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Calibration

Forecaster says: “The probability of rain
tomorrow is p”

Forecaster is CALIBRATED if

for every forecast p:
in the days when the forecast was p, the
proportion of rainy days equals p
(or: is close to p in the long run)
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Calibration

CALIBRATION can be guaranteed

(no matter what the weather will be)

Foster and Vohra 1994 [publ 1998]
Hart 1995: proof by Minimax Theorem
. . .
Hart and Mas-Colell 1996 [publ 2000]:
procedure by Blackwell’s Approachability
Foster 1999: simple procedure
Foster and Hart 2016 [publ 2021]: simplest
procedure, by “Forecast Hedging”
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FORECAST
0 1

AVERAGE ACTION (= frequency of rain)

1

perfect
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c1 c2
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Calibration in Practice

Calibration plots of FiveThirtyEight.com
(as of June 2019)
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Calibration in Practice

Calibration plot of ElectionBettingOdds.com
(2016 – 2018)
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‖ct − ā(ct)‖
2

SERGIU HART c© 2021 – p. 11



Notations

at = action at time t

ct = forecast at time t
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Brier score

B ≡ BT = BRIER (1950) score = average
distance between at and ct

B = R + K

BRIER = REFINEMENT + CALIBRATION

Proof.

E[(X − c)2] = Var(X) + (X̄ − c)2

where c is a constant and X is a random
variable with X̄ = E[X]
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Example

time 1 2 3 4 5 6 ...

rain 1 0 1 0 1 0

F1 100% 0% 100% 0% 100% 0%

F2 50% 50% 50% 50% 50% 50%

F1: K = 0 R = 0 B = 0

F2: K = 0 R = 1

4
B = 1

4
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“Expertise”

Recognize patterns and regularities in the
data

Sort the days into bins that consist of similar
days

Make the binning as refined as possible

⇔ LOW REFINEMENT SCORE
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CALIBRATION (K ≈ 0) can always be
guaranteed in the long run

But: CALIBRATION procedures ignore
whatever “EXPERTISE” one has

Question:

Can one GAIN CALIBRATION

without LOSING “EXPERTISE” ?

Can one get K to 0 without increasing R ?

Can one decrease B = R + K by K ?
SERGIU HART c© 2021 – p. 16



“Expertise” and Calibration

Can one decrease B by K ?

SERGIU HART c© 2021 – p. 17



“Expertise” and Calibration

Can one decrease B by K ?

Yes: Replace each forecast c with the
corresponding bin average ā(c)
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Yes: Replace each forecast c with the
corresponding bin average ā(c)

⇒ K
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= 0 R
′

= R B
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“Expertise” and Calibration

Can one decrease B by K ?

Yes: Replace each forecast c with the
corresponding bin average ā(c)

⇒ K
′

= 0 R
′

= R B
′

= B − K

IN RETROSPECT / OFFLINE

(when the ā(c) are known)

Question:

Can one do this ONLINE ?
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At each time t generate a forecast ct

ONLINE: use only bt and history

such that

Bc
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T − Kb
T + o(1) as T → ∞
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“Calibeating”

Consider a forecasting sequence bt

(in a [finite] set B)

At each time t generate a forecast ct

ONLINE: use only bt and history

such that

Bc ≤ Bb − Kb = Rb

c “BEATS” b by b ’s CALIBRATION score
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“Calibeating”

Consider a forecasting sequence bt

(in a [finite] set B)

At each time t generate a forecast ct

ONLINE: use only bt and history

such that

Bc ≤ Bb − Kb = Rb

c “BEATS” b by b ’s CALIBRATION score

GUARANTEED for ALL sequences
of actions and forecasts
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Calibeating

(that was easy ...)

Can one CALIBEAT in general, non-stationary,
situations ?

Weather is arbitrary and not stationary

Forecasts of b are arbitrary

Binning of b is not perfect (Rb > 0)

Bin averages do not converge

ONLINE

GUARANTEED (even against adversary)
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A Simple Way to Calibeat

Theorem

The procedure

ct = āb
t−1(bt)

GUARANTEES b-CALIBEATING
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A Simple Way to Calibeat

Theorem

The procedure

ct = āb
t−1(bt)

GUARANTEES b-CALIBEATING

Forecast the average action
of the current b-forecast
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1

t

)
‖xt − x̄t−1‖

2

=
1

T
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2 − o(1)

(*) o(1) = O
(

1

T

∑T
t=1

1

t

)
= O

(
log T

T

)
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Proof: “Online Variance"

Var =
1

T

T∑

t=1

‖xt − x̄T ‖2

=
1

T

T∑

t=1

(
1 −

1

t

)
‖xt − x̄t−1‖

2

=
1

T

T∑

t=1

‖xt − x̄t−1‖
2

︸ ︷︷ ︸
− o(1)

= Ṽar − o(1)
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Proof: “Online Variance”

Var = Ṽar − o(1)
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Proof: “Online Refinement”

Var = Ṽar − o(1)

Rb = R̃
b

− o(1)
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Proof: “Online Refinement”

Var = Ṽar − o(1)

Rb = R̃
b

− o(1)

=
1

T

T∑

t=1

‖at − āt−1(bt)‖
2 − o(1)
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Proof: “Online Refinement”

Var = Ṽar − o(1)

Rb = R̃
b

− o(1)

=
1

T

T∑

t=1

‖at − āt−1(bt)‖
2

︸ ︷︷ ︸
− o(1)

= Bc − o(1)

ct = āt−1(bt)
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Calibeating

Theorem

ct = āb
t−1(bt)

GUARANTEES b-CALIBEATING:

Bc ≤ Bb − Kb
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Self-Calibeating

Theorem

ct = āb
t−1(bt)

GUARANTEES b-CALIBEATING:

Bc ≤ Bb − Kb

Theorem

ct = āc
t−1(ct)

GUARANTEES c-CALIBEATING:

Bc ≤ Bc − Kc
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Self-Calibeating

Theorem

ct = āb
t−1(bt)

GUARANTEES b-CALIBEATING:

Bc ≤ Bb − Kb

Theorem

ct = āc
t−1(ct)

GUARANTEES c-CALIBEATING:

Bc ≤ Bc − Kc

⇔ Kc = 0
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Self-Calibeating = Calibrating

Theorem

ct = āb
t−1(bt)

GUARANTEES b-CALIBEATING:

Bc ≤ Bb − Kb

Theorem

ct = āc
t−1(ct)

GUARANTEES CALIBRATION:

Bc ≤ Bc − Kc

⇔ Kc = 0
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“Fixed Point”

How do we get ct “close to” āt−1(ct) ?
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Stochastic “Fixed Point”

How do we get ct “close to” āt−1(ct) ?

Theorem There exists a probability distribution
on (a δ-grid D of) C such that for every x ∈ C
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Stochastic “Fixed Point”

How do we get ct “close to” āt−1(ct) ?

Theorem There exists a probability distribution
on (a δ-grid D of) C such that for every x ∈ C

Ec

[
‖x − c‖2 − ‖x − g(c)‖2

]
≤ δ2
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Theorem There exists a probability distribution
on (a δ-grid D of) C such that for every x ∈ C

Ec

[
‖x − c‖2 − ‖x − g(c)‖2

]
≤ δ2

C ⊂ R
m compact convex

D ⊂ C finite δ-grid of C for δ > 0

g : D → R
m arbitrary function
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Stochastic “Fixed Point”

How do we get ct “close to” āt−1(ct) ?

Theorem There exists a probability distribution
on (a δ-grid D of) C such that for every x ∈ C

Ec

[
‖x − c‖2 − ‖x − g(c)‖2

]
≤ δ2

C ⊂ R
m compact convex

D ⊂ C finite δ-grid of C for δ > 0

g : D → R
m arbitrary function

Obtained by solving a Minimax problem (LP)
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Outgoing Minimax (FH)

How do we get ct “close to” āt−1(ct) ?

Theorem There exists a probability distribution
on (a δ-grid D of) C such that for every x ∈ C

Ec

[
‖x − c‖2 − ‖x − g(c)‖2

]
≤ δ2

C ⊂ R
m compact convex

D ⊂ C finite δ-grid of C for δ > 0

g : D → R
m arbitrary function

Obtained by solving a Minimax problem (LP)
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Stochastic “Fixed Point” (FH)

Theorem There exists a probability distribution
on (a δ-grid D of) C such that for every x ∈ C

Ec

[
‖x − c‖2 − ‖x − g(c)‖2

]
≤ δ2

Obtained by solving a Minimax problem
(LP)
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Stochastic “Fixed Point” (FH)

Theorem There exists a probability distribution
on (a δ-grid D of) C such that for every x ∈ C

Ec

[
‖x − c‖2 − ‖x − g(c)‖2

]
≤ δ2

Obtained by solving a Minimax problem
(LP)

Moreover, solving a Fixed Point problem
yields a probability distribution that is
ALMOST DETERMINISTIC:
its support is included in a ball of size δ
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Calibrating
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Calibrating

Theorem

There is a stochastic procedure

that GUARANTEES CALIBRATION
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Calibrating

Theorem

There is a stochastic procedure

that GUARANTEES CALIBRATION

Proof. Self-calibeating + Outgoing Minimax
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Calibrating

Theorem

There is a stochastic procedure

that GUARANTEES CALIBRATION

Proof. Self-calibeating + Outgoing Minimax

Note. δ-CALIBRATION
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Calibrated Calibeating
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Calibrated Calibeating

Theorem

There is a stochastic procedure

that GUARANTEES CALIBEATING
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Calibrated Calibeating

Theorem

There is a stochastic procedure

that GUARANTEES CALIBEATING

and CALIBRATION
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Calibrated Calibeating

Theorem

There is a stochastic procedure

that GUARANTEES CALIBEATING

and CALIBRATION

Proof. Calibeat the joint binning of b and c,
by the Outgoing Minimax theorem
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Multi-Calibeating
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Multi-Calibeating

Theorem

There is a deterministic procedure

that GUARANTEES

simultaneous CALIBEATING

of several forecasters
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Multi-Calibeating

Theorem

There is a stochastic procedure

that GUARANTEES

simultaneous CALIBEATING

of several forecasters

and CALIBRATION
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Multi-Calibeating

Theorem

There is a stochastic procedure

that GUARANTEES

simultaneous CALIBEATING

of several forecasters

and CALIBRATION

Proof. Calibeat the joint binning
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In all the results above:
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In all the results above:

CALIBRATION

Obtained by Minimax

Procedure stochastic
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... and Continuous Calibration

In all the results above:

CALIBRATION CONTINUOUS

CALIBRATION

Obtained by Minimax Fixed Point

Procedure stochastic deterministic
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Successful Economic Forecasting
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Successful Economic Forecasting

TAKING PRIDE IN OUR RECORD
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Successful Economic Forecasting

TAKING PRIDE IN OUR RECORD

“We have correctly forecasted

8 of the last 5 recessions”
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