
Identifying Mixtures of Bayesian Network Distributions

Yuval Rabani - The Hebrew University of Jerusalem

Joint work with

Spencer L. Gordon, Bijan Mazaheri, Leonard J. Schulman - Caltech

1

Bayesian networks [Pearl 1985]

• A directed acyclic graph G, the nodes are random variables

• The joint probability distribution is Markovian with respect to G:

Pr[X1=x1, X2=x2, …, Xn=xn] = ∏i Pr[Xi=xi | pa(Xi)]

2
U1, U2 are hidden variables, X1, …, X8 are observed variables

Bayesian networks [Pearl 1985]

• A directed acyclic graph G, the nodes are random variables

• The joint probability distribution is Markovian with respect to G:

Pr[X1=x1, X2=x2, …, Xn=xn] = ∏i Pr[Xi=xi | pa(Xi)]

2
U1, U2 are hidden variables, X1, …, X8 are observed variables

The assignment to
Pa(Xi), the parents of Xi

Bayesian networks [Pearl 1985]

• A directed acyclic graph G, the nodes are random variables

• The joint probability distribution is Markovian with respect to G:

Pr[X1=x1, X2=x2, …, Xn=xn] = ∏i Pr[Xi=xi | pa(Xi)]

2
U1, U2 are hidden variables, X1, …, X8 are observed variables

Some examples

3

A mixture of product distributions (MixProd)

A hidden Markov model (HMM)

A mixture of Markov models (MixMM)

• Sample space: each random variable is distributed in a finite set; let’s
assume observed variables are Bernoulli (i.e., in {0,1})

• Identification: computing a good estimate of the unique probabilistic
model that explains the observed data

• Observations: independent samples from the joint distribution on the
observed random variables

• The actual causal relations are known (or a subgraph of the known
graph)

The setting

4

• Sample space: each random variable is distributed in a finite set; let’s
assume observed variables are Bernoulli (i.e., in {0,1})

• Identification: computing a good estimate of the unique probabilistic
model that explains the observed data

• Observations: independent samples from the joint distribution on the
observed random variables

• The actual causal relations are known (or a subgraph of the known
graph)

The setting

4

More than learning,
not always possible

• Sample space: each random variable is distributed in a finite set; let’s
assume observed variables are Bernoulli (i.e., in {0,1})

• Identification: computing a good estimate of the unique probabilistic
model that explains the observed data

• Observations: independent samples from the joint distribution on the
observed random variables

• The actual causal relations are known (or a subgraph of the known
graph)

The setting

4

Mixture models

5

• A single confounding (hidden) variable U, affects all observed variables

• G is known, we want to identify the joint probability distribution

• Even just verifying the existence of U is impossible without assumptions

Conditions for identifiability

6

• Let U range in {1, 2, …, k}

 wj ≜ Pr[U=j] pij ≜ Pr[Vi=1 | U=j] N ≜ #observed random variables

• If N=1, all we can learn is E[V1=1]. So we need G to be sufficiently large.
Just V1 has 2k-1 degrees of freedom (w1, …, wk-1, p11, …, p1k).

• If two values of U produce the same distribution, we can’t identify. We’ll
require sufficiently many ζ-separated or ζ-informative observables.

• Vi is ζ-separated iff minj≠j’ |pij - pij’| > ζ

• We need at least 2k-1 ζ-separated observed variables.

• In general, 2k-1 0-separated observables are necessary [RSS, TMMA].

Problems and reductions

7

ε = desired output accuracy, Δ = max (in+out) degree of G

• MixIID: special case of MixProd with all observables identically
distributed (i.e., it’s a mixture of Binomial distributions), N≥2k

 Sample size: ε-2 (wmin)-2 ζ-O(k) (for constant success probability)

 Runtime: k2+o(1) + O(k log2 k loglog ε-1)

• MixProd reduces to MixIID, N≥3k-3

 Sample size + runtime: ε-2 (wmin)-O(log k) ζ-O(k log k) N log N

• MixBND (general case) reduces to MixProd, N≥(Δ+1)4 (3k-3)

 Sample size + runtime: ε-2 (wmin)-O(log k) ζ-O(k (Δ2+ log k)) N log N

Problems and reductions

7

ε = desired output accuracy, Δ = max (in+out) degree of G

• MixIID: special case of MixProd with all observables identically
distributed (i.e., it’s a mixture of Binomial distributions), N≥2k

 Sample size: ε-2 (wmin)-2 ζ-O(k) (for constant success probability)

 Runtime: k2+o(1) + O(k log2 k loglog ε-1)

• MixProd reduces to MixIID, N≥3k-3

 Sample size + runtime: ε-2 (wmin)-O(log k) ζ-O(k log k) N log N

• MixBND (general case) reduces to MixProd, N≥(Δ+1)4 (3k-3)

 Sample size + runtime: ε-2 (wmin)-O(log k) ζ-O(k (Δ2+ log k)) N log N

Reducing MixBND to MixProd

8

• The Markov boundary of V is Mb(V) = Pa(V) ∪ Ch(V) ∪ (Pa(Ch(V))∖V)

 We need 3k-3 variables with mutually disjoint Markov boundaries

• Chosen Vis are independent conditional on U and the Mb(Vi)s

• A run: assign the Mbs and identify conditionally independent variables

• We need to align runs (values of U can be permuted)

• Then, recover Pr[V | U⋀Pa(V)] for all V — Bayesian unzipping

4 observables (V1, V6, V9, V13) with disjoint Markov boundaries

Reducing MixBND to MixProd

8

• The Markov boundary of V is Mb(V) = Pa(V) ∪ Ch(V) ∪ (Pa(Ch(V))∖V)

 We need 3k-3 variables with mutually disjoint Markov boundaries

• Chosen Vis are independent conditional on U and the Mb(Vi)s

• A run: assign the Mbs and identify conditionally independent variables

• We need to align runs (values of U can be permuted)

• Then, recover Pr[V | U⋀Pa(V)] for all V — Bayesian unzipping

4 observables (V1, V6, V9, V13) with disjoint Markov boundaries

Pa — parents
Ch — children

Reducing MixBND to MixProd

8

• The Markov boundary of V is Mb(V) = Pa(V) ∪ Ch(V) ∪ (Pa(Ch(V))∖V)

 We need 3k-3 variables with mutually disjoint Markov boundaries

• Chosen Vis are independent conditional on U and the Mb(Vi)s

• A run: assign the Mbs and identify conditionally independent variables

• We need to align runs (values of U can be permuted)

• Then, recover Pr[V | U⋀Pa(V)] for all V — Bayesian unzipping

4 observables (V1, V6, V9, V13) with disjoint Markov boundaries

• Two runs are alignable iff at least one Vi has the same sequence of k
distributions Pr[Vi | U=j] in both of them.

• We need a collection of runs with the following properties:

- They can all be aligned together.

- Each has 3k-3 independent variables, conditional on the assignment

of values to the Markov boundaries.

- Every observed variable V + every assignment to Pa(V) is covered by

at least one run in the collection.

- … (some additional conditions)

A good collection of runs

9

• Two runs are alignable iff at least one Vi has the same sequence of k
distributions Pr[Vi | U=j] in both of them.

• We need a collection of runs with the following properties:

- They can all be aligned together.

- Each has 3k-3 independent variables, conditional on the assignment

of values to the Markov boundaries.

- Every observed variable V + every assignment to Pa(V) is covered by

at least one run in the collection.

- … (some additional conditions)

A good collection of runs

9

V is included in the
independent set

• Two runs are alignable iff at least one Vi has the same sequence of k
distributions Pr[Vi | U=j] in both of them.

• We need a collection of runs with the following properties:

- They can all be aligned together.

- Each has 3k-3 independent variables, conditional on the assignment

of values to the Markov boundaries.

- Every observed variable V + every assignment to Pa(V) is covered by

at least one run in the collection.

- … (some additional conditions)

A good collection of runs

9

• Start with V1, V2, …, V3k-3 with mutually disjoint Markov boundaries.

• Base run: arbitrary assignment to Mb(V1), …, Mb(V3k-3)
other runs modify the base run:

• Runs for every i=1,2,…,3k-3, and mb ∈ {0,1}Mb(Vi)
replace assignment to Mb(Vi) by mb

• Runs for every V ∉ {V1,…,V3k-3} and pa ∈ {0,1}Pa(V)
if V ∈ Mb(Vi) then replace Vi by V, otherwise add V
assign pa to Pa(V)
assign any remaining variables in Mb(V) arbitrarily

Constructing a good collection of runs

10

• We have: Pr[V | U ⋀ Mb(V)], for all nodes V (same permutation on U).
We want: Pr[V | U ⋀ Pa(V)], for all nodes V.

• By definition, for an assignment mb to Mb(V),

 Pr[V=1 ⋀ mb | U]

Pr[V=1 | U ⋀ mb] =

 Pr[V=1 ⋀ mb | U] + Pr[V=0 ⋀ mb | U]

• Plug in (for ch, pa being the restrictions of mb to Ch(V), Pa(V))
Pr[V ⋀ mb | U] = Pr[mb-ch | U] Pr[V | U ⋀ pa] Pr[ch | U ⋀ V ⋀ mb-ch]
In (❊) the first term Pr[mb-ch | U] cancels

• Pr[ch | U ⋀ V ⋀ mb-ch] factors into a product over Ch(V), and can be
computed inductively in reverse topological order

Bayesian unzipping

11

❊

• For all V, |Mb(V)| = poly(Δ), so n = (3k-3) poly(Δ) suffices.

• In special cases (e.g., a path) we can do better.

• The case of observables over a larger domain reduces to the {0,1} case.

• The ζ-informative condition guarantees that all product distribution
instances that need solving are ζ-separated.

• Compared with related literature, it’s a fairly mild condition.

• Better sample size? computation time?

Final remarks

12

Beyond final remarks

13

• This is a (two-step) reduction to MixIID. Lots of applications for MixIID:

• Identifying topic models reduces to MixIID [RSS, LRSS]:

 A topic is a probability distribution on the dictionary {1, 2, …, n}.

 To produce a document, draw a topic in {1, 2, …, k}, then draw words.

 Documents with 2k-1 words suffice.

• Inferring (haploid) population histories (evolving according to Wright-
Fisher dynamics) [KKMMR] is equivalent to MixIID:

 Reduces to hyper-exponential mixture problem (Kingman coalescent);

 same as MixIID (linear transformation of the moments polynomials).

• Network evaluation, …

Beyond final remarks

13

• This is a (two-step) reduction to MixIID. Lots of applications for MixIID:

• Identifying topic models reduces to MixIID [RSS, LRSS]:

 A topic is a probability distribution on the dictionary {1, 2, …, n}.

 To produce a document, draw a topic in {1, 2, …, k}, then draw words.

 Documents with 2k-1 words suffice.

• Inferring (haploid) population histories (evolving according to Wright-
Fisher dynamics) [KKMMR] is equivalent to MixIID:

 Reduces to hyper-exponential mixture problem (Kingman coalescent);

 same as MixIID (linear transformation of the moments polynomials).

• Network evaluation, …

Instead of {0, 1} in
MixIID

Beyond final remarks

13

• This is a (two-step) reduction to MixIID. Lots of applications for MixIID:

• Identifying topic models reduces to MixIID [RSS, LRSS]:

 A topic is a probability distribution on the dictionary {1, 2, …, n}.

 To produce a document, draw a topic in {1, 2, …, k}, then draw words.

 Documents with 2k-1 words suffice.

• Inferring (haploid) population histories (evolving according to Wright-
Fisher dynamics) [KKMMR] is equivalent to MixIID:

 Reduces to hyper-exponential mixture problem (Kingman coalescent);

 same as MixIID (linear transformation of the moments polynomials).

• Network evaluation, …

