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quantum information, entanglement, tensors

optimization problems from quantum mechanics

SDP approaches

analyzing LPs & SDPs using (quantum) information theory

€ -nets



quantum information =
noncommutative probability.
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bipartite states

PrObilllfy quan'l-um

product states iy

(independent) (P=q); = pi 9, (0©0 )y = Pix Ty
local m®l_ or 1 em MeI or I oM
measurement

marginal pi = 3 py O =1r0= 3 0y
state p'? = 3, p; IO.J(Z) trio= 2 0y
separable states convipeq} = A, Sep =conv{p®C0} ¢ D,

(not entangled)
(never enfang[ed) (some’rimes en‘rangled)



entanglement and optimization

Definition: o is separable (i.e. not entangled)
if it can be written as

P =2pViVi @w w, Sep = conv!vv ® ww ;
= conv{ip®o}

probability

distribution ~ Unit vectors

Weak membership problem: Given 0 and the promise that
0 ESep or p is far from Sep, determine which is the case.

Optimization: he, (M) := max { tr[Mp]: o ESep }

Sep



complexity of h

Equivalent to: [H, Montanaro '10]

» computing ITll,,; := max,,, KT, xeysz)|

« computing lIAll,_, := max, llAxIl, / IxIl,

» computing lITll,_,,p := max, IZxTill,,

* maximizing degree-4 polys over unit sphere

* maximizing degree-0O(1) polys over unit sphere

hsep(M) £ 0.1 [IMII,, at least as hard as
* planted clique [Brubaker, Vempala ‘09]

« 3-SAT[log?n) / polyloglog(n)] [H, Montanaro '10]

Sep

hse,(M) £ 100 hg, (M) at least as hard as
* small-set expansion [Barak, Branddo, H, Kelner, Steurer, Zhou '12]

heep(M) # [IMII,, / poly(n) at least as hard as
* 3-SAT[n] [Gurvits ‘03], [Le Gall, Nakagawa, Nishimura ‘12]



multipartite states

n d-dimensional systems = d" dimensions
This explains:
* power of quantum computers
* difficulty of classically simulating g mechanics

Can also interpret as 2n-index tensors.

N i
i2 0 .jz o M 0
5 i3

frs0 trIM o ]



local Hamiltonians

Definition: k-local operators are linear combinations of
A © A, @ . ©A @ at most k positions have A, # L.}

intuition: Diagonal case = k-CSPs = degree-k polys

Local Hamiltonian problem:
Given k-local H, find A ;.(H) = min, fr[H0].

QMA-complete to estimate to accuracy |IHI| / poly(n).
qPCP conjecture: ... or with error & |[Hl|

QMA vs NP:
do low-energy states have good classical descriptions?
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Spin-Liquid Ground State of the S =1/2
Kagome Heisenberg Antiferromagnet

Simeng Yan,* David A. Huse,?> Steven R. White’*

We use the density matrix renormalization group to perform accurate calculations of the ground
state of the nearest-neighbor quantum spin S = 1/2 Heisenberg antiferromagnet on the kagome
lattice. We study this model on numerous long cylinders with circumferences up to 12 lattice
spacings. Through a combination of very-low-energy and small finite-size effects, our results

provide strong evidence that, for the infinite two-dimensional system, the ground state of this

model is a fully gapped spin liquid.

consider the quantum spin §'= 1/2

kagome Heisenberg antiferromagnet

(KHA) with only nearest-neighbor

isotropic exchange interactions (Hamiltonian

H =1ZxS;-S;, where S; and S§; are the spin
operators for sites i and j, respectively) on a kagome

lattice (Fig. 1A). This frustrated spin system has
long been thought to be an ideal candidate for a
simple, physically realistic model that shows a
spin-liquid ground state (/—3). A spin liquidis a
magnetic system that has “melted” in its ground
state because of quantum fluctuations, so it has

no spontaneously broken symmetries (4). A key
problem in searching for spin liquids in two-
dimensional (2D) models is that there are no ex-
act or nearly exact analytical or computational
methods to solve infinite 2D quantum lattice sys-
tems. For 1D systems, the density matrix renor-
malization group (DMRG) (5, 6), the method we
use here, serves in this capacity. In addition to
its interest as an important topic in quantum mag-
netism, the search for spin liquids thus serves
as a test-bed for the development of accurate and
widely applicable computational methods for
2D many-body quantum systems.
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for Advanced Study, Princeton, N] 08540, USA.
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quantum marginal problem

Local Hamiltonian problem:
Given |-local H, find A ;(H) = min, tr[Ho].

Write H = 2/ Hg with Hg acting on systems S.
Then 1']"[H,O] = Z|S|$| ’rr[HS/O(S)].

O(n')-dim convex optimization: QMA-complete
min 3 triHs 0 ©)] to check
such that {0 ®}, are compatible.

O(nX)-dim relaxation: (k2l)
min 3 trlHs0 ©)]
such that {0 ®} . are locally compatible.



Other Hamiltonian problems
Properties of ground state:
i.e. estimate tr[Ap] for 0 = argmin tr[H0]

reduces to estimating A _..(H + uA)

Non-zero temperature:
Estimate log fr e and derivatives

#P-complete, but some special cases are easier

(Noiseless) time evolution:
Estimate matrix elements of e

BQP-complete



SOS hierarchies for q info

1. Goal: approximate Sep
Relaxation: k-extendable + PPT (positive partial transpose)

2. Goal: A, for Hamiltonian on n qudits
Relaxation: L : k-local observables 2> R
such that L[X*X] > O for all k/2-local X.

3. Goal: SUPD,{A},{B} s, fulds 2xy ny<,0 ’ Ax it By>
Relaxation: L : products of <k operators - R
such that L[p*p] 2 O V noncommutative poly p of deg < k/2,
and operators on different parties commute.

Non-commutative positivstellensatz [Helton-McCullough ‘04]



1. SOS hierarchies for Sep

SepProdR = convixx™ © xxT : ||x|l,=1, x ER"}

relaxation [Doherty, Parrilo, Spedalieri ‘03]
O €D, is a fully symmetric tensor

p=try [O]

Other versions use
less symmetry.
e.g. k-ext + PPT



2. SOS hierarchies for A .

exact convex optimization: (hard)
min ZISISK '|'I"[HS,O(S)]
such that {0 ®} . are compatible.

equivalent:
min 3g4 L[HS] s.1.
30 V k-local X, L[X] = tr[0 X]

relaxation:

min 3 L[H] s.t.

L[X*X] > O for all k/2-local X
L[I]=1



classical analogue of Sep

quadratic optimization over simplex
max {Q, pop) : PE A} = hgnyppen (Q)

If Q=A, then max =1 - 1/ clique#.

relaxation:
q€ A, symmetric (aka “exchangeable”)
M= qi2)

convergence: [Diaconis, Freedman '80], [de Klerk, Laurent, Parrilo '06]
dist(m, convi{pep}) < O(1/k)
- error ||Qll,, / k in time n°K)



Nash equilibria

Non-cooperative games:
Players choose strategies p* € A_, p2 € A..
Receive values (V,, p*@® p?) and (Vg p*© pB).

Nash equilibrium: neither player can improve own value
€ -approximate Nash: cannot improve value by > &

Correlated equilibria:

Players follow joint strategy p*® € A _ .
Receive values (V,, p*®) and (Vg, p*®).
Cannot improve value by unilateral change.

* Can find in poly(m,n) time with LP.
* Nash equilibrium = correlated equilibrum with p = p#* @ p®



finding (approximate) Nash eq

Known complexity:
Finding exact Nash eq. is PPAD complete.
Optimizing over exact Nash eq is NP-complete.

Algorithm for & -approx Nash in time exp(log(m)log(n)/ € 2)
based on enumerating over nets for A _, A .

Planted clique and 3-SAT[log?(n)] reduce to optimizing
over € -approx Nash.

[Lipton, Markakis, Mehta ‘03], [Hazan-Krauthgamer ‘11], [Braverman, Ko, Weinstein ‘14]

New result: Another algorithm for finding
€ -approximate Nash with the same run-time.

(uses k-extendable distributions)



algorithm for approx Nash

Search over pABl”'Bk o Amnk
such that the A:B, marginal is a correlated equilibrium

conditioned on any values for B,, ..., B ;.
LP, so runs in time poly(mnX)

Claim: Most conditional distributions are = product.

Proof:

log(m) > H(A) > I(A:B,..B,) = 3. I(A:B|B,)
E, I(A:BIB,) < log(m)/k =: €2

. k = log(m)/ € 2 suffices.




SOS results for h

Sep
Sep(n,m) = convip,® ..® p_: p., € D}
SepSym(n,m) = convip°™ : p € D}
bipartite __—7doesnt match hardness

Thm: If M =3, A, @B, with 3. |Al < 1} each |B| < I, then
[Branddo, Christandl, Yard ‘10], [Yang ‘06], [Branddo, H ‘12], [Li, Winter '12]

multipartite |
M = Z Ch z'mAz(ll) ®°°°®A§:) Z|A§j)\ < ‘Cil,---,’im‘ Sl

V] gecey Tm

Thm:
€ -approx to hSepSym(n,m)(M) in time {exp(m2 log?(n)/ € 2)}
€ -approx to hSep(n,m)(M) in time exp(m?3 logz(ﬁK&‘ 2).

[Brandao, H ‘12], [Li, Smith ‘14]

x~matches Chen-Drucker hardness



SOS results for A .

H = E; yee H;; acts on (C9)*" such that

« each |IH;;ll <1

e |Vl =n

* (V,E) is regular

* adjacency matrix has <r eigenvalues >poly( € /d)

Theorem

A min(H) 0 hSep(d,n)(H)

and can compute this to error &
with rpoly(d/ €) rounds of SOS,
i.e. time nr-polyld/ ),

[Brandao-H, ‘13] based on [Barak, Raghavendra, Steurer '11]



net-based algorithms

M =3¢ A ©B; with 2, A; ¢ T, each [Bl < T, A, 20
hierarchies estimate hg, (M) € in time exp(log®(n)/ € ?)

hsep(M) = max, g triM(a® )] = max < lIpll;
S={p: Jastp=trlAal} €A
lIxllg = 11Z; x; Bil,,

Lemma: VpE A I q k-sparse (each q, = integer / k)
llp-qll; < c(log(n)/k)“2  Pf: matrix Chernoff [Ahlswede-Winter]

Algorithm: Enumerate over k-sparse g Eerflorr(nc)l;lcez LI g
« check whether Ip€ES, |lp-qll; <& ru;] fi?nt; € ¢, m=poly(n

* if so, compute llqll; O(mk) = exp(log?(n)/ € 2)



nets for Banach spaces

X:A->B
IXIl,_,g = sup lIXallg / llall, operator norm
XI5 e = min §ZI,_. IYll._,g : X=YZ} factorization norm

Let A,B be arbitrary. C = [||"
Only changes are sparsification (cannot assume mg<poly(n))
and operator Chernoff for B.

Type 2 constant: T,(B) is smaéles’r A such that

n

Eel,...,enE{:lzl} Z EiZi < >‘2 Z HZZHZB
B L=l

==

result: | X|lasp L€ XHA—>€T—>B
estimated in time exp(T,(B)? log(m)/ € ?)



€ -nets vs. SOS
SOS/info theory

max,cp PTAP  KLP '06 DF ‘80
KLP ‘06

approx Nash ~ LMM ‘03 H. ‘14

free games AIM ‘14 Branddo-H 13

Shi-Wu '11 BCY '10
Brandado-H ‘14 Brandao-H ‘12
BKS '13




questions / references

Application to 2->4 norm and small-set expansion.
Matching quasipolynomial algorithms and hardness.
simulating noisy/low-entanglement dynamics

conditions under which Hamiltonians are easy to simulate
Relation between hierarchies and nets

Meaning of low quantum conditional mutual information

Hardness/connections 1001.0017
Relation to 2->4 norm, SSE 1205.4484
SOS for hSep 1210.6367

SOS for A . 1310.0017






