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Introduction
Uncoupled learning dynamics for a fixed game is well studied.

What if the game is changing?
@ in some cases, changes depend on players’ actions (Markov games)

@ in other cases, changes are only caused by exogenous factors

An example from Eva Tardos' talk:

Morning rush-hour traffic

Second-by-second packet traffic

(changes come from road con-
structions or accidents, not deter-
mined by players)

Haipeng Luo (USC) Introduction 2 /25
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This Talk

Focus: uncoupled learning over a sequence of time-varying zero-sum
normal-form games decided exogenously by the environment.

First part: how to measure performance?
@ review an existing measure (and argue why it is problematic)

@ consider/propose three natural measures

Second part: propose one single algorithm that
@ is parameter-free
@ achieves strong guarantees under all three measures

@ recovers best known results when the game is fixed
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Time-Varying Zero-Sum Games

For each round t =1,...,T":
@ environment decides a payoff matrix A; € [—1, 1]™*";

@ without knowing A;, z-player decides a mixed strategy x; € A,, and
y-player decides a mixed strategy y; € Ay;

o z-player suffers loss ;| A;y; and observes Ay, while y-player receives
reward x; Ayy; and observes x] A; (mixture feedback).

More applications:
@ online linear programming (Agrawal-Wang-Ye'14)

@ adversarial bandits w. knapsacks (Immorlica-Sankararaman-Schapire-Slivkins'18)
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Related Work

Cardoso-Abernethy-Wang-Xu'19 (most related):

o their feedback is either the entire matrix A, or one entry sampled
from (24, y1)

Roy-Chen-Balasubramanian-Mohapatra'19:

@ time-varying convex-concave games

Duvocelle-Mertikopoulos-Staudigl-Vermeulen'21:

@ time-varying strongly monotone games

Fiez-Sim-Skoulakis-Piliouras-Ratliff'21:

@ periodic zero-sum games
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Classical Individual Regret

Time-varying A; or not, it always makes sense to selfishly minimize regret:

T T
Regp = ZUU:Atyt — xrélin ZUUTAtyt
t=1 ™ i=1
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Beyond Individual Regret

Any game-theoretic guarantees?

B . 1 T 1 T
@ when A; = A is fixed, can argue closeness of (T D1 Tt T D yt)

or even (z7,yr) to the Nash Equilibria of A.

@ what can we say when A; is changing over time?
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One Proposal: NE-Regret
Cardoso-Abernethy-Wang-Xu'19 proposes Nash Equilibrium regret:
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One Proposal: NE-Regret
Cardoso-Abernethy-Wang-Xu'19 proposes Nash Equilibrium regret:
T T

Z ajz—Atyt — min max Z:L"TAty

A yEA
t=1 PEAmYEAn {2

NE—RegT =

Issues:

@ incompatible with classical regret! No algorithm can achieve o(T")
bounds for Reg?., Regl, and NE-Reg; simultaneously [CAWX'19].

@ we show that it can be Q(T') even for “perfect” players!
Consider: A; = (_11 _11> ift <T/2or G :}) otherwise; even if
both players alway play the Nash, we have
T . T(T -T T T
NE-Regr = | i maxa” (5 )| =[5 -0/ =5
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Our Proposal: Dynamic NE-Regret

We propose to move the “minmax” inside the summation:

T
NE-Regy = tz; x) Ay — zrélin fela}qi Z:: z' Ay (CAWX'19)
DynNE-R = A TA 0]
yn egy = ;:Et tYt — Zmrgin ;Iéi):l‘ Y (Ours)
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Our Proposal: Dynamic NE-Regret

We propose to move the “minmax” inside the summation:

T T
_ T : T )
NE-Reg = ;xt Ay — Inin 5161%)5 ; x Ay (CAWX'19)
T T
DynNE-Reg = t—zl x] Ay — ; wléliryln maxs TAw (Ours)

@ the connection is (on the surface) analogous to the classical regret
and its dynamic version

Regt = Z Ty Atyt — mln Z T Atyt
t=1

DynReg} = th Aryr — Z mm x" Ay, (Zinkevich'03)
t=1
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Our Proposal: Dynamic NE-Regret

We propose to move the “minmax” inside the summation:

T
NE-Regy = ; x) Ay — zrélin z?ela}i Z:: z' Ay (CAWX'19)
DynNE-R = A TA 0]
yn egy = ;xt tYt — Z LIéllIyln ;Ield&c]:c Y (Ours)

@ the connection is (on the surface) analogous to the classical regret
and its dynamic version

o but while Reg7 < DynReg7, DynNE-Regs could be smaller than
NE-Reg; (e.g. DynNE-Reg, = 0 if both players alway play Nash)

e more importantly, DynNE-Regy is compatible with Reg?. (as we will
see)
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Approaching the minimax values does not imply closeness to Nash.
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Duality Gap

Approaching the minimax values does not imply closeness to Nash.
Thus, another natural measure is the (cumulative) duality gap:
T

Dual-Gapp = Z ( m%x :c;rAty — min :L‘TAtyt>
€

t=1 " TEam

Other possibilities: cumulative ¢; distance to Nash (e.g. [RCBM'19])

@ usually depends on problem-specific constants other than n and m.
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Quick Summary on Performance Measures

We consider the following three measures:
Regh = >z A i IaTA
® Regh = >, ) Awyr — mingen,, >y &' Ay

T T .
o DynNE-Regp = ‘Zt:l l“;r Ayt — D4y Mingea,, MaxXyea,, z" Ay ‘

e Dual-Gapy = 23:1 (maxyeAn x] Ay — mingen,, xTAtyt>
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Quick Summary on Performance Measures

We consider the following three measures:
Regh = >z A i I aTA
o Regp =)y y Awyr — mingen,, > @ Ay

T T .
o DynNE-Regp = ‘Zt:l l“;rAtyt — > p—1 MiNgea,, Maxyen,, ﬂfTAty‘

e Dual-Gapy = Ele <maxyeAn x] Ay — mingen,, xTAtyt>

A quick remark: one can show
max {Reg?, Reg},, DynNE-Regy } < Dual-Gapr,

but this upper bound can be quite loose.
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Non-Stationarity Measures

No meaningful guarantees can be obtained (on DynNE-Reg and
Dual-Gapy) if the game changes arbitrarily.
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Non-Stationarity Measures

No meaningful guarantees can be obtained (on DynNE-Reg and
Dual-Gapy) if the game changes arbitrarily.

To capture the difficulty of the problem, define non-stationarity measures:

e variation/variance of games (with 4 = £ ST A

T T
Ve =3 A= A, Wr =) A — Ao,
t=2 t=1

@ variation of Nash Equilibria:

T
Pr= min Z i — x|+l — vy
T vt,(x1 7)€ NE of A, £ (H t tall + e — v 1||1)u

o V, < 4Wr holds always, but they are incomparable with Pp.

o Goal: whenever (some of) Vi, W, Pr are o(T'), obtain o(7T") bounds
for DynNE-Reg; and Dual-Gapp
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Second Part: Our Algorithm and Guarantees
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Result Overview
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Result Overview

We propose a parameter-free algorithm that obtains the following
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Result Overview

We propose a parameter-free algorithm that obtains the following
simultaneously (when deployed by both players):

Measure Time-Varying Game Fixed Game
. . o)
Individual Regret O(VI+Qr)
recovers [HAM'21]
_ _ o)
Dynamic NE-Reg | O(min{+/(1+ V7)(1+ Pr) + Pp, 1+ Wr})
recovers [HAM'21]
O(VT)

~ E 3
Duality Gap O( min Ti(1 + %,T% 14+ Q2+ P, 3
( {T3( Q@r) ( @r rQr) }) recovers [WLZL'21]

e Qr = Vr + min{Pp, Wr}
@ the last column also holds when A; changes O(1) times
@ robustness: Regy = (5(\/T) even if y-player behaves arbitrarily
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Algorithm Design: Review of RVU for a Fixed Game

For a fixed game (A; = A), Syrgkanis-Agarwal-Luo-Schapire'l5 proposes
the “"Regret bounded by Variation in Utilities (RVU)" property:

T

T
a v
Regp < p +08 Y 1Ay — Ay |1 - " > =zt
t=2 1=2

for a learning rate parameter 1 and constants «;, 3, 7.
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For a fixed game (A; = A), Syrgkanis-Agarwal-Luo-Schapire'l5 proposes
the “"Regret bounded by Variation in Utilities (RVU)" property:

T T
a Y
Regf <  + 18> | Ay — Ay |% - ) > =zt
=2 =2

for a learning rate parameter 1 and constants «;, 3, 7.

This is satisfied by many “optimistic” online learning algorithms (e.g.
optimistic Hedge and optimistic GD).

Useful because || Ay, — Ayt,lH2 < lyt — y—1|

7, so Reg¥ + Reg¥. is small.
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Algorithm Design: Dynamic RVU

For time-varying games, it is important to compete with arbitrary
time-varying strategies u1,...,ur € Ay,.
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Algorithm Design: Dynamic RVU

For time-varying games, it is important to compete with arbitrary
time-varying strategies u1, ..., ur € A,,. We thus propose Dynamic RVU:

T
al’f

Z Tp—Ut) T Ay < —+7752 |Awye — Ar—1ye— 1”00——2 |2 — xp1||?

=1 n =2 =

where P! =1+ ZtTZQ llur — wp—1])1-
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Algorithm Design: Dynamic RVU

For time-varying games, it is important to compete with arbitrary
time-varying strategies u1, ..., ur € A,,. We thus propose Dynamic RVU:

T

ar)?l
Z xp—ug) ' Ay < —L
=1

T
— Ay |%-2 Z e — e}
n =

u T
where 7}/ =1 + ZtZQ Hut — Ut71H1-
Again, this is satisfied by standard algorithms such as:

@ optimistic GD:

Trp1 = argminn(z, Apye) + ||o — Z?
l’EAm

T = argminn(z, Aye) + [|7 — Tepa]?
CCEAm

o optimistic Hedge over a truncated simplex

Haipeng Luo (USC) Algorithms and Guarantees 18 / 25



Combining Base Algorithms with DRVU

For each performance measure, DRVU implies a favorable guarantee, but
requires a different tuning of n and the knowledge of Vi, W, Pr.
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To achieve this for all measures simultaneously without knowing
Vi, Wrp, Pp, we propose to learn over a set of base algorithms with DRVU
and different tunings, via another optimistic meta-algorithm.
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Combining Base Algorithms with DRVU

For each performance measure, DRVU implies a favorable guarantee, but
requires a different tuning of n and the knowledge of Vi, W, Pr.

To achieve this for all measures simultaneously without knowing
Vi, Wrp, Pp, we propose to learn over a set of base algorithms with DRVU
and different tunings, via another optimistic meta-algorithm.

While standard, the right execution here requires two ideas.
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Algorithm Overview (from z-player’'s perspective)
Input: any base algorithm A(n) satisfying DRVU with learning rate 7.
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Fort=1,...,T:

@ receive z;; € A, from each base learner i € S.
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Fort=1,...,T:

@ receive z;; € A, from each base learner i € S.

@ compute “prediction vector m;" and update p; € Ag as:
. . ~ 112
p = argmin e; (p, my) + [|p — Pill3
PEAs

o play the final action x4 = >, r,is,i

Haipeng Luo (USC) Algorithms and Guarantees 20 / 25



Algorithm Overview (from z-player’'s perspective)
Input: any base algorithm A(n) satisfying DRVU with learning rate 7.
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certain n

Fort=1,...,T:
@ receive z;; € A, from each base learner i € S.
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Algorithm Overview (from z-player’'s perspective)
Input: any base algorithm A(n) satisfying DRVU with learning rate 7.

Initialize: a set of O(logT') base learners S, each of which is A(7n) with a
certain n

Fort=1,...,T:

@ receive z;; € A, from each base learner i € S.

@ compute “prediction vector m;" and update p; € Ag as:

pr = argmin €; (p,my) + ||p — ﬁt”%
PEAS

play the final action xy = Y. s Pti%t

suffer loss :ctTAtyt, observe A;y;, and send it to each base learner

@ compute ‘“loss vector /;" and update p;y1 as:

P41 = argmin e (p, 4) + ||lp — Bil|3
pEAS
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Algorithm Overview (from z-player’'s perspective)
Input: any base algorithm A(n) satisfying DRVU with learning rate 7.

Initialize: a set of O(logT') base learners S, each of which is A(7n) with a
certain n or a dummy learner always selecting a fixed action

Fort=1,...,T: \

@ receive z;; € A, from each base learner i € d

@ compute “prediction vector m;" and updatg

Idea 1: make sure
the meta-alg com-
parable to Nash

py = argmin e; (p,my) + [|p —
PEASs
o play the final action x4 = >, s ris,i
o

@ compute “loss vector /;" and update p;y1 as:

I3

suffer loss :ctTAtyt, observe A;y;, and send it to each base learner

D41 = argmin e (p, 4) + ||lp — Bil|3

pEAs
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Algorithm Overview (from z-player’'s perspective)
Input: any base algorithm A(n) satisfying DRVU with learning rate 7.

Initialize: a set of O(logT') base learners S, each of which is A(7n) with a
certain n or a dummy learner always selecting a fixed action

Fort=1,...,T: \

@ receive z;; € A, from each base learner i € d

Idea 1: make sure
the meta-alg com-

e compute “prediction vector m;" and update] Parable to Nash

. ~ 112
pr = argmin 1) + [l — pill3
PEASs
o play the final action x4 = >, s ris,i Idea 2 bias to-
@ suffer loss :ctTAtyt, observe A;y;, and send it t{ wards more stable
y " I learners
@ compute “loss vector /; nd update p41 ag

D41 = argmin e (p, 4) + ||lp — Bil|3
pEAS
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Explaining Idea 2
DRVU bound of base learner i* with ideal tuning n*:

abp = 2 Y = 2
R > A — Ayl - P > i — v
t=2 t=2 (:5
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Explaining Idea 2
DRVU bound of base learner i* with ideal tuning n*:

aPr
*ﬁZHAtyt Aray)% ——Zuxmwmt ki

(*)

o || A — Ar1y—1||Z, is related to [lys — y—1 |7, not ||y — ye—1.+ 13

@ resolved by biasing towards stable learners; define (similarly for my)
2
b= x;l,—iAtyt + Mz — w14y

o effect for the analysis:
> introduce a positive term ||z ;+ — xt,17i*||f, canceled by (x)
» introduce a negative term — > o p [l — :rf,l_,;Hf
» meta-algorithm itself satisfies RVU, providing a term — |[p; — p; IHT

> the last two negative terms together cancel ||z — 2 |?
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Key Stability Lemma

The two ideas enable us to prove the following key lemma, critical for
bounding all three measures:
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Key Stability Lemma

The two ideas enable us to prove the following key lemma, critical for
bounding all three measures:

When deployed by both players, our algorithm ensures

T T
max {Z lze — zealld, D llye — yt1||%}
=2 =2

-0 (min{\/(l +Vr)(1+ Pr)+ Pr,1+ WT})
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Experiments
A synthetic environment s.t. Pr = O(V/T), Wr = @(T%), Vr = 0(VT).
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Summary

Takeaway:

@ how to measure performance when learning over time-varying games
requires more thoughts;
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Summary

Takeaway:

@ how to measure performance when learning over time-varying games

requires more thoughts;

@ simultaneous strong guarantees under different measures are possible.

Measure Time-Varying Game Fixed Game
. . o(1)
Individual Regret O(v/1+ Vr + min{Pr, Wr})
recovers [HAM'21]
_ . o)
Dynamic NE-Reg |  O(min{\/(1+ Vr)(1+ Pr) + Pr,1+ Wr})
recovers [HAM'21]
- 3 O(VT)
Duality Gap | O(min{T%(1 + Qr)7,T3(1 + Q2 + PrQr)?
( {rs( @r) ( @r Q1) }) recovers [WLZL'21]
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Open Questions

1. We have considered full-info mixture feedback (z-player sees A;y;).
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Open Questions
1. We have considered full-info mixture feedback (z-player sees A;y;).
@ bandit mixture feedback? (z-player sees eZAtyt where i; ~ x¢)

o fully realization-based feedback? (z-player sees eiTtAtejt where

iy ~ x¢ and jy ~ yy)

e many techniques in this work fail :(

2. Time-varying general-sum games?

3. Recall: for time-varying games
@ changes could depend on players’ actions: e.g. Markov games
@ changes could also only caused by exogenous factors

@ or, changes could come from both! (time-varying Markov games)
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