Effectivity Issues and Results for Hilbert 17 th Problem

Marie-Françoise Roy
Université de Rennes 1, France
joint work with
Henri Lombardi
Université de Franche-Comté, France
and
Daniel Perrucci
Universidad de Buenos Aires, Argentina

Berkeley - September 26, 201.4

Positivity and sums of squares

- Is a non-negative polynomial a sum of squares of polynomials?
- Yes if the number of variables is 1 .
- Yes if the degree is 2 .
- No in general.
- First explicit counter-example Motzkin '69

$$
1+X^{4} Y^{2}+X^{2} Y^{4}-3 X^{2} Y^{2}
$$

is non negative and is not a sum of square of polynomials.

- Reformulation proposed by Minkowski.
- Question Hilbert '1900.
- Is a a non-negative polynomial a sum of squares of rational functions?
- Artin '27: Affirmative answer. Non-constructive.

Outline of Artin's proof

- Suppose P is not a sum of squares of rational functions.
- Sums of squares form a proper cone of the field of rational functions, and does not contain P (a cone contains squares and is closed under addition and multiplication, a proper cone does not contain -1).

Outline of Artin's proof

- Suppose P is not a sum of squares of rational functions.
- Sums of squares form a proper cone of the field of rational functions, and does not contain P.
- Using Zorn's lemma, get a maximal proper cone of the field of rational functions which does not contain P. Such a maximal cone defines a total order on the field of rational functions.

Outline of Artin's proof

- Suppose P is not a sum of squares of rational functions.
- Sums of squares form a proper cone of the field of rational functions, and does not contain P.
- Using Zorn, get a total order on the field of rational functions which does not contain P.
- Taking the real closure of the field of rational functions for this order, get a field in which P takes negative values (when evaluated at the variables, which are elements of the real closure).
- Then P takes negative values over the reals. First instance of a transfer principle in real algebraic geometry. Based on Sturm's theorem, or Hermite quadratic form.

Remaining problems

- Very indirect proof (by contraposition, uses Zorn).
- Artin notes effectivity is desirable but difficult.
- No hint on denominators: what are the degree bounds ?
- Effectivity problems : is there an algorithm checking whether a given polynomial is everywhere nonnegative and if so provides a representation as a sum of squares?
- Complexity problems : what are the best possible bounds on the degrees of the polynomials in this representation?
- Kreisel '57 - Daykin '61 - Lombardi '90-Schmid '00:

Constructive proofs \rightsquigarrow primitive recursive degree bounds on k and $d=\operatorname{deg} P$.

- Our work '14: another constructive proof \rightsquigarrow elementary recursive degree bound:

Positivstellensatz

- Find algebraic identities certifying that a system of sign condition is empty.
- In the spirit of Nullstellensatz.
\mathbf{K} a field, \mathbf{C} an algebraically closed extension of \mathbf{K},
$P_{1}, \ldots, P_{s} \in \mathbf{K}\left[x_{1}, \ldots, x_{k}\right]$
$P_{1}=\ldots=P_{s}=0$ no solution in \mathbf{C}^{k}
$\exists \quad\left(A_{1}, \ldots, A_{s}\right) \in \mathbf{K}\left[x_{1}, \ldots, x_{k}\right]^{s} \quad A_{1} P_{1}+\cdots+A_{s} P_{s}=1$.

Positivstellensatz

- Find algebraic identities certifying that a system of sign condition is empty.
- In the spirit of Farkas Lemma.
\mathbf{K} a, ordered field, \mathbf{R} a real closed extension of \mathbf{K},

$$
\sum A_{i j} x_{j}+b_{i} \geq 0, \sum C_{n j} x_{j}+d_{n}=0
$$

no solution in \mathbf{R}^{k}

$$
\begin{gathered}
\Longleftrightarrow \exists \lambda_{i} \geq 0, \mu_{k} \\
1+\sum \lambda_{i}\left(\sum A_{i j} x_{j}+b_{i}\right)+\sum \mu_{n}\left(\sum C_{n k} x_{k}+d_{n}\right)=0 .
\end{gathered}
$$

- For real numbers and arbitrary degrees, statement more complicated.

Positivstellensatz =SOS proof of impossibility

- \mathbf{K} an ordered field, \mathbf{R} a real closed extension of \mathbf{K},
- $P_{1}, \ldots, P_{s} \in \mathbf{K}\left[x_{1}, \ldots, x_{k}\right]$,
- $I_{\neq}, I_{\geq}, I_{=} \subset\{1, \ldots, s\}$,

there exist S, N, Z, deduced from $\mathcal{H}(x)$ using SOS proofs such that

$$
\begin{aligned}
& \underbrace{S}+\underbrace{N}+\underbrace{Z}=0 . \\
& >0=0
\end{aligned}
$$

Positivstellensatz (Krivine '64, Stengle '74)

More precisely

$$
\begin{aligned}
& \mathcal{H}(x):\left\{\begin{array}{l}
P_{i}(x) \neq 0 \text { for } i \in I_{\neq} \\
P_{i}(x) \geq 0 \text { for } i \in I_{\geq} \\
P_{i}(x)=0 \text { for } i \in I_{=}
\end{array}\right. \\
& \downarrow \mathcal{H} \downarrow: \underbrace{S}_{>0}+\underbrace{N}_{\geq 0}+\underbrace{Z}_{=0}=0
\end{aligned}
$$

with

$$
\begin{array}{ll}
S \in\left\{\prod_{i \in l_{\neq}} P_{i}^{2 e_{i}}\right\} & \leftarrow \text { monoid associated to } \mathcal{H} \\
N \in\left\{\sum_{l \subset I \geq}\left(\sum_{j} k_{l, j} Q_{l, j}^{2}\right) \prod_{i \in I} P_{i}\right\} & \leftarrow \text { cone associated to } \mathcal{H} \\
Z \in\left\langle P_{i} \mid i \in I=\right\rangle & \leftarrow \text { ideal associated to } \mathcal{H}
\end{array}
$$

Degree of an incompatibility

$$
\begin{aligned}
& \mathcal{H}(x):\left\{\begin{array}{l}
P_{i}(x) \neq 0 \text { for } \quad i \in I_{\neq} \\
P_{i}(x) \geq 0 \text { for } \quad i \in I_{\geq} \\
P_{i}(x)=0 \text { for } \quad i \in I_{=}
\end{array}\right. \\
& \downarrow \mathcal{H} \downarrow: \underbrace{S}_{>0}+\underbrace{N}_{\geq 0}+\underbrace{Z}_{=0}=0 \\
& S=\prod_{i \in I_{F}} P_{i}^{2 e_{i}}, \quad N=\sum_{l \subset I_{\geq}}\left(\sum_{j} k_{l, j} Q_{l, j}^{2}\right) \prod_{i \in I} P_{i}, \quad Z=\sum_{i \in I_{l}} Q_{i} P_{i}
\end{aligned}
$$

the degree of \mathcal{H} is the maximum degree of

$$
S=\prod_{i \in I_{\neq}} P_{i}^{2 e_{i}}, \quad Q_{l, j}^{2} \prod_{i \in I} P_{i}\left(I \subset I_{\geq}, j\right), \quad Q_{i} P_{i}\left(i \in I_{=}\right) .
$$

Example:

$$
\begin{gathered}
\left\{\begin{array}{cl}
x & \neq 0 \\
y-x^{2}-1 & \geq 0 \\
x y & =0
\end{array} \quad \text { no solution in } \mathbb{R}^{2}\right. \\
\downarrow x \neq 0, \quad y-x^{2}-1 \geq 0, \quad x y=0 \downarrow: \\
\underbrace{x^{2}}+0 \\
\underbrace{x^{2}\left(y-x^{2}-1\right)+x^{4}}_{\geq 0}+\underbrace{\left(-x^{2} y\right)}_{=0}=0 .
\end{gathered}
$$

The degree of this is incompatibility is 4 .

Positivstellensatz: proofs

- Classical proofs of Positivstellensatz based on Zorn's lemma and Tranfer principle, very similar to Artin's proof for Hilbert 17th problem [BPR].
- Constructive proofs use quantifier elimination over the reals.
- What is quantifier elimination?
- You know it from high school
... in a special case !

$$
\exists \quad x \quad a x^{2}+b x+c=0, a \neq 0
$$

$$
b^{2}-4 a c \geq 0, a \neq 0
$$

- True for any formula, due to Tarski, use generalizations of Sturm's theorem, or Hermite quadratic form [BPR].

Positivstellensatz: Constructive proofs

- Classical proofs of Positivstellensatz based on Zorn's lemma and Transfer principle, very similar to Artin's proof for Hilbert's 17 th problem [BCR].
- Constructive proofs use quantifier elimination over the reals.
- Transform a proof that a system of sign conditions is empty, based on a quantifier elimination method, into an incompatibility.

Positivstellensatz: Constructive proofs

- Lombardi '90:

Primitive recursive degree bounds on $k, d=\max \operatorname{deg} P_{i}$ and $s=\# P_{i}$.

Based in Cohen-Hörmander algorithm for quantifier elimination [BCR]:

- exponential tower of height $k+4$,
- $d \log (d)+\log \log (s)+c$ on the top.
- Our work: Based on (a variant of) cylindrical decomposition [BPR].
Elementary recursive degree bound in k, d and s :

$$
2^{2^{2^{\max \{2, d\}^{4}}}+s^{2^{k}}} \max \{2, d\}^{16^{k} \operatorname{bit}(d)}
$$

Positivstellensatz implies Hilbert 17th problem

$$
\begin{gathered}
P \geq 0 \text { in } \mathbb{R}^{k} \Longleftrightarrow\{P(x)<0 \text { no solution } \\
\Longleftrightarrow\left\{\begin{array}{r}
P(x) \neq 0 \\
-P(x) \geq 0
\end{array} \quad\right. \text { no solution } \\
\Longleftrightarrow \underbrace{P^{2 e}}_{>0}+\underbrace{\sum_{i} Q_{i}^{2}-\left(\sum_{j} R_{j}^{2}\right) P}_{\geq 0}=0 \\
\Longrightarrow \quad P=\frac{P^{2 e}+\sum_{i} Q_{i}^{2}}{\sum_{j} R_{j}^{2}}=\frac{\left(P^{2 e}+\sum_{i} Q_{i}^{2}\right)\left(\sum_{j} R_{j}^{2}\right)}{\left(\sum_{j} R_{j}^{2}\right)^{2}} .
\end{gathered}
$$

Our strategy

- For every system of sign conditions with no solution, construct an algebraic incompatibility and control the degrees for the Positivstellensatz.
- Uses notions introduced in Lombardi '90
- Key concept : weak inference.

Weak inferences: first example

$$
A>0, \quad B \geq 0 \quad \Longrightarrow \quad A+B>0
$$

Let \mathcal{H} be any system of sign conditions.

$$
\begin{aligned}
& \downarrow \mathcal{H}, A+B>0 \downarrow \longrightarrow\left\{\begin{array}{l}
\mathcal{H}(x) \\
A(x)+B(x)>0
\end{array}\right. \\
& \downarrow \\
& \downarrow \mathcal{H}, A>0, B \geq 0 \downarrow \longleftarrow \downarrow \\
& A>0, \quad B \geq 0 \vdash \quad A+B>0 .
\end{aligned}
$$

Weak inferences go from right to left.

$$
A>0, \quad B \geq 0 \quad \vdash \quad A+B>0
$$

$$
\begin{aligned}
& \downarrow \mathcal{H}, A+B>0 \downarrow \rightarrow \downarrow \mathcal{H}, A+B \neq 0, A+B \geq 0 \downarrow \\
& \underbrace{(A+B)^{2 e} S}_{>0}+\underbrace{N+N^{\prime}(A+B)}_{\geq 0}+\underbrace{Z}_{=0}=0 \\
& \downarrow \\
& >0 \\
& \underbrace{A^{2 e} S}_{\geq 0}+\underbrace{\sum_{i=0}^{2 e-1}\binom{2 e}{i} A^{i} B^{2 e-1} S+N+N^{\prime} A+N^{\prime} B}_{\geq 0}+\underbrace{Z}=0 \\
& \downarrow \mathcal{H}, A \neq 0, A \geq 0, B \geq 0 \downarrow \rightarrow \downarrow \mathcal{H}, A>0, B \geq 0 \downarrow
\end{aligned}
$$

$$
A>0, \quad B \geq 0 \quad \vdash \quad A+B>0
$$

What about degrees?

$$
\underline{(A+B)^{2 e} S}+\underline{N}+\underline{N^{\prime}(A+B)}+\underline{Z}=0
$$

$$
\underline{A^{2 e} S}+\sum_{i=0}^{2 e-1}\binom{2 e}{i} A^{i} B^{2 e-1} S+\underline{N}+\underline{N^{\prime} A}+N^{\prime} B+Z=0
$$

initial incompatibility degree
final incompatibility degree

$$
\begin{gathered}
\delta+\max \{1,2 e\} \\
(\max \{\operatorname{deg} A, \operatorname{deg} B\}-\operatorname{deg}\{A+B\})
\end{gathered}
$$

Symbolic degree !!

Weak inferences: case by case reasoning

$$
A \neq 0 \quad \Longrightarrow \quad A<0 \quad \vee \quad A>0
$$

Let \mathcal{H} be any system of sign conditions.

$$
\begin{aligned}
\downarrow \mathcal{H}, A<0 \downarrow & \longrightarrow\left\{\begin{array}{l}
\mathcal{H}(x) \\
A(x)
\end{array}<0\right.
\end{aligned} \text { no solution }
$$

$$
A \neq 0 \vdash A<0 \vee A>0
$$

$\downarrow \mathcal{H}, A<0 \downarrow \leftarrow$ degree δ_{1} $\downarrow \mathcal{H}, A>0 \downarrow \leftarrow$ degree δ_{2}

$$
\begin{aligned}
& \underbrace{A^{2 e_{1}} S_{1}}_{>0}+\underbrace{N_{1}-N_{1}^{\prime} A}_{\geq 0}+\underbrace{Z_{1}}_{=0}=0 \\
& A^{2 e_{1}} S_{1}+N_{1}+Z_{1}=N_{1}^{\prime} A
\end{aligned}
$$

$$
\underbrace{A^{2 e_{2}} S_{2}}_{>0}+\underbrace{N_{2}+N_{2}^{\prime} A}_{\geq 0}+\underbrace{Z_{2}}_{=0}=0
$$

$$
A^{2 e_{2}} S_{2}+N_{2}+Z_{2}=-N_{2}^{\prime} A
$$

$$
\begin{gathered}
A^{2 e_{1}+2 e_{2}} S_{1} S_{2}+N_{3}+Z_{3}=-N_{1}^{\prime} N_{2}^{\prime} A^{2} \\
\underbrace{A^{2 e_{1}+2 e_{2}} S_{1} S_{2}}_{>0}+\underbrace{N_{1}^{\prime} N_{2}^{\prime} A^{2}+N_{3}}_{\geq 0}+\underbrace{Z_{3}}_{=0}=0 \\
\downarrow \mathcal{H}, A \neq 0 \downarrow \leftarrow \text { degree } \delta_{1}+\delta_{2}
\end{gathered}
$$

- Many simple weak inferences of that kind are combined to obtain more interesting weak inferences.
- Tools from classical algebra to modern computer algebra a real polynomial of odd degree has a real root a real polynomial has a complex root (using an algebraic proof due to Laplace) [BPR]
- a real polynomial of odd degree has a real root
- a real polynomial has a complex root
- signature of Hermite's quadratic form determined by the number of real roots of a polynomial and also by sign conditions on principal minors [BPR]
- Sylvester's inertia law: the signature of a quadratic form is well defined

List of statements into weak inferences form

- a real polynomial of odd degree has a real root
- a real polynomial has a complex root
- signature of Hermite's quadratic form
- Sylvester's inertia law
- realizable sign conditions for a family of univariate polynomials fixed by sign of minors of several Hermite quadratic form (using Thom's encoding of real roots by sign of derivatives) [BPR]
- realizable sign conditions for $\mathcal{P} \subset \mathbf{K}\left[x_{1}, \ldots, x_{k}\right]$ fixed by list of non empty sign conditions for $\operatorname{Proj}(\mathcal{P}) \subset \mathbf{K}\left[x_{1}, \ldots, x_{k-1}\right]$ (cylindrical decomposition) [BPR]

How is produced the sum of squares?

Suppose that P takes always non negative values. The proof that

$$
P \geq 0
$$

is transformed, step by step, in a proof of the weak inference

$$
\vdash \quad P \geq 0 .
$$

Which means that if we have an initial incompatibility of \mathcal{H} with $P \geq 0$, we know how to construct a final incompability of \mathcal{H} it self
Going right to left.

How is produced the sum of squares?

In particular $P<0$, i.e. $P \neq 0,-P \geq 0$, is incompatible with
$P \geq 0$, since

$$
\underbrace{P^{2}}_{>0}+\underbrace{P \times(-P)}_{\geq 0}=0
$$

is an initial incompatibility of $P \geq 0, P \neq 0,-P \geq 0$! Hence we know how to construct an incompatibility of
$P \neq 0,-P \geq 0$

which is the final incompatibility we are looking for !!
We expressed P as a sum of squares of rational functions !!!

Why a tower of five exponentials?

- outcome of our method ... no other reason ...
- cylindrical decomposition gives univariate polynomials of doubly exponential degrees
- dealing with univariate polynomials of degree d (real root for odd degree, complex root by Laplace) already gives three level of exponentials
- we are lucky enough that all the other steps do not spoil this bound
- long paper (85 pages) ... currently under review.

What can be hoped for??

- Nullstellensatz : single exponential (..., Kollar, Jelonek, ...).
- Nullstellensatz: single exponential lower bounds (...,Philippon , ...).
- Positivstellensatz: single exponential lower bounds [GV].
- Best lower bound for Hilbert 17th problem : degree linear in k (recent result by [BGP]) !
- Deciding emptyness for the reals (critical point method : more sophisticated than cylindrical decomposition) : single exponential [BPR].

References

[BPR] Basu S., Pollack R. and Roy M.-F. Algorithms in Real Algebraic Geometry. Springer-Verlag, Berlin. http://perso.univ-rennes1.fr/marie-francoise.roy/bpr-ed2-posted2.html (Revised and completed 2013)
[BGP] Blekherman G., Gouveia J. and Pfeiffer J. Sums of Squares on the Hypercube Manuscript. arXiv:1402.4199.
[BCR] Bochnak J., Coste M. and Roy M.-F. Géométrie Algébrique Réelle (Real Algebraic Geometry), Springer-Verlag, Berlin, 1987 (1998).
[GV] H. Grigoriev, N. Vorobjov, Complexity of Null- and Positivstellensatz proofs, Annals of Pure and Applied Logic 113 (2002) 153-160.
[HPR] H. Lombardi, D. Perrucci, M.-F. Roy, An elementary recursive bound for effective Positivstellensatz and Hilbert 17-th problem (preliminary version, arXiv:1404.2338).
(and all other references there)

Thanks!

