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1.  quantum information, entanglement, tensors



2.  optimization problems from quantum mechanics



3.  SDP approaches



4.  analyzing LPs & SDPs using (quantum) information theory



5.  ε-nets





quantum information ≈ 
noncommutative probability



probability

 quantum


Δn = {p∈Rn, p≥0, ���
∑i pi = ||p||1 = 1}



Dn = {ρ∈Cn×n, ρ≥ 0���
trρ= ||ρ||1 = 1}



measurement



distance


= best bias



states



m∈Rn ���

0≤mi≤1


M∈Cn×n,


0 ≤ M ≤ I



“accept”

 ⟨m,p⟩

 ⟨M,ρ⟩ = tr[Mρ]
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bipartite states



product states ���
(independent)

 (p⊗q)ij = pi qj

 (ρ⊗σ)ij,kl = ρi,k σj,l



local���
measurement



m⊗1n or 1n⊗m

 M⊗In or In⊗M



marginal


state



pi
(1) = ∑j pij  



pj
(2) = ∑i pij



ρi,j
(1) = tr2ρ= ∑k ρik,jk



ρi,j
(2) = tr1ρ= ∑k ρki,kj



probability

 quantum



separable states���
(not entangled)



conv{p⊗q} = Δn2 





(never entangled)



Sep =conv{p⊗σ} ⊊ Dn2 





(sometimes entangled)





entanglement and optimization



Definition: ρ is separable (i.e. not entangled)


if it can be written as


ρ = ∑i pi vi vi

* ⊗ wi wi
* 



probability���
distribution

 unit vectors



Weak membership problem: Given ρ and the promise that ���
ρ∈Sep or ρ is far from Sep, determine which is the case.



Sep = conv{vv* ⊗ ww*}


     = conv{ρ⊗σ}



=



Optimization: hSep(M) := max { tr[Mρ] : ρ∈Sep }





complexity of hSep


Equivalent to: [H, Montanaro ‘10] 


•  computing ||T||inj := maxx,y,z |⟨T, x⊗y⊗z⟩|


•  computing ||A||2->4 := maxx ||Ax||4 / ||x||2


•  computing ||T||2->op := maxx ||∑ixiTi||op


•  maximizing degree-4 polys over unit sphere


•  maximizing degree-O(1) polys over unit sphere



hSep(M) ± 0.1 ||M||op at least as hard as


•  planted clique                          [Brubaker, Vempala ‘09]


•  3-SAT[log2(n) / polyloglog(n)]         [H, Montanaro ‘10] 



hSep(M) ± 100 hSep(M) at least as hard as


•  small-set expansion [Barak, Brandão, H, Kelner, Steurer, Zhou ‘12] 



hSep(M) ± ||M||op / poly(n) at least as hard as


•  3-SAT[n]          [Gurvits ‘03], [Le Gall, Nakagawa, Nishimura ‘12]





multipartite states


n d-dimensional systems à dn dimensions���
This explains:



•  power of quantum computers


•  difficulty of classically simulating q mechanics



Can also interpret as 2n-index tensors.



ρ



tr3ρ



ρ



tr[Mρ]
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local Hamiltonians


Definition: k-local operators are linear combinations of


{A1 ⊗ A2 ⊗ ... ⊗ An : at most k positions have Ai ≠ I.}





intuition: Diagonal case = k-CSPs = degree-k polys



Local Hamiltonian problem:


Given k-local H, find λmin(H) = minρ tr[Hρ].



QMA-complete to estimate to accuracy ||H|| / poly(n).


qPCP conjecture:  ... or with error ε||H||



QMA vs NP: ���
do low-energy states have good classical descriptions?





kagome antiferromagnet



Herbertsmithite


ZnCu3(OH)6Cl2





quantum marginal problem


Local Hamiltonian problem:


Given l-local H, find λmin(H) = minρ tr[Hρ].



Write H = ∑|S|≤l HS with HS acting on systems S.


Then tr[Hρ] = ∑|S|≤l tr[HSρ

(S)].



O(nl)-dim convex optimization:


min ∑|S|≤l tr[HSρ

(S)]


such that {ρ(S)}|S|≤l are compatible.



QMA-complete���
to check



O(nk)-dim relaxation:  (k≥l)


min ∑|S|≤l tr[HSρ

(S)]


such that {ρ(S)}|S|≤k are locally compatible.





Other Hamiltonian problems


Properties of ground state:


i.e. estimate tr[Aρ] for ρ = argmin tr[Hρ]



reduces to estimating λmin(H + μA)



#P-complete, but some special cases are easier



Non-zero temperature:


Estimate log tr e-H and derivatives



(Noiseless) time evolution:


Estimate matrix elements of eiH



BQP-complete





SOS hierarchies for q info


1.  Goal: approximate Sep ���

Relaxation: k-extendable + PPT (positive partial transpose)



2.  Goal: λmin for Hamiltonian on n qudits���
Relaxation: L : k-local observables à R ���
such that L[X*X] ≥ 0 for all k/2-local X. 



3.  Goal: supρ,{A},{B} s.t. ...  ∑xy cxy⟨ρ, Ax ⊗ By⟩���
Relaxation: L : products of ≤k operators à R ���
such that L[p*p] ≥ 0 ∀noncommutative poly p of deg ≤ k/2, ���
 and operators on different parties commute.���
���
Non-commutative positivstellensatz [Helton-McCullough ‘04]





1. SOS hierarchies for Sep



SepProdR = conv{xxT ⊗ xxT : ||x||2=1, x∈Rn}



relaxation [Doherty, Parrilo, Spedalieri ’03]


σ∈Dnk is a fully symmetric tensor


ρ=tr3...k[σ]



σ

 =

 σ



Other versions use


less symmetry.���
e.g. k-ext + PPT





2. SOS hierarchies for λmin


exact convex optimization: (hard)


min ∑|S|≤k tr[HSρ

(S)]


such that {ρ(S)}|S|≤k are compatible.



equivalent: 


min ∑|S|≤k L[HS] s.t.


∃ρ ∀ k-local X, L[X] = tr[ρX]



relaxation: 


min ∑|S|≤k L[HS] s.t.


L[X*X] ≥ 0 for all k/2-local X ���
L[I]=1





classical analogue of Sep


quadratic optimization over simplex


max {⟨Q, p⊗p⟩ : p∈Δn} = hconv{p⊗p} (Q)



If Q=A, then max = 1 – 1 / clique#.



relaxation: ���
q∈Δnk symmetric (aka “exchangeable”)


π = q(1,2)



convergence:  [Diaconis, Freedman ‘80], [de Klerk, Laurent, Parrilo ‘06]


dist(π, conv{p⊗p}) ≤ O(1/k)


à error ||Q||∞ / k in time nO(k)





 Nash equilibria


Non-cooperative games: ���
Players choose strategies pA ∈ Δm, pB ∈ Δn.���
Receive values ⟨VA, pA ⊗ pB⟩ and ⟨VB, pA ⊗ pB⟩.





Nash equilibrium: neither player can improve own value���
ε-approximate Nash: cannot improve value by > ε



Correlated equilibria: ���
Players follow joint strategy pAB ∈ Δmn.���
Receive values ⟨VA, pAB⟩ and ⟨VB, pAB⟩.���
Cannot improve value by unilateral change.���



•  Can find in poly(m,n) time with LP.


•  Nash equilibrium = correlated equilibrum with p = pA ⊗ pB





finding (approximate) Nash eq


Known complexity: ���
Finding exact Nash eq. is PPAD complete.���
Optimizing over exact Nash eq is NP-complete.���
���
Algorithm for ε-approx Nash in time exp(log(m)log(n)/ε2)���
based on enumerating over nets for Δm, Δn.���
Planted clique and 3-SAT[log2(n)] reduce to optimizing 
over ε-approx Nash.



New result: Another algorithm for finding ���
ε-approximate Nash with the same run-time.





(uses k-extendable distributions)



[Lipton, Markakis, Mehta ‘03], [Hazan-Krauthgamer ’11], [Braverman, Ko, Weinstein ‘14]





algorithm for approx Nash


Search over���
such that the A:Bi marginal is a correlated equilibrium���
conditioned on any values for B1, …, Bi-1.



pAB1...Bk 2 �mnk

LP, so runs in time poly(mnk)



Claim: Most conditional distributions are ≈ product.���
���
Proof: 


log(m) ≥ H(A) ≥ I(A:B1...Bk) = ∑1≤i≤k I(A:Bi|B<i)���
 𝔼i I(A:Bi|B<i) ≤ log(m)/k =: ε2 ���i I(A:Bi|B<i) ≤ log(m)/k =: ε2 ���
∴ k = log(m)/ε2 suffices.





SOS results for hSep



doesn’t match hardness


Thm: If M =∑i Ai ⊗Bi with ∑i |Ai| ≤ I, each |Bi| ≤ I, then ���
hSep(n,2)(M) ≤ hk-ext(M) ≤ hSep(n,2)(M) + c (log(n)/k)1/2



bipartite



[Brandão, Christandl, Yard ’10], [Yang ’06], [Brandão, H ’12], [Li, Winter ‘12] 



Sep(n,m) = conv{ρ1 ⊗ ... ⊗ ρm : ρm ∈ Dn}


SepSym(n,m) = conv{ρ⊗m : ρ ∈ Dn}



X

i

|A(j)
i |  I

[Brandão, H ’12], [Li, Smith ’14]



Thm: 


ε-approx to hSepSym(n,m)(M) in time exp(m2 log2(n)/ε2).


ε-approx to hSep(n,m)(M) in time exp(m3 log2(n)/ε2).



multipartite


M =

X

i1,...,im

ci1,...,imA(1)
i1

⌦ · · ·⌦A(m)
im

|ci1,...,im |  1

≈matches Chen-Drucker hardness





SOS results for λmin


H = E(i,j)∈E Hi,j acts on (Cd)⊗n such that


•  each ||Hi,j|| ≤ 1


•  |V| = n


•  (V,E) is regular


•  adjacency matrix has ≤r eigenvalues ≥poly(ε/d)



Theorem


λmin(H) ≈ε hSep(d,n)(H)


and can compute this to error ε���
with  r∙poly(d/ε) rounds of SOS,


i.e. time nr∙poly(d/ε).



[Brandão-H, ’13] based on [Barak, Raghavendra, Steurer ‘11]





net-based algorithms


M =∑i∈[m] Ai ⊗Bi with ∑i Ai ≤ I, each |Bi| ≤ I, Ai ≥ 0


hierarchies estimate hSep(M) ±ε in time exp(log2(n)/ε2)



hSep(M) = maxα,βtr[M(α⊗β)] = maxp∈S ||p||B


S = {p : ∃α s.t. pi = tr[Aiα]} ⊆Δm


||x||B = ||∑i xi Bi||op



Lemma: ∀p∈Δm ∃q k-sparse (each qi = integer / k)���
||p-q||B ≤ c(log(n)/k)1/2.   Pf: matrix Chernoff [Ahlswede-Winter]



Performance


k ≃ log(n)/ε2, m=poly(n)


run-time


O(mk) = exp(log2(n)/ε2) 



Algorithm: Enumerate over k-sparse q


•  check whether ∃p∈S, ||p-q||B ≤ε


•  if so, compute ||q||B





nets for Banach spaces


X:A->B ���
||X||A->B = sup ||Xa||B / ||a||A                          operator norm


||X||A->C->B = min {||Z||A->C ||Y||C->B : X=YZ} factorization norm



Let A,B be arbitrary.  C = l1m 


Only changes are sparsification (cannot assume m≤poly(n))


and operator Chernoff for B.



result: 


estimated in time exp(T2(B)2 log(m)/ε2)



kXkA!B ± ✏kXkA!`m1 !B

Type 2 constant: T2(B) is smallest λ such that





E✏1,...,✏n2{±1}

�����

nX

1=1

✏iZi

�����

2

B

 �2
nX

1=1

kZik2B



ε-nets vs. SOS


Problem

 ε-nets

 SOS/info theory


maxp∈Δ pTAp






KLP ‘06

 DF ’80���
KLP ‘06



approx Nash






LMM ‘03

 H. ‘14



free games

 AIM ‘14

 Brandão-H ‘13



hSep

 Shi-Wu ‘11 ���
Brandão-H ‘14



BCY ‘10���
Brandão-H ’12���
BKS ‘13





questions / references


"   Application to 2->4 norm and small-set expansion.



"   Matching quasipolynomial algorithms and hardness.



"   simulating noisy/low-entanglement dynamics



"   conditions under which Hamiltonians are easy to simulate



"   Relation between hierarchies and nets



"   Meaning of low quantum conditional mutual information



Hardness/connections

 1001.0017


Relation to 2->4 norm, SSE

 1205.4484


SOS for hSep

 1210.6367


SOS for λmin

 1310.0017






