schapire’15 proposes
the “Regret bounded by Variation in Utilities (RVU)” property:

RegxT ≤ α

η
+ ηβ

T∑
t=2

∥Ayt −Ayt−1∥2∞ − γ

η

T∑
t=2

∥xt − xt−1∥21

for a learning rate parameter η and constants α, β, γ.

This is satisfied by many “optimistic” online learning algorithms (e.g.
optimistic Hedge and optimistic GD).

Useful because ∥Ayt −Ayt−1∥2∞ ≤ ∥yt − yt−1∥21, so RegxT +RegyT is small.
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Algorithm Design: Dynamic RVU
For time-varying games, it is important to compete with arbitrary
time-varying strategies u1, . . . , uT ∈ ∆m.

We thus propose Dynamic RVU:

T∑
t=1

(xt−ut)
⊤Atyt ≤

αP u
T

η
+ηβ

T∑
t=2

∥Atyt −At−1yt−1∥2∞−γ

η

T∑
t=2

∥xt − xt−1∥21

where P u
T = 1 +

∑T
t=2 ∥ut − ut−1∥1.

Again, this is satisfied by standard algorithms such as:

optimistic GD:

x̂t+1 = argmin
x∈∆m

η⟨x,Atyt⟩+ ∥x− x̂t∥2

xt+1 = argmin
x∈∆m

η⟨x,Atyt⟩+ ∥x− x̂t+1∥2

optimistic Hedge over a truncated simplex
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Combining Base Algorithms with DRVU

For each performance measure, DRVU implies a favorable guarantee, but
requires a different tuning of η and the knowledge of VT ,WT , PT .

To achieve this for all measures simultaneously without knowing
VT ,WT , PT , we propose to learn over a set of base algorithms with DRVU
and different tunings, via another optimistic meta-algorithm.

While standard, the right execution here requires two ideas.
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Algorithm Overview (from x-player’s perspective)
Input: any base algorithm A(η) satisfying DRVU with learning rate η.

Initialize: a set of O(log T ) base learners S, each of which is A(η) with a

certain η

or a dummy learner always selecting a fixed action

For t = 1, . . . , T :

receive xt,i ∈ ∆m from each base learner i ∈ S.

compute “prediction vector mt” and update pt ∈ ∆S as:

pt = argmin
p∈∆S

ϵt ⟨p,mt⟩+ ∥p− p̂t∥22

play the final action xt =
∑

i∈S pt,ixt,i

suffer loss x⊤t Atyt, observe Atyt, and send it to each base learner

compute “loss vector ℓt” and update p̂t+1 as:

p̂t+1 = argmin
p∈∆S

ϵt ⟨p, ℓt⟩+ ∥p− p̂t∥22

Idea 1: make sure
the meta-alg com-
parable to Nash
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Explaining Idea 2
DRVU bound of base learner i⋆ with ideal tuning η⋆:

αP u
T

η⋆
+ η⋆β

T∑
t=2

∥Atyt −At−1yt−1∥2∞ − γ

η⋆

T∑
t=2

∥xt,i⋆ − xt−1,i⋆∥21︸ ︷︷ ︸
(∗)

∥Atyt −At−1yt−1∥2∞ is related to ∥yt − yt−1∥21, not ∥yt,i⋆ − yt−1,i⋆∥21
resolved by biasing towards stable learners; define (similarly for mt)

ℓt,i = x⊤t,iAtyt + λ∥xt,i − xt−1,i∥21
effect for the analysis:

▶ introduce a positive term ∥xt,i⋆ − xt−1,i⋆∥21, canceled by (∗)

▶ introduce a negative term −
∑

i∈S pt,i ∥xt,i − xt−1,i∥21
▶ meta-algorithm itself satisfies RVU, providing a term −∥pt − pt−1∥21
▶ the last two negative terms together cancel ∥xt − xt−1∥21
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Key Stability Lemma

The two ideas enable us to prove the following key lemma, critical for
bounding all three measures:

When deployed by both players, our algorithm ensures

max

{
T∑
t=2

∥xt − xt−1∥21,
T∑
t=2

∥yt − yt−1∥21

}
= Õ

(
min

{√
(1 + VT )(1 + PT ) + PT , 1 +WT

})

Haipeng Luo (USC) Algorithms and Guarantees 22 / 25



Key Stability Lemma

The two ideas enable us to prove the following key lemma, critical for
bounding all three measures:

When deployed by both players, our algorithm ensures

max

{
T∑
t=2

∥xt − xt−1∥21,
T∑
t=2

∥yt − yt−1∥21

}
= Õ
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Experiments
A synthetic environment s.t. PT = Θ(

√
T ), WT = Θ(T

3
4 ), VT = Θ(

√
T ).
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Summary

Takeaway:

how to measure performance when learning over time-varying games
requires more thoughts;

simultaneous strong guarantees under different measures are possible.

Measure Time-Varying Game Fixed Game

Individual Regret Õ
(√

1 + VT +min{PT ,WT }
) Õ(1)

recovers [HAM’21]

Dynamic NE-Reg Õ
(
min{

√
(1 + VT )(1 + PT ) + PT , 1 +WT }

) Õ(1)

recovers [HAM’21]

Duality Gap Õ
(
min{T

3
4 (1 +QT )

1
4 , T

1
2 (1 +Q

3
2
T + PTQT )

1
2 }
) Õ(

√
T )

recovers [WLZL’21]

Haipeng Luo (USC) Conclusions 24 / 25



Summary

Takeaway:

how to measure performance when learning over time-varying games
requires more thoughts;

simultaneous strong guarantees under different measures are possible.

Measure Time-Varying Game Fixed Game

Individual Regret Õ
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(
min{

√
(1 + VT )(1 + PT ) + PT , 1 +WT }

) Õ(1)

recovers [HAM’21]

Duality Gap Õ
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Open Questions

1. We have considered full-info mixture feedback (x-player sees Atyt).

bandit mixture feedback? (x-player sees e⊤itAtyt where it ∼ xt)

fully realization-based feedback? (x-player sees e⊤itAtejt where
it ∼ xt and jt ∼ yt)

many techniques in this work fail :(

2. Time-varying general-sum games?

3. Recall: for time-varying games

changes could depend on players’ actions: e.g. Markov games

changes could also only caused by exogenous factors

or, changes could come from both! (time-varying Markov games)
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