Identifying Mixtures of Bayesian Network Distributions

Yuval Rabani - The Hebrew University of Jerusalem
Joint work with
Spencer L. Gordon, Bijan Mazaheri, Leonard J. Schulman - Caltech

Bayesian networks [Pearl 1985]

- A directed acyclic graph G, the nodes are random variables
- The joint probability distribution is Markovian with respect to G :

$$
\operatorname{Pr}\left[\mathrm{X}_{1}=\mathrm{x}_{1}, \mathrm{X}_{2}=\mathrm{x}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}=\mathrm{X}_{\mathrm{n}}\right]=\prod_{\mathrm{i}} \operatorname{Pr}\left[\mathrm{X}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \mid \mathrm{pa}\left(\mathrm{X}_{\mathrm{i}}\right)\right]
$$

$\mathrm{U}_{1}, \mathrm{U}_{2}$ are hidden variables, $\mathrm{X}_{1}, \ldots, \mathrm{X}_{8}$ are observed variables

Bayesian network

The assignment to $\mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)$, the parents of X_{i}

- A directed acyclic graph G, trio

- The joint probability distribution is Markovian with rospect to G :

$$
\operatorname{Pr}\left[X_{1}=X_{1}, X_{2}=X_{2}, \ldots, X_{n}=X_{n}\right]=\prod_{i} \operatorname{Pr}\left[X_{i}=X_{i} \mid \operatorname{Pa}\left(X_{i}\right)\right]
$$

$\mathrm{U}_{1}, \mathrm{U}_{2}$ are hidden variables, $\mathrm{X}_{1}, \ldots, \mathrm{X}_{8}$ are observed variables

Bayesian networks [Pearl 1985]

- A directed acyclic graph G, the nodes are random variables
- The joint probability distribution is Markovian with respect to G :

$$
\operatorname{Pr}\left[\mathrm{X}_{1}=\mathrm{x}_{1}, \mathrm{X}_{2}=\mathrm{x}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}=\mathrm{X}_{\mathrm{n}}\right]=\prod_{\mathrm{i}} \operatorname{Pr}\left[\mathrm{X}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \mid \mathrm{pa}\left(\mathrm{X}_{\mathrm{i}}\right)\right]
$$

$\mathrm{U}_{1}, \mathrm{U}_{2}$ are hidden variables, $\mathrm{X}_{1}, \ldots, \mathrm{X}_{8}$ are observed variables

Some examples

The setting

- Sample space: each random variable is distributed in a finite set; let's assume observed variables are Bernoulli (i.e., in $\{0,1\}$)
- Identification: computing a good estimate of the unique probabilistic model that explains the observed data
- Observations: independent samples from the joint distribution on the observed random variables
- The actual causal relations are known (or a subgraph of the known graph)

The setting

More than learning, not always possible

- Sample space: each rando od in a finite set; let's assume observed variables are Bernoulli(1.e. $\quad\{0,1\}$)
- Identification: computing a good estimate of the unique probabilistic model that explains the observed data
- Observations: independent samples from the joint distribution on the observed random variables
- The actual causal relations are known (or a subgraph of the known graph)

The setting

- Sample space: each random variable is distributed in a finite set; let's assume observed variables are Bernoulli (i.e., in $\{0,1\}$)
- Identification: computing a good estimate of the unique probabilistic model that explains the observed data
- Observations: independent samples from the joint distribution on the observed random variables
- The actual causal relations are known (or a subgraph of the known graph)

Mixture models

- A single confounding (hidden) variable U, affects all observed variables
- G is known, we want to identify the joint probability distribution
- Even just verifying the existence of U is impossible without assumptions

Conditions for identifiability

- Let U range in $\{1,2, \ldots, \mathrm{k}\}$
$w_{j} \triangleq \operatorname{Pr}[U=j] \quad \mathrm{p}_{\mathrm{ij}} \triangleq \operatorname{Pr}\left[\mathrm{V}_{\mathrm{i}}=1 \mid \mathrm{U}=\mathrm{j}\right] \quad \mathrm{N} \triangleq$ \#observed random variables
- If $N=1$, all we can learn is $E\left[V_{1}=1\right]$. So we need G to be sufficiently large. Just V_{1} has $2 k-1$ degrees of freedom ($w_{1}, \ldots, w_{k-1}, p_{11}, \ldots, p_{1 k}$).
- If two values of U produce the same distribution, we can't identify. We'll require sufficiently many ζ-separated or ζ-informative observables.
$\cdot V_{i}$ is ζ-separated iff min $_{\mathrm{j}_{\mathrm{j}}{ }^{\prime}}\left|\mathrm{p}_{\mathrm{ij}}-\mathrm{p}_{\mathrm{ij}}\right|>\zeta$
- We need at least $2 k-1 \zeta$-separated observed variables.
- In general, 2k-1 0-separated observables are necessary [RSS, TMMA].

Problems and reductions

$\varepsilon=$ desired output accuracy, $\Delta=\max$ (in+out) degree of G

- MixIID: special case of MixProd with all observables identically distributed (i.e., it's a mixture of Binomial distributions), $\mathrm{N} \geq 2 \mathrm{k}$ Sample size: $\varepsilon^{-2}\left(\mathrm{w}_{\mathrm{min}}\right)^{-2} \zeta^{-0(k)}$ (for constant success probability) Runtime: $\mathrm{k}^{2+o(1)}+\mathrm{O}\left(\mathrm{k} \log ^{2} \mathrm{k} \log \log \varepsilon^{-1}\right)$
- MixProd reduces to MixIID, $\mathrm{N} \geq 3 \mathrm{k}-3$

Sample size + runtime: $\varepsilon^{-2}\left(\mathrm{~W}_{\text {min }}\right)-\mathrm{O}(\log \mathrm{k}) \zeta^{-O(k \log k)} \mathrm{N} \log \mathrm{N}$

- MixBND (general case) reduces to MixProd, $N \geq(\Delta+1)^{4}(3 k-3)$

Sample size + runtime: $\left.\varepsilon^{-2}\left(\mathrm{~W}_{\min }\right)^{-O(\log k)} \zeta_{-}^{-O(k)}\left(\Delta^{2}+\log k\right)\right) N \log N$

Problems and reductions

$\varepsilon=$ desired output accuracy, $\Delta=\max$ (in+out) degree of G

- MixIID: special case of MixProd with all observables identically distributed (i.e., it's a mixture of Binomial distributions), $\mathrm{N} \geq 2 \mathrm{k}$ Sample size: $\varepsilon^{-2}\left(W_{\text {min }}\right)^{-2} \zeta^{-O(k)}$ (for constant success probability) Runtime: $\mathrm{k}^{2+o(1)}+\mathrm{O}\left(\mathrm{k} \log ^{2} \mathrm{k} \log \log \varepsilon^{-1}\right)$
- MixProd reduces to MixIID, $\mathrm{N} \geq 3 \mathrm{k}-3$ Sample size + runtime: $\varepsilon^{-2}\left(\mathrm{~W}_{\text {min }}\right)^{-O(\log k)} \zeta^{-O(k \log k)} \mathrm{N} \log \mathrm{N}$
- MixBND (general case) reduces to MixProd, $N \geq(\Delta+1)^{4}(3 k-3)$ Sample size + runtime: $\left.\varepsilon^{-2}\left(\mathrm{~W}_{\text {min }}\right)-O(\log k) \zeta_{-O(k)}\left(\Delta^{2}+\log k\right)\right) N \log N$

Reducing MixBND to MixProd

- The Markov boundary of V is $\mathrm{Mb}(\mathrm{V})=\mathrm{Pa}(\mathrm{V}) \cup \mathrm{Ch}(\mathrm{V}) \cup(\mathrm{Pa}(\mathrm{Ch}(\mathrm{V})) \backslash \mathrm{V})$ We need 3k-3 variables with mutually disjoint Markov boundaries

- Chosen V_{i} are independent conditional on U and the $\mathrm{Mb}\left(\mathrm{V}_{\mathrm{i}}\right) \mathrm{s}$
- A run: assign the Mbs and identify conditionally independent variables
- We need to align runs (values of U can be permuted)
- Then, recover $\operatorname{Pr}[\mathrm{V} \mid \mathrm{U} \wedge \mathrm{Pa}(\mathrm{V})]$ for all V - Bayesian unzipping

- The Markov boundary of V is $\mathrm{Mb}(\mathrm{V})=\mathrm{Pa}(\mathrm{V}) \cup \mathrm{Ch}(\mathrm{V}) \cup(\mathrm{Pa}(\mathrm{Ch}(\mathrm{V})) \backslash \mathrm{V})$ We need $3 k-3$ variables with mutually disjoint Markov boundaries

- Chosen $\mathrm{V}_{\mathrm{i}} \mathrm{s}$ are independent conditional on U and the $\mathrm{Mb}\left(\mathrm{V}_{\mathrm{i}}\right) \mathrm{s}$
- A run: assign the Mbs and identify conditionally independent variables
- We need to align runs (values of U can be permuted)
- Then, recover $\operatorname{Pr}[\mathrm{V} \mid \mathrm{U} \wedge \mathrm{Pa}(\mathrm{V})]$ for all V - Bayesian unzipping

Reducing MixBND to MixProd

- The Markov boundary of V is $\mathrm{Mb}(\mathrm{V})=\mathrm{Pa}(\mathrm{V}) \cup \mathrm{Ch}(\mathrm{V}) \cup(\mathrm{Pa}(\mathrm{Ch}(\mathrm{V})) \backslash \mathrm{V})$ We need 3k-3 variables with mutually disjoint Markov boundaries

- Chosen V_{i} are independent conditional on U and the $\mathrm{Mb}\left(\mathrm{V}_{\mathrm{i}}\right) \mathrm{s}$
- A run: assign the Mbs and identify conditionally independent variables
- We need to align runs (values of U can be permuted)
- Then, recover $\operatorname{Pr}[\mathrm{V} \mid \mathrm{U} \wedge \mathrm{Pa}(\mathrm{V})]$ for all V - Bayesian unzipping

A good collection of runs

- Two runs are alignable iff at least one V_{i} has the same sequence of k distributions $\operatorname{Pr}\left[\mathrm{V}_{\mathrm{i}} \mid \mathrm{U}=\mathrm{j}\right]$ in both of them.
- We need a collection of runs with the following properties:
- They can all be aligned together.
- Each has 3k-3 independent variables, conditional on the assignment of values to the Markov boundaries.
- Every observed variable $\mathrm{V}+$ every assignment to $\mathrm{Pa}(\mathrm{V})$ is covered by at least one run in the collection.
- ... (some additional conditions)

A good collection of runs

- Two runs are alignable iff at least one V_{i} has the same sequence of k distributions $\operatorname{Pr}\left[\mathrm{V}_{\mathrm{i}} \mid U_{=j}\right]$ in both of then
- We need a collection of runs with
- They can all be aligned together.
- Each has $3 k-3$ independent variables, coma assignment of values to the Markov boundaries.
- Every observed variable $\mathrm{V}+$ every assignment to $\mathrm{Pa}(\mathrm{V})$ is covered by at least one run in the collection.
- ... (some additional conditions)

A good collection of runs

- Two runs are alignable iff at least one V_{i} has the same sequence of k distributions $\operatorname{Pr}\left[\mathrm{V}_{\mathrm{i}} \mid \mathrm{U}=\mathrm{j}\right]$ in both of them.
- We need a collection of runs with the following properties:
- They can all be aligned together.
- Each has 3k-3 independent variables, conditional on the assignment of values to the Markov boundaries.
- Every observed variable $\mathrm{V}+$ every assignment to $\mathrm{Pa}(\mathrm{V})$ is covered by at least one run in the collection.
- ... (some additional conditions)

Constructing a good collection of runs

- Start with $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{3 k-3}$ with mutually disjoint Markov boundaries.
- Base run: arbitrary assignment to $\mathrm{Mb}\left(\mathrm{V}_{1}\right), \ldots, \mathrm{Mb}\left(\mathrm{V}_{3 k-3}\right)$ other runs modify the base run:
- Runs for every $\mathrm{i}=1,2, \ldots, 3 \mathrm{k}-3$, and $\mathrm{mb} \in\{0,1\} \mathrm{Mb}\left(\mathrm{v}_{\mathrm{i}}\right)$ replace assignment to $\mathrm{Mb}\left(\mathrm{V}_{\mathrm{i}}\right)$ by mb
- Runs for every $\mathrm{V} \notin\left\{\mathrm{V}_{1}, \ldots, \mathrm{~V}_{3 k-3}\right\}$ and $\mathrm{pa} \in\{0,1\}^{\mathrm{Pa}(\mathrm{M})}$ if $\mathrm{V} \in \mathrm{Mb}\left(\mathrm{V}_{\mathrm{i}}\right)$ then replace V_{i} by V , otherwise add V assign pa to $\mathrm{Pa}(\mathrm{V})$ assign any remaining variables in $\mathrm{Mb}(\mathrm{V})$ arbitrarily

Bayesian unzipping

- We have: $\operatorname{Pr}[\mathrm{V} \mid \mathrm{U} \wedge \mathrm{Mb}(\mathrm{V})]$, for all nodes V (same permutation on U$)$. We want: $\operatorname{Pr}[\mathrm{V} \mid \mathrm{U} \wedge \mathrm{Pa}(\mathrm{V})]$, for all nodes V .
- By definition, for an assignment mb to $\mathrm{Mb}(\mathrm{V})$,

$$
\operatorname{Pr}[\mathrm{V}=1 \mid \mathrm{U} \wedge \mathrm{mb}]=\frac{\operatorname{Pr}[\mathrm{V}=1 \wedge \mathrm{mb} \mid \mathrm{U}]}{\operatorname{Pr}[\mathrm{V}=1 \wedge \mathrm{mb} \mid \mathrm{U}]+\operatorname{Pr}[\mathrm{V}=0 \wedge \mathrm{mb} \mid \mathrm{U}]}
$$

- Plug in (for ch, pa being the restrictions of mb to $\mathrm{Ch}(\mathrm{V}), \mathrm{Pa}(\mathrm{V})$) $\operatorname{Pr}[V \wedge \mathrm{mb} \mid \mathrm{U}]=\operatorname{Pr}[m b-c h \mid \mathrm{U}] \operatorname{Pr}[\mathrm{V} \mid \mathrm{U} \wedge \mathrm{pa}] \operatorname{Pr}[\mathrm{ch} \mid \mathrm{U} \wedge \mathrm{V} \wedge \mathrm{mb}-\mathrm{ch}]$ In (洋) the first term Pr[mb-ch \| U] cancels
- $\operatorname{Pr}[c h \mid U \wedge V \wedge m b-c h]$ factors into a product over $\mathrm{Ch}(\mathrm{V})$, and can be computed inductively in reverse topological order

Final remarks

- For all $\mathrm{V},|\mathrm{Mb}(\mathrm{V})|=\operatorname{poly}(\Delta)$, so $\mathrm{n}=(3 \mathrm{k}-3)$ poly (Δ) suffices.
- In special cases (e.g., a path) we can do better.
- The case of observables over a larger domain reduces to the $\{0,1\}$ case.
- The ζ-informative condition guarantees that all product distribution instances that need solving are ζ-separated.
- Compared with related literature, it's a fairly mild condition.
- Better sample size? computation time?

Beyond final remarks

- This is a (two-step) reduction to MixIID. Lots of applications for MixIID:
- Identifying topic models reduces to MixIID [RSS, LRSS]:

A topic is a probability distribution on the dictionary $\{1,2, \ldots, n\}$.
To produce a document, draw a topic in $\{1,2, \ldots, k\}$, then draw words. Documents with 2k-1 words suffice.

- Inferring (haploid) population histories (evolving according to WrightFisher dynamics) [KKMMR] is equivalent to MixIID:
Reduces to hyper-exponential mixture problem (Kingman coalescent); same as MixIID (linear transformation of the moments polynomials).
- Network evaluation, ...

Beyond final rem. Instead of $\{0,1\}$ in MixIID

- This is a (two-step) reductro plications for MixIID:
- Identifying topic models reduces to MixIID [RSS, RSS]:

A topic is a probability distribution on the dictionary $\{1,2, \ldots, n\}$.
To produce a document, draw a topic in $\{1,2, \ldots, k\}$, then draw words. Documents with 2k-1 words suffice.

- Inferring (haploid) population histories (evolving according to WrightFisher dynamics) [KKMMR] is equivalent to MixIID:

Reduces to hyper-exponential mixture problem (Kingman coalescent); same as MixIID (linear transformation of the moments polynomials).

- Network evaluation, ...

Beyond final remarks

- This is a (two-step) reduction to MixIID. Lots of applications for MixIID:
- Identifying topic models reduces to MixIID [RSS, LRSS]:

A topic is a probability distribution on the dictionary $\{1,2, \ldots, n\}$.
To produce a document, draw a topic in $\{1,2, \ldots, k\}$, then draw words. Documents with 2k-1 words suffice.

- Inferring (haploid) population histories (evolving according to WrightFisher dynamics) [KKMMR] is equivalent to MixIID:
Reduces to hyper-exponential mixture problem (Kingman coalescent); same as MixIID (linear transformation of the moments polynomials).
- Network evaluation, ...

