
Jim Renegar

Simons Institute
Workshop on Semidefinite Optimization,

Approximation and Applications

E�cient First-Order Methods for
Linear (and Semidefinite and Hyperbolic) Programming

not enough time!

(paper recently appeared on ArXiv)

An “Optimal” Subgradient Method for Unconstrained Optimization:

Inputs:
• Initial iterate: x0

• Number of iterations: N

• Distance upper bound: R, a value for which there exists optimal x

⇤

satisfying kx0 � x

⇤k  R.

max f(x)

where f : Rn ! R is concave and Lipschitz continuous:

|f(x)� f(y)|  0 kx� yk

Lipschitz constant

f(x⇤)� f(xN)  0 Rp
N

Theorem (from Nesterov’s book):

Corollary:

N �
✓

0 R

✏

◆2

) f(x⇤)� f(xN)  ✏

Iteration: For current iterate xk, compute a subgradient rf(xk),

then let

xk+1 = xk +
Rp

N krf(xk)k
rf(xk)

Background –

f(x⇤)� f(xN)  0 Rp
N

Theorem (from Nesterov’s book):

Corollary:

N �
✓

0 R

✏

◆2

) f(x⇤)� f(xN)  ✏

Subgradient Method for Constrained Optimization:

max f(x)

s.t. x 2 Q

closed, convex set

Iteration: For current iterate xk, compute xk+1 as above,

but if xk+1 /2 Q,

replace xk+1 by its orthogonal projection onto Q.

max f(x)

Clearly, this can be done e�ciently only if Q is a simple set,

such as an a�ne space or, say, an `1 unit ball.

Iteration: For current iterate xk, compute a subgradient rf(xk)

and its orthogonal projection Gk onto the nullspace of A,

then let

Subgradient Method for Linearly Constrained Optimization:

f(x⇤)� f(xN)  0 Rp
N

Theorem (from Nesterov’s book):

Corollary:

N �
✓

0 R

✏

◆2

) f(x⇤)� f(xN)  ✏

max f(x)

max f(x)

s.t. Ax = b

xk+1 = xk +
Rp

N kGkk
Gk

Recurring theme in literature on first-order methods:

*
Pack as much as possible into the objective function,

leaving only simple constraints

– ideally leaving no constraints or only linear equations.

*– subject to keeping a “nice” objective function

Example that is not “nice”:

min c

T
x

s.t. Ax = b

x � 0

min c

T
x + i(x)

s.t. Ax = b

i(x) :=

(
0 if x � 0

1 otherwise

The objective is convex,

but not Lipschitz continuous

on a neighborhood of {x : Ax = b} .

Inputs:

max f(x)

Lipschitz constant

Regarding Nesterov’s Optimal Method for Smooth Functions:

where f : Rn ! R is concave

and rf(x) is Lipschitz continuous:

krf(x)�rf(y)k  1 kx� yk
• Initial iterate: x0

• Lipschitz constant (or upper bound): 1

Theorem (Nesterov): The sequence generated by the algorithm satisfies

f(x⇤)� f(xk)  1

✓
2 R

k + 2

◆2

where R = kx0 � x

⇤k

Compare with subgradient method result:

N �
✓

0 R

✏

◆2

) f(x⇤)� f(xN)  ✏

Corollary:

k � 2 R

r
1

✏

) f(x⇤)� f(xk)  ✏

Background –

Inputs:

max f(x)

Lipschitz constant

Regarding Nesterov’s Optimal Method for Smooth Functions:

where f : Rn ! R is concave

and rf(x) is Lipschitz continuous:

krf(x)�rf(y)k  1 kx� yk
• Initial iterate: x0

• Lipschitz constant (or upper bound): 1

Theorem (Nesterov): The sequence generated by the algorithm satisfies

f(x⇤)� f(xk)  1

✓
2 R

k + 2

◆2

where R = kx0 � x

⇤k

Corollary:

k � 2 R

r
1

✏

) f(x⇤)� f(xk)  ✏

Result can be extended to very special constrained optimization problems,

e.g., ones with tractable “prox” functions:

Background –

The great advances in algorithms for solving huge optimization problems

in some high-profile areas (e.g., compressed sensing)

are based on approaches related to this.

max f(x)

s.t.

P
j xj = 1

x � 0

max f(X)

s.t. tr(X) = 1

x ⌫ 0

Inputs:

max f(x)

Lipschitz constant

Regarding Nesterov’s Optimal Method for Smooth Functions:

where f : Rn ! R is concave

and rf(x) is Lipschitz continuous:

krf(x)�rf(y)k  1 kx� yk
• Initial iterate: x0

• Lipschitz constant (or upper bound): 1

Theorem (Nesterov): The sequence generated by the algorithm satisfies

f(x⇤)� f(xk)  1

✓
2 R

k + 2

◆2

where R = kx0 � x

⇤k

Corollary:

k � 2 R

r
1

✏

) f(x⇤)� f(xk)  ✏

But cannot be extended even to

max f(x)

s.t. �1  xj  1 (j = 1, . . . , n)

Guzmán and Nemirovski (2013): ⌦
⇣ 1

✏ lnn

⌘

Example of a problem that is “smoothed” in the paper:

min

x

max

1im

|↵T

i

x + b

i

| s.t. x 2 Q

where Q is a closed, bounded, convex set

over which it is easy to optimize “nice” functions (e.g., a unit ball).

The approach is ingenious,

but one is left wondering,

isn’t there a simpler and more general way

of obtaining the desired O(1/✏) iteration bound?

~0

c

min c

T
x

s.t. Ax � b

e

{x : c

T
x = val}

~0

c

min c

T
x

s.t. Ax � b

x

e

{x : c

T
x = val}

~0

c

min c

T
x

s.t. Ax � b

x

z(x)

e

{x : c

T
x = val}

~0

c

min c

T
x

s.t. Ax � b

x

z(x)

e

{x : c

T
x = val}

~0

c

min c

T
x

s.t. Ax � b

x

z(x)

e

x

⇤

z(x⇤)

{x : c

T
x = val}

~0

c

min c

T
x

s.t. Ax � b

e

{x : c

T
x = val}

~0

c

min c

T
x

s.t. Ax � b

~0

c

e min c

T
x

s.t. Ax � b

min c

T
x

s.t. Ax = b

x � 0

9
=

; LP

vector of all one’s

Assume optimal value – denoted opt val – is finite.

Assume 1 is feasible.

min c

T
x

s.t. Ax = b

x � 0

Think of this 2-dimensional plane

as being the slice of Rn

cut out by {x : Ax = b} .

1

min c

T
x

s.t. Ax = b

x � 0

9
=

; LP

vector of all one’s

Assume optimal value – denoted opt val – is finite.

Assume 1 is feasible.

z(x) = 1 + 1
1�minj xj

(x� 1)

Projection (from 1) of x to boundary of feasible region:

Proof: Otherwise x(t) := 1 + t (x� 1) feasible for all t � 0,
and c

T
x(t)! �1 , contradicting opt val finite.

Lemma: If x satisfies Ax = b and c

T
x < c

T 1 ,

then minj xj < 1

min c

T
x

s.t. Ax = b

x � 0

1

x

z(x)

1 + 1
1�minj xj

(x� 1)

{x : Ax = b

and
c

T
x = val}

Lval:=

=

x 7! z(x) := 1 + 1
1�minj xj

(x� 1)

Theorem: LP is equivalent to

max

x

min

j

x

j

s.t. Ax = b

c

T

x = val

c

T

z(x) = c

T 1 + 1
1�minj xj

(cT

x� c

T 1)

= c

T 1 + 1
1�minj xj

(val � c

T 1)| {z }
a negative constant

Thus, for x, y 2 Lval , c

T
z(x) < c

T
z(y) , minj xj > minj yj

min c

T
x

s.t. Ax = b

x � 0

9
=

; LP

opt val optimal value, assumed finite

val a fixed value satisfying val < c

T 1

Lval {x : Ax = b and c

T
x = val}

min c

T
x

s.t. Ax = b

x � 0

9
=

; LP
max

x

min

j

x

j

s.t. Ax = b

c

T

x = val

x 7! minj xj is the exemplary nonsmooth concave function

• Lipschitz continuous with constant 0 = 1

• Subgradients at x are the convex combinations

of the standard basis vectors e(k) for which xk = minj xj

P̄ := I � ĀT (Ā ĀT)�1Ā where Ā =
⇥

A
cT

⇤

Thus, projected subgradients at x are the convex combinations

of the corresponding columns of the projection matrix

Hence, in implementing a subgradient method,
one option in choosing a subgradient at x

is simply to compute any column P̄k for which xk = minj xj .

If this is done for all iterates x, the algorithm assumes a combinatorial flavor.

Moreover, with a modest amount of preprocessing work,

the cost of each iterate

is proportional to the number of nonzero entries in A.

If, in addition, line searches are done exactly,

the algorithm becomes distinctly combinatorial. (Cost of exact line search is O(n log n))

I

min hC, Xi
s.t. A(X) = b

X ⌫ 0

Z(X)

=
I + 1

1��min(X) (X � I)

X
Lval:=

{X : A(X) = b
and

hC, Xi = val}

I

min hC, Xi
s.t. A(X) = b

X ⌫ 0

Z(X)

Lval:=

{X : A(X) = b
and

hC, Xi = val}

=
I + 1

1��min(X) (X � I)

max �min(X)

s.t. A(X) = b
hC, Xi = val

X

I

X⇤

Z(X⇤)

min hC, Xi
s.t. A(X) = b

X ⌫ 0

Lval:=

{X : A(X) = b
and

hC, Xi = val}

X

Z(X)

max �min(X)

s.t. A(X) = b
hC, Xi = val

– so opt val = hC, Z(X⇤
)i

I

X⇤

Z(X⇤)

min hC, Xi
s.t. A(X) = b

X ⌫ 0

Lval:=

{X : A(X) = b
and

hC, Xi = val}

X

Z(X)

max �min(X)

s.t. A(X) = b
hC, Xi = val

– so opt val = hC, Z(X⇤
)i

hC, Z(X)i � opt val

hC, Ii � opt val

 ✏
Goal: Compute X satisfying

To accomplish this, how accurately does �min(X) need to approximate �min(X⇤)?

I

X⇤

Z(X⇤)

min hC, Xi
s.t. A(X) = b

X ⌫ 0

Lval:=

{X : A(X) = b
and

hC, Xi = val}

X

Z(X)

max �min(X)

s.t. A(X) = b
hC, Xi = val

– so opt val = hC, Z(X⇤
)i

Proposition:

hC, Z(X)i � opt val

hC, Ii � opt val

 ✏

,
�min(X⇤

)� �min(X)  ✏

1� ✏

hC, Ii � val

hC, Ii � opt val

max �min(X)

s.t. A(X) = b
hC, Xi = val

�min(X⇤
)� �min(X)  ✏

1� ✏

hC, Ii � val

hC, Ii � opt val

Corollary for subgradient method applied to SDP equivalent problem:

hC, Z(X)i � opt val

hC, Ii � opt val

 ✏

min hC, Xi
s.t. A(X) = b

X ⌫ 0

9
=

; SDP

an upper bound on kX0 �X⇤k

N �
✓

R

✏

hC, Ii � opt val

hC, Ii � val

◆2
) hC, Z(XN)i � opt val

hC, Ii � opt val

 ✏

The upper bound R has no direct meaning to SDP.

We then let val := hC, X0i.

To replace R with a meaningful quantity,

we require the user to provide SDP-feasible X0 satisfying hC, X0i < hC, Ii.

I

level set for objective value equal to val

Let diam denote an upper bound

on all SDP level sets for objective values val < hC, Ii

{X : A(X) = b
and

hC, Xi = val}

X0

max �min(X)

s.t. A(X) = b
hC, Xi = val

�min(X⇤
)� �min(X)  ✏

1� ✏

hC, Ii � val

hC, Ii � opt val

Corollary for subgradient method applied to SDP equivalent problem:

hC, Z(X)i � opt val

hC, Ii � opt val

 ✏

min hC, Xi
s.t. A(X) = b

X ⌫ 0

9
=

; SDP

an upper bound on kX0 �X⇤k

N �
✓

R

✏

hC, Ii � opt val

hC, Ii � val

◆2
) hC, Z(XN)i � opt val

hC, Ii � opt val

 ✏

N �
✓

diam

✏

hC, Ii � opt val

hC, Ii � val

◆2
) hC, Z(XN)i � opt val

hC, Ii � opt val

 ✏

The ratio

hC,Ii�opt val

hC,Ii�val

is problematic

in that we want not to assume opt val is known,

and in that even in nice situations, the ratio can be large,

making the magnitude of N be uninteresting in most applications.

We thus are lead to create a two-phase computational procedure . . .

1) Beginning at Uk,

z }| {
apply d9 diam

2e iterations of subgradient method,

resulting in a matrix Vk

I

initial user-supplied

SDP-feasible matrix

U0 V0

Phase I:
For this we are having to make the strong assumption

that we know and upper bound diam

on the diameter of the level sets.

1) Beginning at Uk,

z }| {
apply d9 diam

2e iterations of subgradient method,

resulting in a matrix Vk

I

initial user-supplied

SDP-feasible matrix

U0

2) If �min(Vk)  1/3, then terminate with output X0 = Uk.

V0

Phase I:
For this we are having to make the strong assumption

that we know and upper bound diam

on the diameter of the level sets.

1) Beginning at Uk,

z }| {
apply d9 diam

2e iterations of subgradient method,

resulting in a matrix Vk

I

initial user-supplied

SDP-feasible matrix

U0

2) If �min(Vk)  1/3, then terminate with output X0 = Uk.

3) Compute Uk+1 = Z(Vk+1) , let k + 1! k, and go to step 1.

V0

U1

Phase I:
For this we are having to make the strong assumption

that we know and upper bound diam

on the diameter of the level sets.

I

2) If �min(Vk)  1/3, then terminate with output X0 = Uk.

1) Beginning at Uk, apply d9 diam

2e iterations of subgradient method,

resulting in a matrix Vk

3) Compute Uk+1 = Z(Vk+1) , let k + 1! k, and go to step 1.

U1

V1

Phase I:

I

2) If �min(Vk)  1/3, then terminate with output X0 = Uk.

1) Beginning at Uk, apply d9 diam

2e iterations of subgradient method,

resulting in a matrix Vk

3) Compute Uk+1 = Z(Vk+1) , let k + 1! k, and go to step 1.

U1

V1

U2

Phase I:

I

2) If �min(Vk)  1/3, then terminate with output X0 = Uk.

1) Beginning at Uk, apply d9 diam

2e iterations of subgradient method,

resulting in a matrix Vk

3) Compute Uk+1 = Z(Vk+1) , let k + 1! k, and go to step 1.

U2

V2

Phase I:

I

2) If �min(Vk)  1/3, then terminate with output X0 = Uk.

1) Beginning at Uk, apply d9 diam

2e iterations of subgradient method,

resulting in a matrix Vk

3) Compute Uk+1 = Z(Vk+1) , let k + 1! k, and go to step 1.

U2

V2

U3

Phase I:

I

2) If �min(Vk)  1/3, then terminate with output X0 = Uk.

1) Beginning at Uk, apply d9 diam

2e iterations of subgradient method,

resulting in a matrix Vk

3) Compute Uk+1 = Z(Vk+1) , let k + 1! k, and go to step 1.

U3V3

Phase I:

X0 = U3

I

2) If �min(Vk)  1/3, then terminate with output X0 = Uk.

1) Beginning at Uk, apply d9 diam

2e iterations of subgradient method,

resulting in a matrix Vk

3) Compute Uk+1 = Z(Vk+1) , let k + 1! k, and go to step 1.

Phase I:

Phase II:

I

Z(X⇤)
X0

Beginning at X0, apply d(3 diam/✏)2e iterations of subgradient method.

Theorem: The total number of subgradient iterations does not exceed

min hC, Xi
s.t. A(X) = b

X ⌫ 0

Corollary: Assume I is on the central path.

If the initial matrix is chosen as U0 = I � 1
�

max

(⇡(C)) ⇡(C),

then the total number of subgradient iterations does not exceed

projection of C
onto nullspace of A

Phase I + Phase II gives an algorithm to compute X
for which the projection Z = Z(X) satisfies

hC, Zi � opt val

hC, Ii � opt val

 ✏

Compare with interior-point methods: O(

p
n log(1/✏)) iterations

�
9 diam

2
+ 1

�
·

✓
1

✏2
+ log3/2

✓
hC, Ii � opt val

hC, Ii � val0

◆◆

objective value of input matrix U0

�
9 diam

2
+ 1

�
·

✓
1

✏2
+ log3/2(n)

◆

Smoothing

fµ(X) := �µ ln
X

j

e��j(X)/µ

Following Nesterov, rely on the smooth concave function

(for fixed µ > 0)

Not so obvious, but which Nesterov showed:

krfµ(X)�rfµ(Y)k  1
µ kX � Y k

that is, X 7! rfµ(X) has Lipschitz constant 1 = 1/µ

rfµ(X) = 1P
j e��j(X)/µ Q

"
e��1(X)/µ

. . .
e��n(X)/µ

#
QT

where X = Q

"
�1(X)

.

.

.

�n(X)

#
QT

is an eigendecomposition of X

For linear programming: rfµ(x) = 1P
j

e�x

j

/µ

2

4
e�x1/µ

...
e�x

n

/µ

3

5

Easy to see: �min(X)� µ lnn  fµ(X)  �min(X)

min hC, Xi
s.t. A(X) = b

X ⌫ 0

max �min(X)

s.t. A(X) = b
hC, Xi = val

⌘ ⇡
max fµ(X)

s.t. A(X) = b
hC, Xi = val

Now we rely on Nesterov’s optimal method for smooth functions

rather than on the subgradient method.

In Phase I, we choose µ =

1
6 ln n , and in Phase II, µ =

✏
6 ln n

– hence, in Phase I, 1 = 6 ln n , and in Phase II, 1 = 6 ln n
✏ .

As before, the algorithm has two phases.

Recall: k � 2 R

r
1

✏

) f(x⇤)� f(xk)  ✏

Except for being slightly more technical, the analysis proceeds exactly as before.

hC, Zi � opt val

hC, Ii � opt val

 ✏

Same goal as before:

Compute X for the the projection Z = Z(X) satisfies

min hC, Xi
s.t. A(X) = b

X ⌫ 0

max �min(X)

s.t. A(X) = b
hC, Xi = val

⌘ ⇡
max fµ(X)

s.t. A(X) = b
hC, Xi = val

hC, Zi � opt val

hC, Ii � opt val

 ✏

Same goal as before:

Compute X for the the projection Z = Z(X) satisfies

12

p
lnn · diam ·

✓
1

✏
+ log5/4

✓
hC, Ii � opt val

hC, Ii � val0

◆ ◆
Theorem: The total number of first-order iterations does not exceed

objective value of input matrix U0

projection of C
onto nullspace of A

12

p
lnn · diam ·

✓
1

✏
+ log5/4 (n) + 1

◆

Corollary: Assume I is on the central path.

If the initial matrix is chosen as U0 = I � 5
6

1
�

max

(⇡(C)) ⇡(C) ,
then the total number of first-order iterations does not exceed

Compare with interior-point methods: O(

p
n log(1/✏)) iterations

min c

T
x

s.t. Ax = b

x � 0

9
=

; LP $
max minj xj

s.t. Ax = b

c

T
x = val

min hC, Xi
s.t. A(X) = b

x ⌫ 0

9
=

; SDP $
max �min(X)

s.t. A(X) = b

hC, Xi = val

Disclaimers:
• No claim is made for the approach being an algorithmic advance

for problems where O(1/
p

✏) algorithms have been devised.

However, there are important closely-related problems
for which it is an advance . . .

• No claim is even made for the approach being an algorithmic advance

for some problems where O(1/✏) algorithms already have been devised.

Indeed, Nesterov’s 2004 approach to smoothing

definitely is computationally superior for some problems,

even if it is far more di�cult to understand

and is far less general.

• Definitely no claim is made that the specific algorithms developed herein

are the best approaches for utilizing the framework.

The point was just to show that well-known first-order methods

can be straightforwardly utilized

to obtain complexity results of the desired types.

Claim:

• The framework is extremely interesting in that it fits so well

with first-order methods but has been overlooked until now.

(This claim, however, is completely obvious.)

Thanks for listening!

