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Causal Discovery

Causal Discovery: Learn the graph that describes the 
``causal relationship” between these variables

DietPhysical 
Activity

Body Mass 
IndexAlcohol

Incidence of 
Diabetes



4

But is there a unique causal graph?

In many scenarios, the answer is no



5

DietPhysical 
Activity

Body Mass 
IndexAlcohol

Economic 
Status

Incidence of 
Diabetes

DietPhysical 
Activity

Body Mass 
IndexAlcohol

Culture

Incidence of 
Diabetes

DietPhysical 
Activity

Body Mass 
IndexAlcohol

Genes

Incidence of 
Diabetes

An Example*

* Motivated from: Michael Joffe, Manoj Gambhir, Marc Chadeau-Hyam, and 
Paolo Vineis. Causal diagrams in systems epidemiology, 2012.

Subpopulation 2Subpopulation 1 Subpopulation 3
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Goal: To learn all these causal graphs



7

Say we have 𝑁 entities

Entities could be individuals (or collection of individuals)

Each with their own causal graph
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Entities could be businesses

Entities could be medical agencies

………….

………….

Say we have 𝑁 entities

Each with their own causal graph
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Goal: To learn the causal graphs of all the entities, 
assuming access to their individual data

Assumptions on entities:

1) They are independent
2) The set of observed variables is the same for all the entities
3) Each of them generates their own data
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Detour: How do we learn a Causal Graph?

• Observational data is not sufficient to
learn the exact causal relations

• We cannot distinguish graphs in a
Markov equivalence class

• To distinguish in the equivalence class,
we need additional mechanism such as
ability to perform “interventions”
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Detour: How do we learn a Causal Graph?

• Observational data is not sufficient to
learn the exact causal relations

• We cannot distinguish graphs in a
Markov equivalence class

• To distinguish in the equivalence class,
we need additional mechanism such as
ability to perform “interventions” E.g.: An intervention on “Diet”,

involves fixing the Diet level of the
individual to some value (either
low or high).
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Detour: How do we learn a Causal Graph?

E.g.: An intervention on “Diet”,
involves fixing the Diet level of the
individual to some value (either
low or high).
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All incoming 
edges 

disappear• Observational data is not sufficient to
learn the exact causal relations

• We cannot distinguish graphs in a
Markov equivalence class

• To distinguish in the equivalence class,
we need additional mechanism such as
ability to perform “interventions”
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Detour: How do we learn a Causal Graph?

• Much of the recent work on causal
discovery with minimum interventions
uses “large” intervention sets.

• Moreover, such large interventions are
necessary [AKMM 2020].

• In practice, however large intervention 
sets are infeasible. 



15

Detour: How do we learn a Causal Graph?

• Much of the recent work on causal
discovery with minimum interventions
uses “large” intervention sets.

• Moreover, such large interventions are
necessary [AKMM 2020].

• In practice, however large intervention 
sets are infeasible. 

DietPhysical 
Activity

Body Mass 
IndexAlcohol

Economic 
Status

Incidence of 
Diabetes

E.g.: An simultaneous intervention
on “Diet”, “Physical Activity” and
“Alcohol” might be hard for the
individual.
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Here we only focus on atomic interventions
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Here we only focus on atomic interventions

Learning the exact causal DAG
not possible
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Here we only focus on atomic interventions

So what else can we learn?Learning the exact causal DAG
not possible
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Maximal Ancestral Graphs (MAGs)

• MAGs are a type of causal graphs which
encode higher order causal relations (such
as “paths”)

• MAGs encode the presence of latents using
bidirected edges

• We show that MAGs can be recovered
under atomic interventions

DAG 𝒟

MAG corresponding to the DAG 𝒟
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Directed edges 𝑎 → 𝑏 means: 
i. 𝑎 is an ancestor of 𝑏. 
ii. 𝑏 is not an ancestor of 𝑎. 
iii. This does not rule out possible latent confounding between 𝑎 and 𝑏. 

Bidirected edges as 𝑎 ↔ 𝑏 means:
i. 𝑎 is not an ancestor of 𝑏. 
ii. 𝑏 is not an ancestor of 𝑎.
iii. 𝑎 and 𝑏 are confounded.

Meaning of the Edges of a MAG
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Without latents (i.e., Causal Sufficiency)

MAG = DAG

Every DAG with latents can be transformed into an unique MAG 
over the observed variables [Richardson and Sprites, 2002]
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Maximal Ancestral Graphs (MAGs)

Long line of work investigating MAGs*:

- introduced by Richardson and Sprites in 2002
- at most one edge between each pair of vertices
- closed under marginalization and conditioning
- causal reasoning with MAGs well-understood [Zhang 2008]

- Markov equivalence class is represented by Partial Ancestral Graph (PAG)
- PAGs can be recovered from observational data

e.g., FCI algorithm [Sprites,Glymour,Scheines 2000] and variants

*Lots of other great results are skipped
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Revised Goal: To learn the MAGs of all the entities, 
assuming access to their individual data

Allow atomic interventional access on each entity

Objective is to minimize the maximum number of atomic 
interventions per entity
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We assume (some unknown) underlying clustering of 
entities based on their MAGs

Any two entities belonging 
to different clusters have 

”far apart” MAGs

Any two entities within 
the same cluster have 

”close by” MAGs

Here # entities N= 7
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- Letℳ" denote the MAG associated with entity 𝑖 ∈ [𝑁]
- Let 𝑛 denote the number of observables (same for all entities) 
- Distance 𝑑(ℳ",ℳ#) between two MAGs ℳ",ℳ# is the number of 

nodes with different neighborhoods

a

b

c

d

a

b

c

d

ℳ"
ℳ#

ℳ",ℳ# differ in the neighborhoods on 𝑎, 𝑐
⟹ 𝑑(ℳ",ℳ#) = 2

Model
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Defn. (𝛼, 𝛽)-clustering of the entities:
ℳ$,ℳ%, …ℳ& denote MAGs associated with the entities and belonging
to clusters 𝐶$∗, 𝐶%∗, … , 𝐶(∗. The entities satisfy 𝛼, 𝛽 -clustering property if
∀ 𝑖, 𝑗 ∈ [𝑁]:
• Entities 𝑖, 𝑗 in same cluster then, 𝑑 ℳ",ℳ# ≤ 𝛽𝑛
• Entities 𝑖, 𝑗 in different cluster then, 𝑑 ℳ",ℳ# ≥ 𝛼𝑛 (with 𝛽 < 𝛼)

- Letℳ" denote the MAG associated with entity 𝑖 ∈ [𝑁]
- Let 𝑛 denote the number of observables (same for all entities) 
- Distance 𝑑(ℳ",ℳ#) between two MAGs ℳ",ℳ# is the number of 

nodes with different neighborhoods

Model
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Defn. (𝛼, 𝛽)-clustering of the entities:
ℳ$,ℳ%, …ℳ& denote MAGs associated with the entities and belonging
to clusters 𝐶$∗, 𝐶%∗, … , 𝐶(∗. The entities satisfy 𝛼, 𝛽 -clustering property if
∀ 𝑖, 𝑗 ∈ [𝑁]:
• Entities 𝑖, 𝑗 in same cluster then, 𝑑 ℳ",ℳ# ≤ 𝛽𝑛
• Entities 𝑖, 𝑗 in different cluster then, 𝑑 ℳ",ℳ# ≥ 𝛼𝑛 (with 𝛽 < 𝛼 )

Quick Points:
- No restriction on 𝑘
- Any set of 𝑁 MAGs will be captured by this definition as 

i.e., we can put each entity in a different cluster
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MAGs with 𝛼 = 0.75, 𝛽 = 0.5 clustering 
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Our Theoretical Guarantees

• Let Δ be the maximum degree among all the MAGs.
• Assume min " ∈ ( |𝐶(∗| ≥ 𝑛 (min true cluster size)

Assumption Learning each 
MAG 

Independently

Our Collaborative Algorithms Lower Bound

(𝛼, 𝛽) Θ(𝑛) 𝑂 Δ/(α − β)! log 𝑁 ** Ω(1/𝛼)

(𝛼, 0) Θ(𝑛) min{𝑂(!
"
log 𝑁 + 𝑘#), 𝑂($

"
log 𝑁)} Ω(1/𝛼)

**: Requires additional assumptions

In the 𝛼, 0 case each cluster represents the same MAG
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dsd

Overview of Our Approach

Phase 1: Recover Cluster Memberships

Phase 2: Clusters to MAGs

Sample a small set of observable 
nodes and intervene on each of 

them for every entity

Make a partial 
construction of 

MAG

Using these partial 
MAGs recover cluster 

memberships

For each cluster, load 
balance the remaining 

interventions among all 
the entities in the cluster

Recover the MAG 
representing each cluster
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Phase 1: Learning the Clustering

Undirected skeleton (more generally Partial Ancestral Graph) is easy to obtain

1) Let 𝑉 denote the set of observable nodes
2) Sample 𝑆, a set of 𝑂 ;<= &

>
nodes from 𝑉 at random

3) For every entity 𝑖 ∈ [𝑁]
a) Intervene on the nodes in 𝑆 and their (undirected) neighbors
b) Construct a partial MAG for the entity 𝑖

4) Group entities with same partial MAG into the same cluster

Idea: if an undirected edge (𝑎, 𝑏) exists for the entity 𝑖:
i. If 𝑎 𝑏 | 𝑑𝑜(𝑎) then 𝑎 → 𝑏
ii. If  𝑎 𝑏 | 𝑑𝑜(𝑎) and 𝑎 𝑏 | 𝑑𝑜 𝑏 then 𝑎 ↔ b∥ ∥

∦
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Thm: Under (𝛼, 0) clustering assumption, with high probability, we 
can recover the exact cluster membership for all the entities with 

at most 𝑂(? log N> ) atomic interventions per entity.

1) Can remove the dependence on maximum degree Δ
2) Idea also extends to the more general 𝛼, 𝛽 -clustering
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A Word about the Lower Bound

We show that Ω(1/𝛼) interventions per entity are needed

We construct a distribution 𝜇 over MAGs and show that every
(deterministic) algorithm requires requires Ω(1/𝛼) interventions for
distinguishing a pair of MAGs drawn from µ.

Yao’s minimax theorem [Yao 1977]

Worst case lower bound for any randomized algorithm
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Experimental Evaluation

Causal Network Our Algorithm
(Accuracy)

# interventions per 
entity

Earthquake (n=5) 100% 3
Survey (n=6) 89% 4
Asia (n=8) 89% 4
Sachs (n=11) 79% 5
Erdős–Rényi (n=10) 100% 5

Recovering cluster membership under 𝛼, 0 -clustering
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Conclusion
• We introduce a new causal discovery model to capture practical

scenarios involving multiple causal graphs.

• Under natural clustering assumption(s), we showed that the graphs
can be learnt with far fewer interventions

Open Directions

• Develop non-adaptive algorithms that can be run in parallel
• Using interventional equivalence classes [Kocaoglu et al. 2019, Jaber et al.

2020].

Thanks for your attention!


