Algorithmic Fairness from the lens of Causality and Information Theory

Sanghamitra Dutta

Workshop on Algorithmic Aspects of Causal Inference
Simons Institute

Motivation: Machine Learning in High-Stakes Applications

HIRING

EDUCATION

LENDING

HEALTHCARE

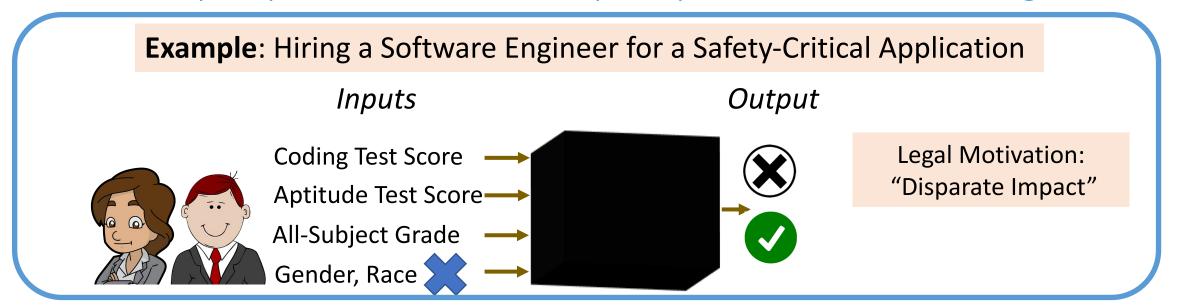
Motivation: Machine Learning in High-Stakes Applications

Amazon scraps a secret A.I. recruiting tool that showed bias against women

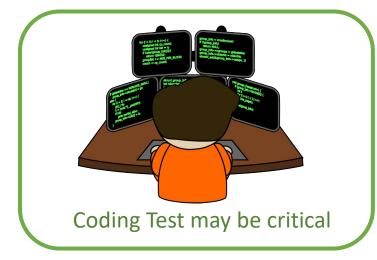
Facebook settles lawsuits alleging discriminatory ads

How to identify/explain the sources of disparity in machine learning models?

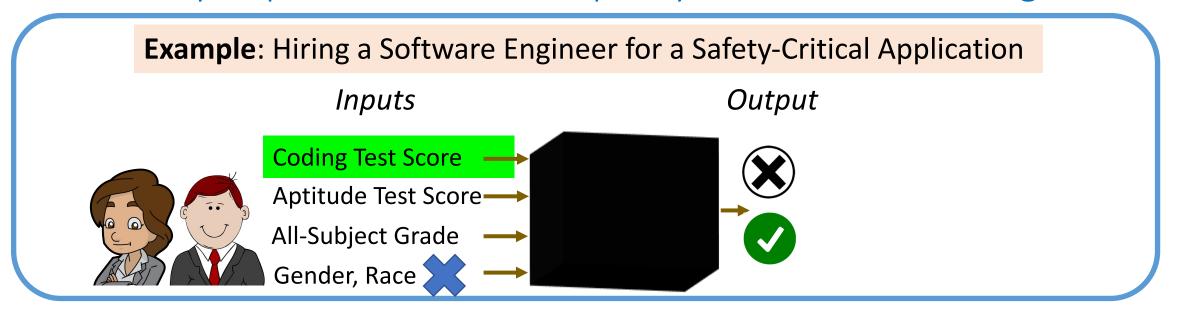
How to identify/explain sources of disparity in machine learning models?



Title VII of Civil Rights Act: Disparate impact may be exempt if justified by "occupational necessity"



How to identify/explain sources of disparity in machine learning models?



Q: Given a choice of critical features, how do we say if the disparity is **exempt** or **non-exempt**?

Main Contribution:

A <u>systematic</u> measure of **non-exempt disparity**: bias not justified by critical features [**Dutta**, Venkatesh, Mardziel, Datta, Grover, AAAI'20; IEEE Trans. Information Theory'21]

Algorithmic Fairness: A Growing Field of Research

Observational measures:

Statistical parity [Agarwal et al.'18] [Calmon et al.'17]

Equalized odds [Hardt et al.'17][Angwin et al.'16]

Predictive Parity [Dieterich et al.'16][Chouldechova'16]

Proxy-Use [Datta et al.'17] [Yeom et al.'18]

Disparate Impact [Feldman et al.'15]

Subgroup/Conditional Fairness [Kearns et al.'17][Corbett-Davis et al.'17][Kamiran et al.'12]

Causal measures: [Kusner et al.'17][Kilbertus et al.'17][Coston et al. '20][Zhang et al.'18][Nabi et al.'18]

Individual Fairness: [Dwork et al.'12]

Broad Perspective on Fairness: [Barocas & Hardt'17][Chouldechova & Roth'20][Varshney'19]

Other Related Works: [Galhotra et al.'20][Lipton et al.'17][Zafar et al.'17][Zemel et al.'13][Kamishima et al.'12] [Corbett-Davies et al.'17][Kamiran et al.'12][Salimi et al.'19] and many others

Quantify **non-exempt disparity** using "Partial Information Decomposition" + Causality

Outline

How to identify/explain the sources of disparity in machine learning models?

Find a measure of non-exempt disparity

[AAAI 2020; IEEE Trans. Info Theory 2021]

Beyond Fairness: Application to Social Media & Filter Bubbles [BIAS@ECIR 2021]

Perspectives on Accuracy-Fairness Tradeoffs

[ICML 2020] [NeurIPS 2021]

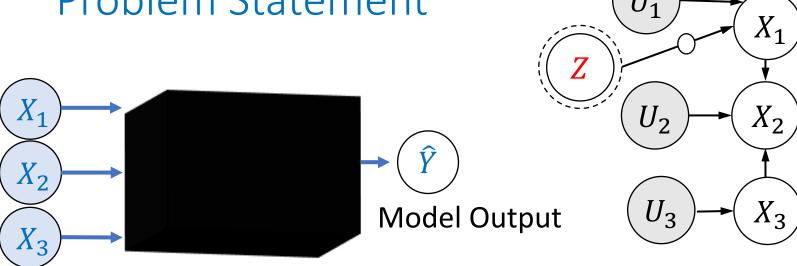
Connections with Explainability
[Workshop@AAAI 2022]

Z: Protected Attribute, e.g., Gender, Race, etc.

Critical Features $X_c = X_1$

Non-Critical/General Features: $X_g = (X_2, X_3)$

Problem Statement



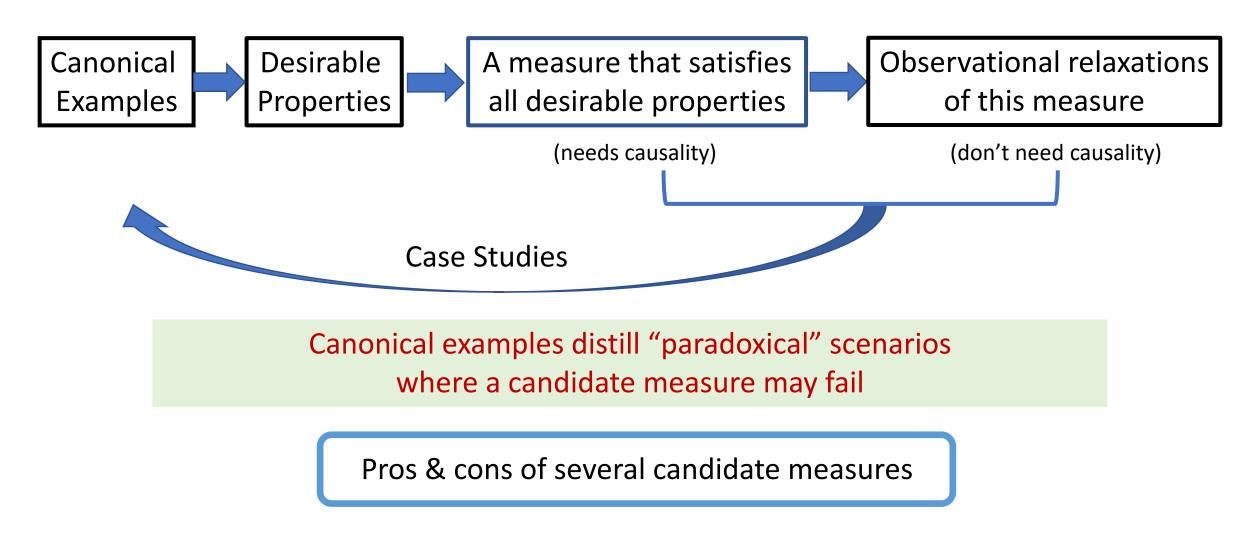
Given a choice of critical features X_c , what is a good measure of **non-exempt disparity** (M): bias that cannot be justified by critical features X_c ?

Auditing: Compute Mon trained models

non-exempt disparity

What is a good measure of **non-exempt disparity** (M)?

An axiomatic approach to arrive at a measure of non-exempt disparity



Popular Definitions: Statistical Parity and Equalized Odds & Their Pros and Cons

Popular Definition: Statistical Parity

$$\Pr(\hat{Y} = y | Z = 0) = \Pr(\hat{Y} = y | Z = 1)$$

Z: Gender (0/1), \hat{Y} : Model Output (\checkmark / \checkmark)



$$Pr(\hat{Y} = \checkmark) = 1/2$$
 $Pr(\hat{Y} = \checkmark) = 1/2$

Model is fair if \hat{Y} is INDEPENDENT of Z

Information-theoretic measure of statistical <u>dis</u>parity: $M = I(Z; \hat{Y})$

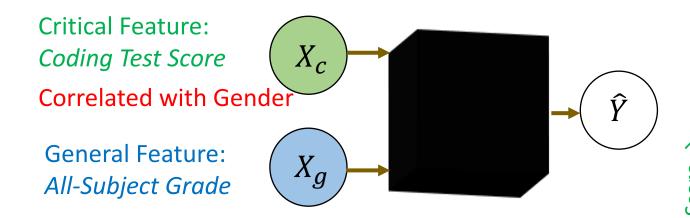
$$I(\mathbf{Z}; \hat{Y}) = \sum_{z,y} p(z,y) \log \frac{p(z,y)}{p(z)p(y)}$$
$$= D_{KL} \left(p_{(Z,\hat{Y})} || p_Z p_{\hat{Y}} \right)$$

Statistical Dependency

Criticism: Statistical Parity may disregard critical necessities

Accept applicants who may not meet critical necessities

Software Engineer for a Safety-Critical Application



Model may significantly reduce emphasis on critical feature *Coding Test Score*

with Gender Soding Test Score Correlated All-Subject Grade →

Popular Definition: Equalized Odds

$$\Pr(\hat{Y} = y | Z = 0, Y = y') = \Pr(\hat{Y} = y | Z = 1, Y = y')$$

Z: Gender (0/1), \hat{Y} : Model Output (\checkmark /X), Y: True Labels (\checkmark /X)

Model is fair if

 \widehat{Y} is INDEPENDENT of Z conditioned on Y (True Labels)

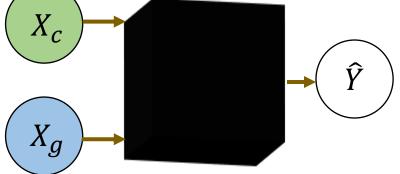
Perfect classifier $\hat{Y} = Y$ satisfies Equalized Odds

Criticism: Equalized Odds regards past labels as infallible

Agreement with historic labels propagates bias (even for perfect classifiers that satisfy equalized odds)

Software Engineer for a Safety-Critical Application

Critical Feature: Coding Test Score



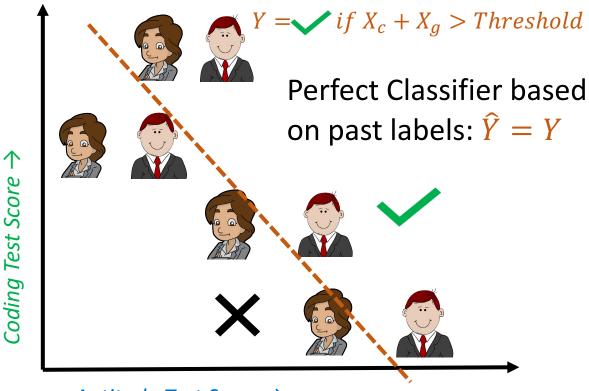
General Feature: *Aptitude Test Score*

Correlated with Gender

Even a perfect classifier $\hat{Y} = Y$ may be illegal:

Aptitude Test Score not critical

E.g.,[Griggs v. Duke Power Co. '71]

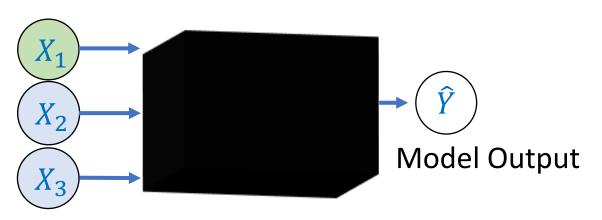


Aptitude Test Score →

Correlated with Gender

Middle Ground between Statistical Parity and Equalized Odds using Domain Knowledge

Non-Critical/General Features: $X_q = (X_2, X_3)$

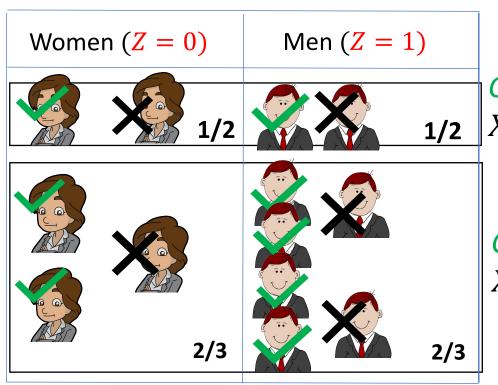


What is a good measure of non-exempt disparity (M)?

Candidate Measure 1: Conditional Dependence $\mathbf{M} = I(Z; \widehat{Y} | X_c)$

$$\Pr(\hat{Y} = y | Z = 0, X_c = x_c) = \Pr(\hat{Y} = y | Z = 1, X_c = x_c)$$

Z: Gender (0/1), \hat{Y} : Model Output (\checkmark / \checkmark)



Coding Test Score

$$X_c = 1$$

Model is fair if \hat{Y} is INDEPENDENT of Z conditioned on X_C

Coding Test Score

$$X_c = 2$$

Our information-theoretic measure:

$$M = I(\mathbf{Z}; \hat{Y} | X_c)$$

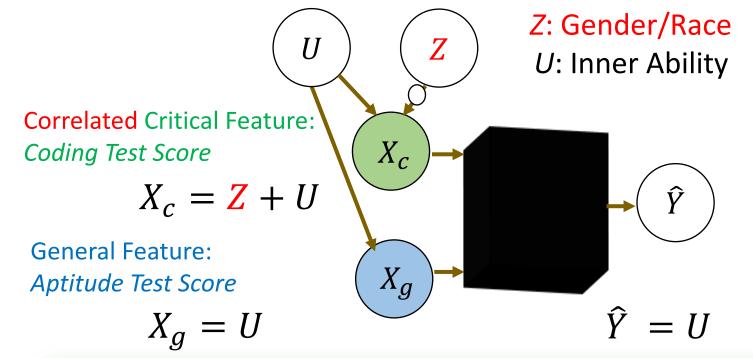
$$Pr(\hat{Y} = \checkmark) = 3/5 \quad Pr(\hat{Y} = \checkmark) = 5/8$$

Our Key Observation:

Conditional Dependence can sometimes falsely detect bias (misleading dependencies) even when a model is "causally" fair

Conditional Dependence can sometimes falsely detect bias (misleading dependencies) even when a model is "causally" fair

Example: Causally fair model



Causally fair: \hat{Y} doesn't vary with Z after fixing inner ability U

$$Z \perp \hat{Y} | X_c$$

$$M = I(Z; \hat{Y} | X_c) > 0$$
(falsely detects bias)

$$Pr(\hat{Y} = y | \mathbf{Z} = \mathbf{0}, X_c = x_c)$$

$$\neq Pr(\hat{Y} = y | \mathbf{Z} = \mathbf{1}, X_c = x_c)$$

Desirable Property 1:

A measure of non-exempt disparity M should be 0 if model is "causally" fair

Conditional Mutual Information does not satisfy our "causal fairness" property

Conditional Mutual Information decomposes as:

Unique Information + Synergistic Information

satisfies our "causal fairness" property & some others

Candidate Measure 2: Unique Information $\mathbf{M} = Uniq(Z: \hat{Y} | X_c)$

Critical Feature: $X_c = Z + U$

Output: $\hat{Y} = U$

Output \hat{Y} has no information about gender Z

Critical Feature: $X_c = U$

Output: $\hat{Y} = Z + U$

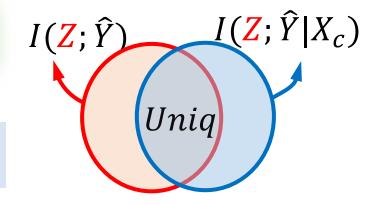
Output \widehat{Y} has some information about gender Z not in critical feature X_c

Z: Gender, RaceU: Inner Ability

 $I(Z; \hat{Y}|X_c)$ is same for both these examples

Desirable Property 2: Distinguish between these two cases

$$Uniq(Z: \widehat{Y}|X_c) = \min_{Q(Z,\widehat{Y},\widetilde{X_c})} I(Z; \widehat{Y}|\widetilde{X_c}) \text{ s.t. } Q(Z,\widetilde{X_c}) = P(Z,X_c)$$



 $Uniq(Z: \hat{Y}|X_c)$ satisfies Property 1 (causal fairness) & Property 2

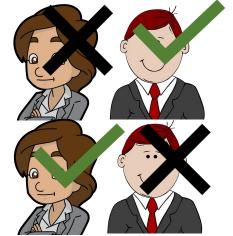
More nuanced issue that $Uniq(Z: \hat{Y}|X_c)$ does not address: "Masking"

Example: Masking in Hiring ADs

Inner Ability

$$U = 1$$

U = 0

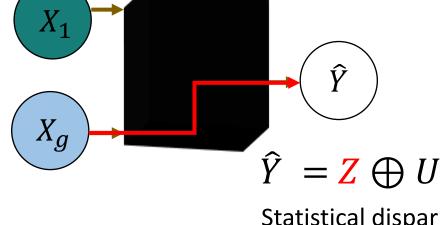


Critical/General Feature:

$$X_1 = U$$

Correlated General Feature:

$$X_q = \mathbf{Z}$$



Statistical disparity $I(Z; \hat{Y}) = 0$ But not causally fair

Desirable Property 3: M should be non-zero in this example, detecting masking

One causal measure that satisfies all desirable properties

Theorem: Our proposed measure of non-exempt disparity, given by,

$$M^* = \min_{U_a} Uniq \left((U_a, Z): (\widehat{Y}, U_b) | X_c \right)$$

satisfies our six desirable properties. Here U is the set of all latent random variables and $U_a = U \setminus U_b$.

Property of Causal Fairness

Property of Complete Exemption if $X_c = X$

Property of Non-Exempt Visible Disparity

Property of Monotonicity with X_c

Property of Non-Exempt Masked Disparity

Property of Zero Exemption if $X_c = \phi$

CAUSAL than CASUAL

- Benchmark for observational measures (pros/cons)
- Observational $Uniq(Z: \hat{Y}|X_c)$ is good enough except for masking

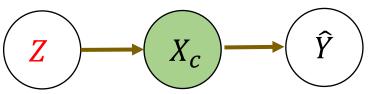
$$\underbrace{Uniq(Z: \hat{Y}|X_c)}_{U_a} \leq \min_{U_a} Uniq\left((U_a, Z): (\hat{Y}, U_b)|X_c\right) \text{ for any set } U_a = U \setminus U_b$$
 "Masked"

Some intuition on our proposed measure from causality

Is non-exempt disparity M=0 if all causal paths from Z to \hat{Y} pass through X_c ?

Example: Disparity Amplification

Z: Gender/Race U: Inner Ability **Correlated Critical Feature:**



Gender, Critical Feature Output Race, etc

 $X_c = \mathbf{Z} + U$

Coding Test Score

General Feature: Aptitude Test Score

$$X_g = U$$

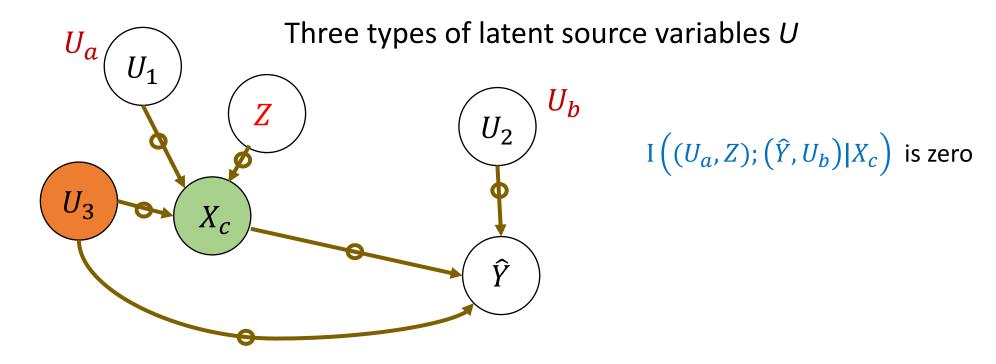
Seemingly less-biased features mix to produce heavily-biased output \hat{Y}

All causal paths from Z to \hat{Y} pass through X_c

But U has confounding effects on X_c and \widehat{Y}

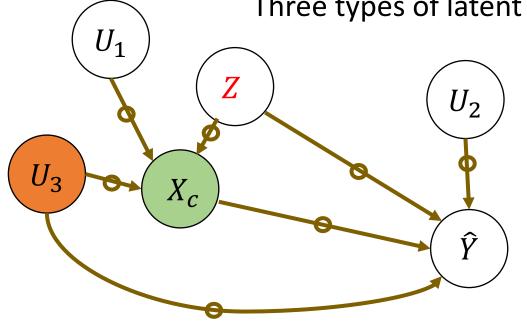
Some intuition on our proposed measure from causality

Is non-exempt disparity M=0 if all causal paths from Z to \hat{Y} pass through X_c ?



Some intuition on our proposed measure from causality

More generally



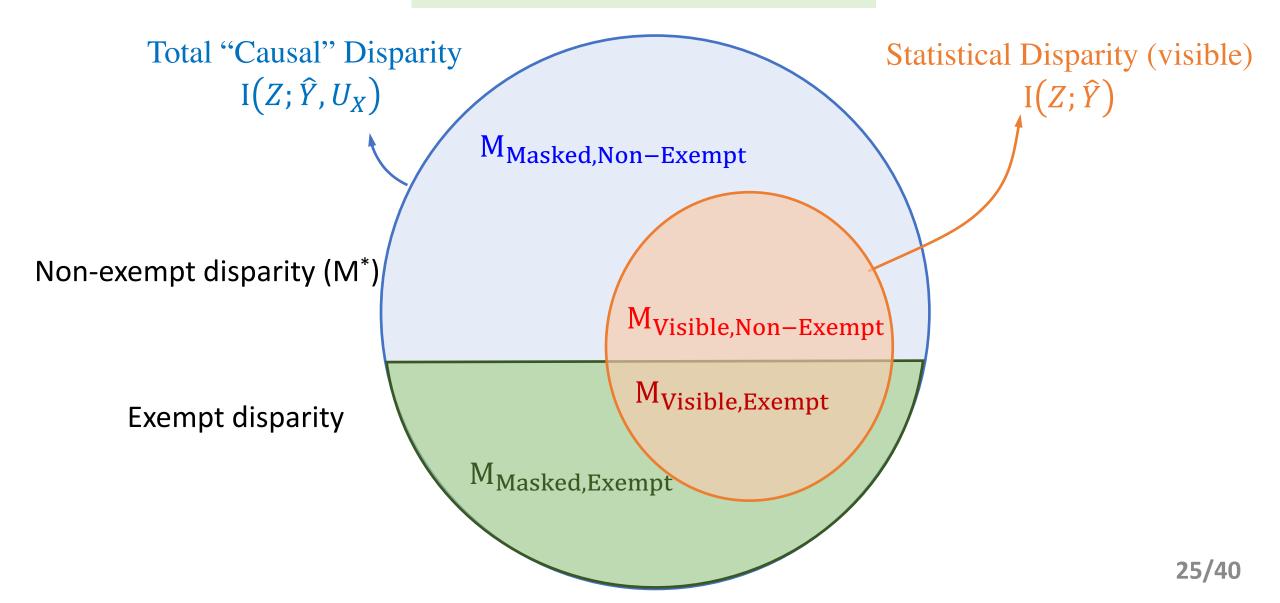
$$I\left((U_a,Z);(\widehat{Y},U_b)|X_c\right)$$
 may non-zero for all partitions $U_a=U\backslash U_b$

Non-exempt disparity or Misleading dependencies?

$$\min_{U_a} Uniq\left((U_a,Z): (\widehat{Y},U_b)|X_c\right) \leq \min_{U_a} I\left((U_a,Z); (\widehat{Y},U_b)|X_c\right)$$
Proposed Measure for any set $U_a = U \setminus U_b$

Non-negative decomposition of total "causal" disparity

Theorem 2 (pictorially illustrated)



Observational measures of non-exempt disparity

Theorem: No purely observational measure of non-exempt disparity can satisfy all six desirable properties.

With partial knowledge/assumption about the causal relationships, they may correctly quantify non-exempt disparity

Candidate 1:

 $\mathsf{M} = I(\mathbf{Z}; \widehat{Y} | X_c)$

Candidate 2:

 $M = Uniq(\mathbf{Z}: \widehat{Y}|X_c)$

Candidate 3:

$$\mathsf{M} = I(\mathbf{Z}; \widehat{Y} | X_c, X')$$

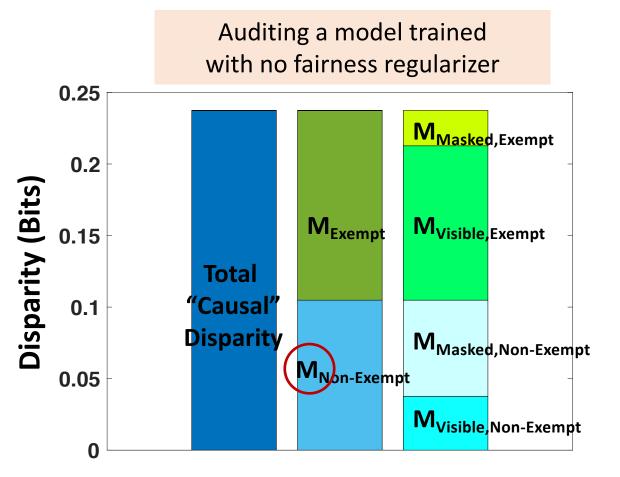
Case Studies: Artificial Data & Real Data

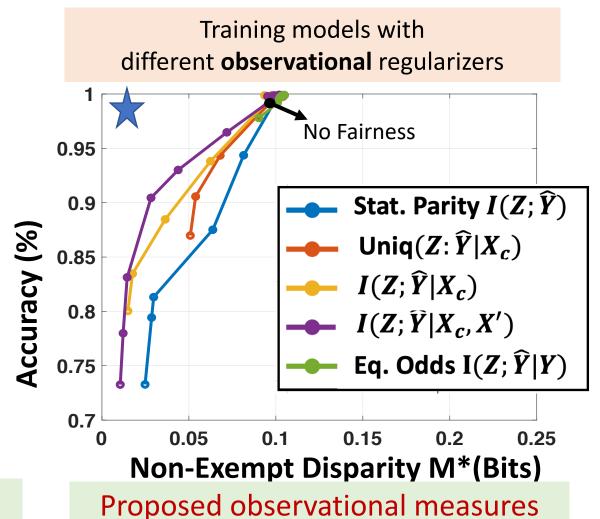
Auditing: Compute causal/observational measures on pre-trained models

Training:
$$\min_{h(.)} \operatorname{Loss}(Y, \widehat{Y}) + \lambda \operatorname{M}_{\text{non-exempt disparity}}$$
 (Observational)

Simulation: Four types of disparities present

Critical (Writing Sample: $\mathbb{Z} + U_1$), General (Browsing History: $\mathbb{Z} + U_2$, Proximity: U_3) Historic True Labels based on equally weighted combination of these features

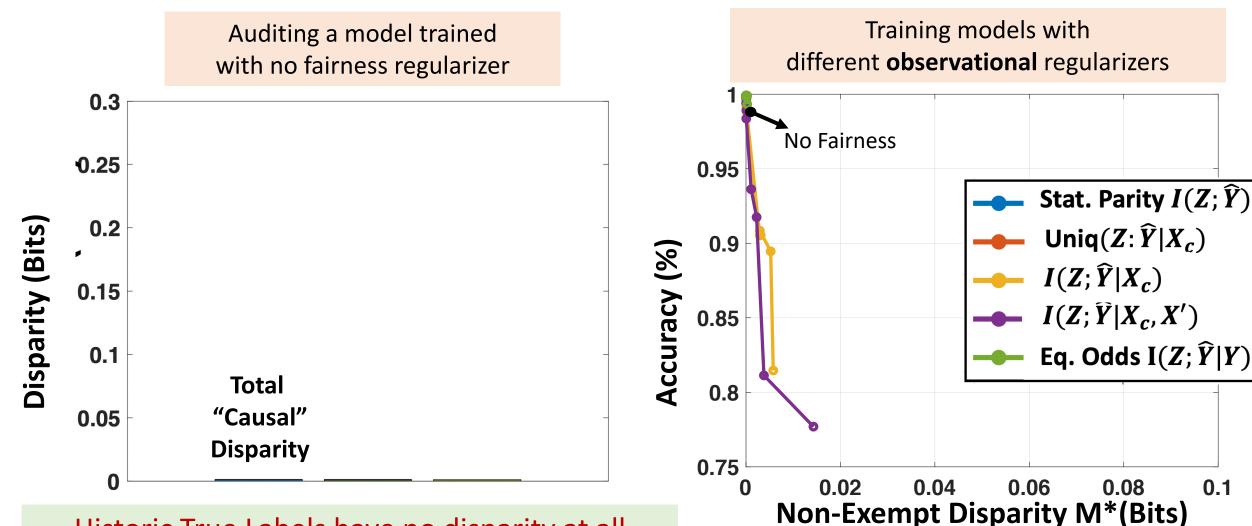




attain better tradeoff

28/40

Simulation: No "causal" disparity



Historic True Labels have no disparity at alloutput with no fairness has negligible disparity

Conditioning falsely detects disparity 29/40

Simulation: Masked, non-exempt disparity 0.3 $I(Z; \hat{Y}|X_c)$ and No Fairness 0.25 0.95 $I(Z; \hat{Y}|X_C, X')$ detect (Bits) 0.2 non-exempt disparity 0.9 M_{Masked},Non-Exempt Accuracy Stat. Parity $I(Z; \widehat{Y})$ **Disparity** 0.15 Total M_{Non-Exempt} 0.85 Uniq $(Z:\widehat{Y}|X_c)$ 0.1 $I(Z; \widehat{Y}|X_c)$ "Causal" $I(Z; \widehat{Y}|X_c, X')$ 0.8 Disparity 0.05 Eq. Odds $I(Z; \widehat{Y}|Y)$ 0.75 0.3 0.05 0.1 0.15 0.2 0.25 0.3 Only $I(Z; \hat{Y}|X_c, X')$ No Fairness 0.25 Accuracy (%) detects non-exempt 0.2 disparity Stat. Parity $I(Z; \widehat{Y})$ **Disparity** Uniq $(Z:\widehat{Y}|X_c)$ 0.15 M_{Masked},Non-Exempt $I(Z; \widehat{Y}|X_c)$ M_{Non-Ex}empt Total $I(Z; \widehat{Y}|X_c, X')$ 0.1 "Causal" Eq. Odds $I(Z; \widehat{Y}|Y)$ Disparity 0.05 0.75

0.15

0.2

0.25

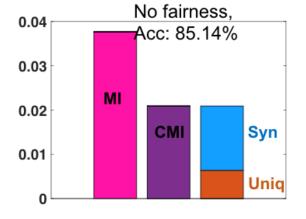
Non-Exempt Disparity M*(Bits)

0.3

0.35

0.1

Experiment on real data: Causal relationships are not known

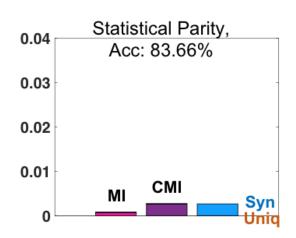


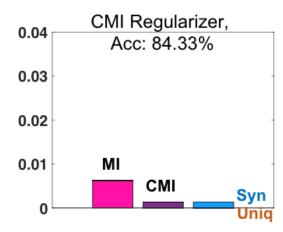
 $MI: I(Z; \hat{Y})$

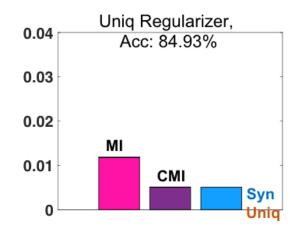
CMI: $I(Z; \hat{Y}|X_c)$

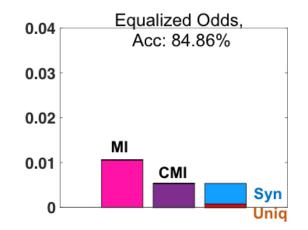
Uniq: $Uniq(Z; \hat{Y}|X_c)$

Syn: CMI-Uniq





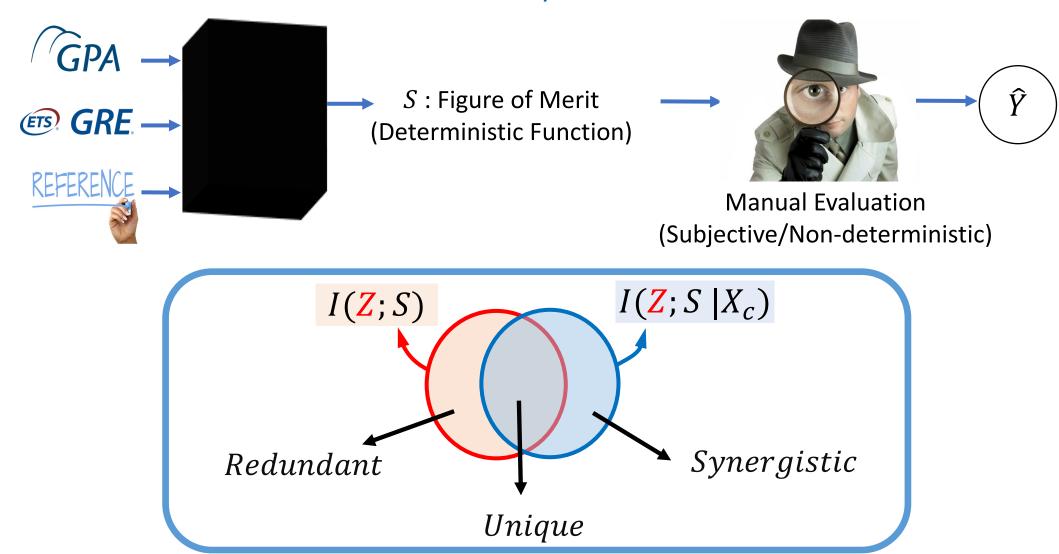




Experiments on Adult Dataset:

Observational relaxations can be used for auditing or training

Experiments on CMU ECE Graduate Admissions Dataset as part of ECE Diversity Committee



A summary of our contributions before we move on ...

- Systematic approach to find a measure of non-exempt disparity
 - Causality + Partial-Information-Decomposition-based measure
 - Observational relaxations
- Conditional Mutual Information $I(Z; \hat{Y}|X_c)$
 - Can falsely detect disparity even if causally fair
- Unique Information $Uniq(Z: \hat{Y}|X_c)$
 - Doesn't falsely detect disparity but can miss masking
- Preliminary analysis on real data
 - Future Work: Improved Estimators

Broader conversations that this work opens:

- Interpretation/reform of laws for algorithmic hiring
- Essential to collaborate with lawyers/social scientists/minorities

Outline

How to identify/explain the sources of disparity in machine learning models?

Find a measure of non-exempt disparity

[AAAI 2020; IEEE Trans. Info Theory 2021]

Beyond Fairness: Application to Social Media & Filter Bubbles [BIAS@ECIR 2021]

Perspectives on Accuracy-Fairness Tradeoffs

[ICML 2020] [NeurIPS 2021]

Connections with Explainability
[Workshop@AAAI 2022]

Beyond Fairness: Application to Social Media & Filter Bubbles

Can we debias *Filter Bubbles* in social media?

[Wu, Jiang, **Dutta**, Grover, BIAS@ECIR'21]

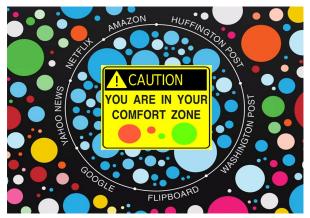
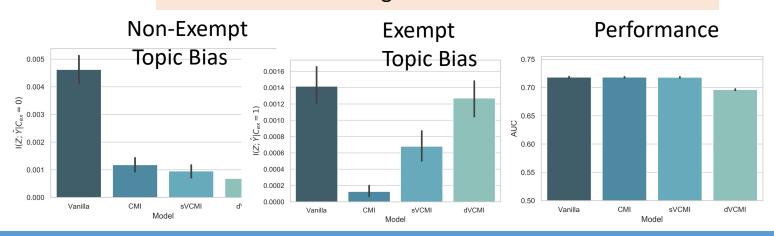


Fig. & Definition: [Pariser'11]

Case Study +
Creation of a new Dataset

Experiments on Artificial Dataset created from Twitter
News Sharing User Behavior Dataset



Is there a Tradeoff between Accuracy and Fairness?

Main Contribution:

Quantify Information-Theoretic Limits + Explain They Exist/Don't Exist

[Dutta, Wei, Yueksel, Chen, Liu, Varshney, ICML 2020]

Key Tool: Chernoff Exponents

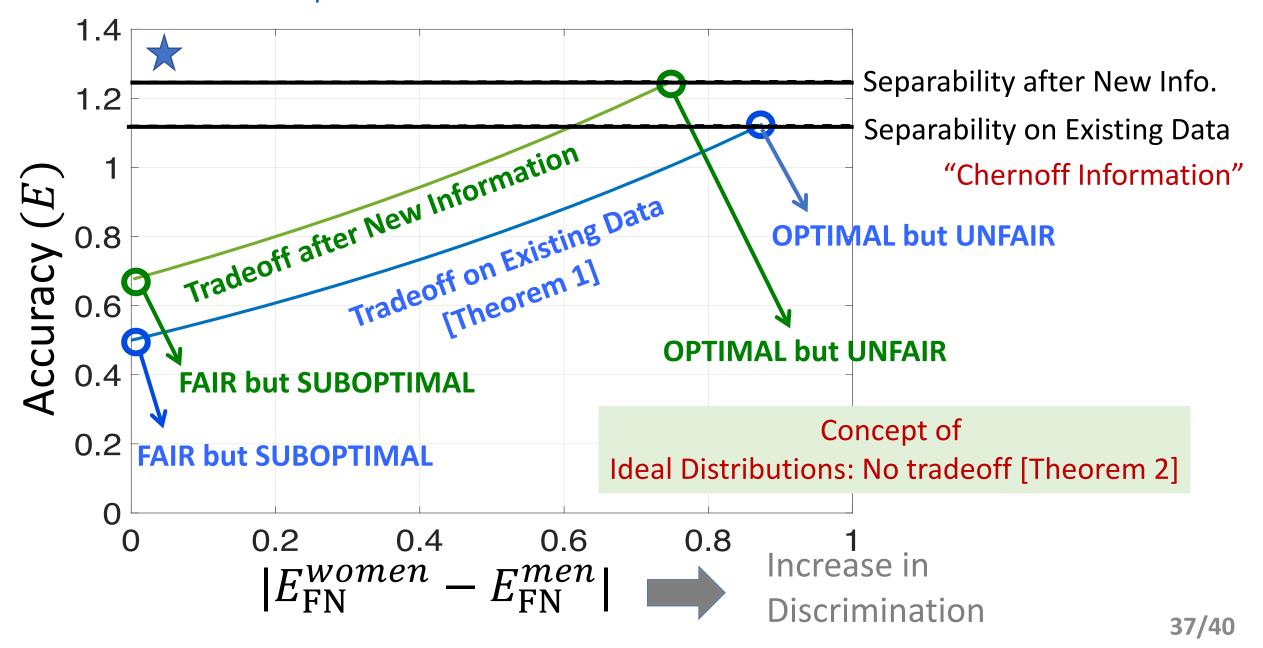
Approximations to the actual error exponents in binary classification

$$P_{FN} \lesssim e^{-E_{FN}}$$
 $P_{FP} \lesssim e^{-E_{FP}}$

Geometric interpretability helps quantify tradeoff between Accuracy and Discrimination in terms of Chernoff Exponents

36/40

Numerical Computation of Fundamental Limits on the Tradeoff



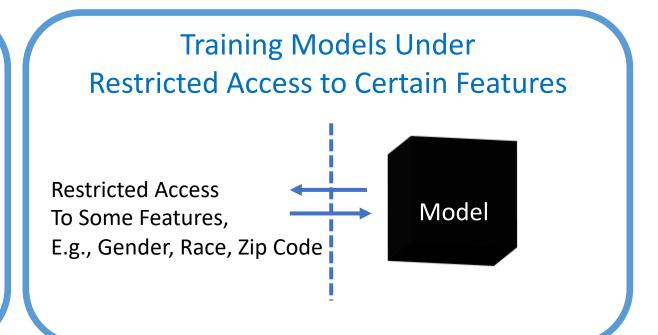
Looking Forward

Reliable Machine Learning

Systematic Feature Engineering
With Exemptions

Should we even include all features?

YES
NO
NAYBE



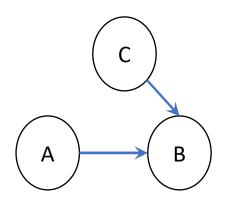
Laws can be contradictory [Ricci v. DeStefano'09]

Feature Selection: [Galhotra et al.'20]

Fairness & Privacy: [Mozannar et al.'20][Coston et al. '19]

Epistemic Values & Lived Experiences [Hancox-Li & Kumar'21][Tao & Varshney'21]

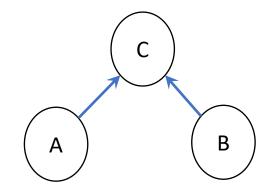
Partial Information Decomposition + Causality



I(A; B|C) > 0

But, $Uniq(A: B \setminus C) > 0$

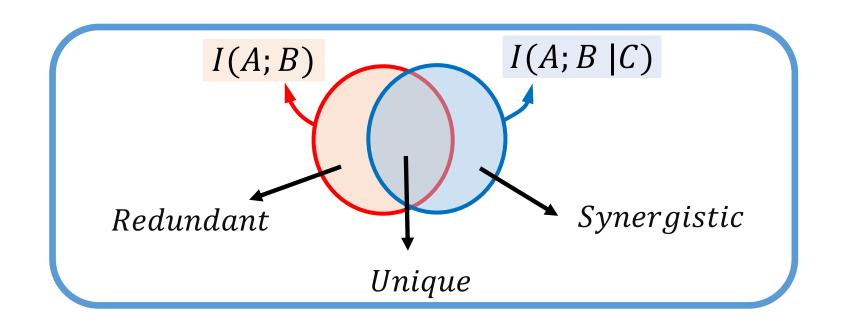
Syn(A:B,C)=0



I(A; B|C) > 0

But, $Uniq(A: B \setminus C) = 0$

Syn(A:B,C) > 0



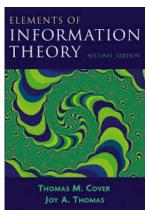
My Research Vision

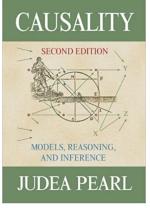
Connecting with People's Lives

Lawful Hiring

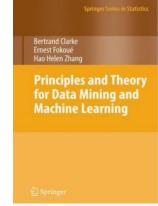
E.g., Design/Audit of Resume Classifier, Ranking, Ads, etc.

Foundations of Reliable Machine Learning





Causal Inference



Probability & Statistics

Education, Lending

E.g., Explain sources of bias, Recommend interventions, Policy Implications

Social Media & Filter Bubbles

E.g., Political Inclination, Polarization

Healthcare
Robust ML
Federated Learning
Crowdsourcing

(Fairness, Privacy, Reliability)