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Bayesian networks [Pearl 1985]

A directed acyclic graph G, the nodes are random variables

* The joint probability distribution is Markovian with respect to G:
Pr{X1=x1, Xo=X2, ..., Xn=xn] = [|i Pr[Xi=xi | pa(Xi)]
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The setting

- Sample space: each random variable is distributed in a finite set; let’s
assume observed variables are Bernoulli (i.e., in {0,1})

- Identification: computing a good estimate of the unigue probabilistic
model that explains the observed data

- Observations: independent samples from the joint distribution on the
observed random variables

- The actual causal relations are known (or a subgraph of the known
graph)



The setting More than learning,

not always possible

- Sample space: each ran
assume observed variables are Be

In a finite set; let’s
0,1})

- Identification: computing a good estimate of the unigue probabilistic
model that explains the observed data

- Observations: independent samples from the joint distribution on the
observed random variables

- The actual causal relations are known (or a subgraph of the known
graph)



The setting

- Sample space: each random variable is distributed in a finite set; let’s
assume observed variables are Bernoulli (i.e., in {0,1})

- Identification: computing a good estimate of the unigue probabilistic
model that explains the observed data

- Observations: independent samples from the joint distribution on the
observed random variables

- The actual causal relations are known (or a subgraph of the known
graph)



Mixture models

» A single confounding (hidden) variable U, affects all observed variables
« G is known, we want to identify the joint probability distribution

 Even just veritying the existence of U is impossible without assumptions
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Conditions for identifiability

- LetUrangein {1, 2, ..., k}
w; 2 Pr[U=|] pij 2 Pr[Vi=1 | U=]] N £ #observed random variables

- If N=1, all we can learn is E[V1=1]. SO0 we need G to be sufficiently large.
Just V4 has 2k-1 degrees of freedom (w4, ..., Wk-1, P11, ..., P1k).

- If two values of U produce the same distribution, we can’t identify. We'll
require sufficiently many (-separated or (-informative observables.

- \/i is (-separated iff minj: |pij - piy| > C
* We need at least 2k-1 (-separated observed variables.

- In general, 2k-1 O-separated observables are necessary [RSS, TMMA].



Problems and reductions

e = desired output accuracy, A = max (in+out) degree of G

« MixIID: special case of MixProd with all observables identically
distributed (i.e., it’s a mixture of Binomial distributions), N>2k

Sample size: €2 (wmin)? (0K (for constant success probability)
Runtime: k2+() + O(k log? k loglog €-1)

* MixProd reduces to MixIID, N>3k-3

Sample size + runtime: €2 (Wmin)Clog k) (-Oklog k) N |og N

- MixBND (general case) reduces to MixProd, N=(A+1)4 (3k-3)

Sample size + runtime: £2 (Wmin)Clog k) -0k (8%+log k) N Jog N
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Reducing MixBND to MixProd

« The Markov boundary of \/ is Mb(V) = Pa(V) u Ch(V) u (Pa(Ch(V))\V)

We need 3k-3 variables with mutually disjoint Markov boundaries
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4 observables (V1, Vs, Vo, V13) with disjoint Markov boundaries

Chosen Vis are independent conditional on U and the Mb(Vi)s

A run: assign the Mbs and identify conditionally independent variables

We need to align runs (values of U can be permuted)

Then, recover Pr[V | UAPa(V)] for all V — Bayesian unzipping
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A good collection of runs

- Two runs are alignable iff at least one Vi has the same sequence of k
distributions Pr[Vi | U=j] in both of them.

» We need a collection of runs with the following properties:

- They can all be aligned together.

- Each has 3k-3 independent variables, conditional on the assignment
of values to the Markov boundaries.

- Every observed variable V + every assignment to Pa(V) is covered by
at least one run in the collection.

- ... (some additional conditions)
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Constructing a good collection of runs

- Start with V4, Vo, ..., Vak3 with mutually disjoint Markov boundaries.

- Base run: arbitrary assignment to Mb(V4), ..., Mb(V3k-3)
other runs modify the base run:

- Runs for every i=1,2,...,3k-3, and mb < {0,1}Mb(V)
replace assignment to Mb(Vi) by mb

* Runs for every V ¢ {V1,...,Vak3} and pa € {0,1}FalV)
if V € Mb(Vi) then replace Vi by V, otherwise add V

assign pa to Pa(V)
assign any remaining variables in Mb(V) arbitrarily
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Sayesian unzipping

- We have: Pr[V | U A Mb(V)], for all nodes V (same permutation on U).
We want: Pr[V | U A Pa(V)], for all nodes V.

By definition, for an assignment mb to Mb(V),

Pr[V=1 A mb | U] ,
Pr[V=1 | U A mb]= A

Pr[V=1 A mb | U] + Pr[V=0 A mb | U]

* Plug in (for ch, pa being the restrictions of mb to Ch(V), Pa(V))
Pr[V Amb | U] = Pr[V|U A pa] Prlch | U AV A mb-ch]
n (3%) the first term cancels

 Pr[ch| U AV A mb-ch] factors into a product over Ch(V), and can be
computed inductively in reverse topological order

11



Final remarks

 For all V, [Mb(V)| = poly(A), so n = (3k-3) poly(A) suffices.
- In special cases (e.g., a path) we can do better.
» The case of observables over a larger domain reduces to the {0,1} case.

» The C-informative condition guarantees that all product distribution
instances that need solving are (-separated.

- Compared with related literature, it’s a fairly mild condition.

- Better sample size? computation time?
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Seyond final remarks

 This is a (two-step) reduction to MixIID. Lots of applications for MixIID:

- Identifying topic models reduces to MixIID [RSS, LRSS]:
A topic is a probability distribution on the dictionary {1, 2, ..., n}.

To produce a document, draw a topic in {1, 2, ..., k}, then draw words.
Documents with 2k-1 words suffice.

- Inferring (haploid) population histories (evolving according to Wright-
Fisher dynamics) [KKMMR] is equivalent to MixIID:

Reduces to hyper-exponential mixture problem (Kingman coalescent);
same as MixIID (linear transformation of the moments polynomials).

- Network evaluation, ...
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