Active Invariant Causal Prediction: Experiment Selection Through Stability

Christina Heinze-Deml

Apple Health Al Work done while at Seminar for Statistics, ETH Zurich

Joint work with Juan L. Gamella

Juan L. Gamella

Causal structure learning

Setting

	Y	X_1	X_2	Х_З	X_4
i=0	6.51	22.76	12.92	2.37	1.68
i=1	6.06	13.75	7.90	1.13	0.94
i=2	1.35	8.03	3.32	0.96	-0.15
1=3 i=4	0.06	-1.49 -3.64	-0.14 -1.27	-0.22	0.04
i=5	-2.31	-11.15	-6.59	-1.76	-1.14
i=6	2.29	8.70	4.70	1.05	-1.24
i=7	0.98	1.23	0.87	0.37	0.76
i=8	5.22	19.16	10.54	2.20	-0.23
i=9	4.26	13.82	9.51	1.18	0.93
i=10	-0.60	-1.35	-1.40	-0.21	-0.05
i=11	-0.91	-3.50	-2.65	-0.45	-1.32
i=12	2.08	5.26	4.04	0.55	0.51
i=13	4.30	11.81	6.70	1.05	0.08
i=14	1.37	7.35	4.17	0.84	-1.56
i=					

 $S^* = \text{parents}(Y) = \{X_2, X_3\}$

Goal: Infer causal parents of target variable Y

Causal models generalize

Invariant models are potentially causal

Causal models generalize

Invariant models are potentially causal

Peters et al. (2016)

Key observation As long as we avoid interventions on the response *Y* itself, for all environments $e, f \in \mathcal{E}$ and for all *x* $Y^{e} \begin{vmatrix} X_{S^{*}}^{e} = x & \stackrel{d}{=} & Y^{f} \begin{vmatrix} X_{S^{*}}^{f} = x \\ & \downarrow \\ S^{*} are the causal parents of Y \end{vmatrix}$

Other sets of predictor variables may also satisfy this invariance!

Invariant models are potentially causal

Definition We call a set of variables *S* invariant under a set of environments \mathcal{E} if for all $e, f \in \mathcal{E}$ and for all x

$$Y^{e} \left| X_{S}^{e} = x \right|^{d} = Y^{f} \left| X_{S}^{f} = x \right|^{d}$$

Definition We call a set of variables *S* invariant under a set of environments *E* if for all *e*, *f* \in *E* and for all *x* $Y^e \left| X_S^e = x \right| \stackrel{d}{=} Y^f \left| X_S^f = x \right|$

Invariant Causal Prediction:

1. Given data from different environment, find **all** invariant sets

2. Return **intersection** of these:

 $\hat{S} \coloneqq \cap_{S:\text{invariant}} S$

Disclaimer: Some simplifications in this talk...

Peters et al. (2016). Causal inference using invariant prediction: identification and confidence intervals

Definition We call a set of variables *S* invariant under a set of environments *E* if for all *e*, *f* \in *E* and for all *x*

$$Y^{e} \left| X_{S}^{e} = x \right|^{d} = Y^{f} \left| X_{S}^{f} = x \right|^{d}$$

Invariant Causal Prediction:

1. Given data from different environment, find **all** invariant sets

2. Return **intersection** of these:

$$\hat{S} \coloneqq \cap_{S:\text{invariant}} S$$

Assumptions

- Acyclicity
- No hidden confounders
- No interventions on Y

Peters et al. (2016). Causal inference using invariant prediction: identification and confidence intervals

Definition We call a set of variables *S* invariant under a set of environments *E* if for all *e*, *f* \in *E* and for all *x* $Y^e \left| X_S^e = x \right| \stackrel{d}{=} Y^f \left| X_S^f = x \right|$

Invariant Causal Prediction:

1. Given data from different environment, find **all** invariant sets

Peters et al. (2016); Heinze-Deml et al. (2018); Pfister et al. (2019)

2. Return intersection of these:

$$\hat{S} \coloneqq \cap_{S:\text{invariant}} S$$

Definition We call a set of variables *S* invariant under a set of environments \mathcal{E} if for all $e, f \in \mathcal{E}$ and for all x $Y^{e} \begin{vmatrix} X_{S}^{e} = x & \stackrel{d}{=} & Y^{f} \end{vmatrix} X_{S}^{f} = x$

Invariant Causal Prediction:

1. Given data from different environment, find **all** invariant sets

Based on testing null hypothesis of "invariance across environments" $H_{0,S}$ for all S

2. Return intersection of these:

$$\hat{S} \coloneqq \cap_{S: H_{0,S} \text{ not rejected }} S$$

Definition We call a set of variables *S* invariant under a set of environments \mathcal{E} if for all $e, f \in \mathcal{E}$ and for all x

$$Y^{e} \left| X_{S}^{e} = x \right|^{d} = Y^{f} \left| X_{S}^{f} = x \right|^{d}$$

Invariant Causal Prediction:

Guarantee:

$$P(\hat{S} \subseteq S^*) \ge P(H_{0,S^*} \text{ not rejected}) \ge 1 - \alpha$$

$$\boxed{\qquad}$$
Null hypothesis for testing invariance of the true causal parents S*

Peters et al. (2016). Causal inference using invariant prediction: identification and confidence intervals

Definition We call a set of variables *S* invariant under a set of environments \mathcal{E} if for all $e, f \in \mathcal{E}$ and for all x $Y^{e} \begin{vmatrix} X_{S}^{e} = x \end{vmatrix} \stackrel{d}{=} Y^{f} \begin{vmatrix} X_{S}^{f} = x \end{vmatrix}$

Invariant Causal Prediction:

1. Given data from different environment, find all invariant sets

Focus of this talk!

2. Return **intersection** of these:

$$\hat{S} \coloneqq \cap_{S: H_{0,S} \text{ not rejected }} S$$

Invariant Causal Prediction (ICP) Applications

• Gene perturbation experiments for yeast

- Data: Kemmeren et al. (2014)
- Application of ICP: Meinshausen et al. (2016)
- Environments: wild-type vs. gene deletions
- Fertility rate modeling
 - Data: UN World population prospects (2013)
 - Application of nonlinear ICP: Heinze-Deml et al. (2018)
 - Environments: Different continents
- Protein-signaling network estimation
 - Flow cytometry data: Sachs et al. (2005)
 - Application of ICP: Meinshausen et al. (2016)
 - Environments: Different experimental conditions

Definition We call a set of variables *S* invariant under a set of environments \mathcal{E} if for all $e, f \in \mathcal{E}$ and for all x $Y^{e} \begin{vmatrix} X_{S}^{e} = x \end{vmatrix} \stackrel{d}{=} Y^{f} \begin{vmatrix} X_{S}^{f} = x \end{vmatrix}$

Invariant Causal Prediction:

1. Given data from different environment, find all invariant sets

Focus of this talk!

2. Return **intersection** of these:

$$\hat{S} \coloneqq \cap_{S: H_{0,S} \text{ not rejected }} S$$

Active causal learning Setting

Definition Learning a causal model while being able to actively perform interventions

experiments

ICP: 1. Find all invariant sets; 2. Return intersection of these

estimate for causal parents

*Invariant sets: Ø, $\{X_0\}$, $\{X_1\}$, $\{X_3\}$, $\{X_4\}$, $\{X_0, X_1\}$, $\{X_0, X_3\}$, $\{X_0, X_4\}$, $\{X_1, X_3\}$, $\{X_1, X_4\}$, $\{X_3, X_4\}$, $\{X_0, X_1, X_3\}$, $\{X_0, X_1, X_4\}$, $\{X_1, X_3, X_4\}$, $\{X_0, X_3, X_4\}$, $\{X_0, X_1, X_3, X_4\}$

ICP: 1. Find all invariant sets; 2. Return intersection of these

^{*}Invariant sets: \emptyset , $\{X_0\}$, $\{X_1\}$, $\{X_3\}$, $\{X_0, X_1\}$, $\{X_0, X_3\}$, $\{X_1, X_3\}$, $\{X_0, X_1, X_3\}$

estimate for causal parents

*Invariant sets: \emptyset , $\{X_0\}$, $\{X_1\}$, $\{X_3\}$, $\{X_0, X_1\}$, $\{X_0, X_3\}$, $\{X_1, X_3\}$, $\{X_0, X_1, X_3\}$

Example

estimate for causal parents

*Invariant sets: $\emptyset, \{X_0\}, \{X_3\}, \{X_0, X_3\}$

Example

*Invariant sets: $\{X_0\}, \{X_0, X_3\}$

Example

ICP: 1. Find all invariant sets; 2. Return intersection of these

Did we need all these environments?

ICP: 1. Find all invariant sets; 2. Return intersection of these

estimate for causal parents

*Invariant sets: Ø, $\{X_0\}$, $\{X_1\}$, $\{X_3\}$, $\{X_4\}$, $\{X_0, X_1\}$, $\{X_0, X_3\}$, $\{X_0, X_4\}$, $\{X_1, X_3\}$, $\{X_1, X_4\}$, $\{X_3, X_4\}$, $\{X_0, X_1, X_3\}$, $\{X_0, X_1, X_4\}$, $\{X_1, X_3, X_4\}$, $\{X_0, X_3, X_4\}$, $\{X_0, X_1, X_3, X_4\}$

Heterogeneity plays a key role

*Invariant sets: $\{X_0\}, \{X_0, X_1\}, \{X_0, X_3\}, \{X_0, X_4\}, \{X_0, X_1, X_3\}, \{X_0, X_1, X_4\}, \{X_0, X_3, X_4\}, \{X_0, X_1, X_3, X_4\}$

Heterogeneity plays a key role

Some environments are more informative than others!

Active causal learning Setting

Definition Learning a causal model while being able to actively perform interventions

experiments

Active causal learning Setting

Definition Learning a causal model while being able to actively perform interventions

experiments

How do you select informative experiments?

Active causal learning

Informative intervention

Definition Learning a causal model while being able to actively perform interventions

experiments

Informative intervention: The one after which the largest number of parents appear in the estimate

Active causal learning

Informative intervention

Lemma If a parent is directly intervened on, then it appears on all invariant sets

Treat direct interventions on parents as maximally informative

Intervention selection strategies

Some proposals

- Key idea: After each experiment observe how the invariant sets change
- Collection of invariant sets has properties one can exploit for experiment selection:

Proposition Parents appear on at least half of all invariant sets

Ratio strategy: Do not intervene on variables that appear less often

Lemma If the marginal distribution of Y is invariant under a set of environments, then none of the interventions were performed upstream of the response

Empty-set strategy: If after an intervention the marginal distribution of *Y* is invariant, discard the intervention target from future interventions

Intervention selection strategies

Some proposals

Ratio strategy Do not intervene on variables that appear on less than half of the invariant sets

Empty-set strategy If after an intervention the marginal distribution of Y is invariant, discard the intervention target from future interventions

Markov strategy Picking intervention targets from within the Markov blanket

Policy A combination of the above strategies

Experiments

Simulations

Experiments

Comparison with Bayesian approach ABCD

Agrawal et al. (2019). ABCD-Strategy: Budgeted Experimental Design for Targeted Causal Structure Discovery

Active Invariant Causal Prediction

Summary

- Causal models are invariant and generalize
- Invariant models (wrt. some observed environments) are potentially causal
- Heterogeneity plays a key role in Invariant Causal Prediction
- Some environments are more informative than others
- In A-ICP, we collect informative new environments by observing which models are invariant given current environments
- This may help to find the causal model more quickly

Active Invariant Causal Prediction

Discussion

- ICP does not require knowledge of intervention locations
 - Robust to off-target effects (not acting on Y)
 - Can combine existing environments with unknown intervention targets with actively collected environments
 - But we also discard information we have for the actively collected environments – potential to improve A-ICP

Thank you!

Some references

J. L. Gamella and C. Heinze-Deml. Active Invariant Causal Prediction: Experiment Selection through Stability. NeurIPS 2020

C. Heinze-Deml, J. Peters and N. Meinshausen. *Invariant Causal Prediction for Nonlinear Models. Journal of Causal Inference 6 (2), 2018*

J. Peters, P. Bühlmann and N. Meinshausen. *Causal inference using invariant prediction: identification and confidence intervals. Journal of the Royal Statistical Society: Series B* 78, 947-1012, 2016

N. Pfister, E. Williams, R. Aebersold, P. Bühlmann. *Stabilizing Variable Selection and Regression. Annals of Applied Statistics*, 15(3):1220-1246, 2021