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Bayesian networks [Pearl 1985]

• A directed acyclic graph G, the nodes are random variables


• The joint probability distribution is Markovian with respect to G:

Pr[X1=x1, X2=x2, …, Xn=xn] = ∏i Pr[Xi=xi | pa(Xi)]

2
U1, U2 are hidden variables, X1, …, X8 are observed variables
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Some examples
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A mixture of product distributions (MixProd)

A hidden Markov model (HMM)

A mixture of Markov models (MixMM)



• Sample space: each random variable is distributed in a finite set; let’s 
assume observed variables are Bernoulli (i.e., in {0,1})


• Identification: computing a good estimate of the unique probabilistic 
model that explains the observed data


• Observations: independent samples from the joint distribution on the 
observed random variables


• The actual causal relations are known (or a subgraph of the known 
graph)

The setting
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More than learning, 
not always possible
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Mixture models
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• A single confounding (hidden) variable U, affects all observed variables


• G is known, we want to identify the joint probability distribution


• Even just verifying the existence of U is impossible without assumptions



Conditions for identifiability
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• Let U range in {1, 2, …, k}

 wj ≜ Pr[U=j]         pij ≜ Pr[Vi=1 | U=j]        N ≜ #observed random variables


• If N=1, all we can learn is E[V1=1]. So we need G to be sufficiently large. 
Just V1 has 2k-1 degrees of freedom (w1, …, wk-1, p11, …, p1k).


• If two values of U produce the same distribution, we can’t identify. We’ll 
require sufficiently many ζ-separated or ζ-informative observables.


• Vi is ζ-separated iff minj≠j’ |pij - pij’| > ζ


• We need at least 2k-1 ζ-separated observed variables. 


• In general, 2k-1 0-separated observables are necessary [RSS, TMMA].



Problems and reductions
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ε = desired output accuracy, Δ = max (in+out) degree of G


• MixIID: special case of MixProd with all observables identically 
distributed (i.e., it’s a mixture of Binomial distributions), N≥2k


 Sample size: ε-2 (wmin)-2  ζ-O(k)    (for constant success probability)

 Runtime: k2+o(1) + O(k log2 k loglog ε-1)


• MixProd reduces to MixIID, N≥3k-3


 Sample size + runtime: ε-2 (wmin)-O(log k) ζ-O(k log k) N log N

 


• MixBND (general case) reduces to MixProd, N≥(Δ+1)4 (3k-3)


 Sample size + runtime: ε-2 (wmin)-O(log k) ζ-O(k (Δ2+ log k)) N log N
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Reducing MixBND to MixProd
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• The Markov boundary of V is Mb(V) = Pa(V) ∪ Ch(V) ∪ (Pa(Ch(V))∖V)

 We need 3k-3 variables with mutually disjoint Markov boundaries


• Chosen Vis are independent conditional on U and the Mb(Vi)s

• A run: assign the Mbs and identify conditionally independent variables

• We need to align runs (values of U can be permuted)

• Then, recover Pr[V | U⋀Pa(V)] for all V — Bayesian unzipping

4 observables (V1, V6, V9, V13) with disjoint Markov boundaries
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• Two runs are alignable iff at least one Vi has the same sequence of k 
distributions Pr[Vi | U=j] in both of them. 


• We need a collection of runs with the following properties:

- They can all be aligned together.

- Each has 3k-3 independent variables, conditional on the assignment 

of values to the Markov boundaries.

- Every observed variable V + every assignment to Pa(V) is covered by 

at least one run in the collection.

- … (some additional conditions)

A good collection of runs
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V is included in the 
independent set
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• Start with V1, V2, …, V3k-3 with mutually disjoint Markov boundaries.


• Base run: arbitrary assignment to Mb(V1), …, Mb(V3k-3)                         
other runs modify the base run:


• Runs for every i=1,2,…,3k-3, and mb ∈ {0,1}Mb(Vi)                                                  
replace assignment to Mb(Vi) by mb


• Runs for every V ∉ {V1,…,V3k-3} and pa ∈ {0,1}Pa(V)                                        
if V ∈ Mb(Vi) then replace Vi by V, otherwise add V                                                
assign pa to Pa(V)                                                                                   
assign any remaining variables in Mb(V) arbitrarily

Constructing a good collection of runs
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• We have: Pr[V | U ⋀ Mb(V)], for all nodes V (same permutation on U).                                                          
We want: Pr[V | U ⋀ Pa(V)], for all nodes V.


• By definition, for an assignment mb to Mb(V), 

                                                Pr[V=1 ⋀ mb | U]

Pr[V=1 | U ⋀ mb] = 

                                  Pr[V=1 ⋀ mb | U] + Pr[V=0 ⋀ mb | U]  


• Plug in (for ch, pa being the restrictions of mb to Ch(V), Pa(V))                                                                                                   
Pr[V ⋀ mb | U] = Pr[mb-ch | U] Pr[V | U ⋀ pa] Pr[ch | U ⋀ V ⋀ mb-ch]                
In (❊) the first term Pr[mb-ch | U] cancels


• Pr[ch | U ⋀ V ⋀ mb-ch]  factors into a product over Ch(V), and can be 
computed inductively in reverse topological order

Bayesian unzipping
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❊



• For all V, |Mb(V)| = poly(Δ), so n = (3k-3) poly(Δ) suffices.


• In special cases (e.g., a path) we can do better.


• The case of observables over a larger domain reduces to the {0,1} case.


• The ζ-informative condition guarantees that all product distribution 
instances that need solving are ζ-separated.


• Compared with related literature, it’s a fairly mild condition.


• Better sample size? computation time?

Final remarks
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Beyond final remarks

13

• This is a (two-step) reduction to MixIID. Lots of applications for  MixIID:


• Identifying topic models reduces to MixIID [RSS, LRSS]:

 A topic is a probability distribution on the dictionary {1, 2, …, n}.

 To produce a document, draw a topic in {1, 2, …, k}, then draw words.

 Documents with 2k-1 words suffice.


• Inferring (haploid) population histories (evolving according to Wright-
Fisher dynamics) [KKMMR] is equivalent to MixIID:

 Reduces to hyper-exponential mixture problem (Kingman coalescent);

 same as MixIID (linear transformation of the moments polynomials).


• Network evaluation, …
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