Generalized Energy-Based Models

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

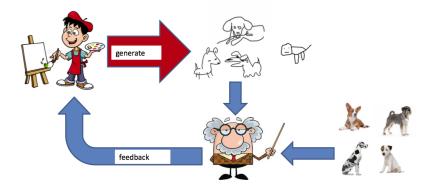
Simons Institute, Berkeley, 2022

Training generative models

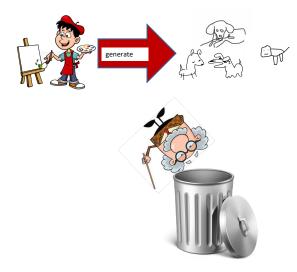
Have: One collection of samples X from unknown distribution P.
Goal: generate samples Q that look like P

LSUN bedroom samples P Generated Q, MMD GAN Role of divergence D(P, Q)?

Visual notation: GAN setting



Visual notation: GAN setting



Outline

Divergences D(P, Q)

- Integral probability metrics (MMD, Wasserstein)
- ϕ -divergences (f-divergences) and a variational lower bound (KL)

Generalized energy-based models:

- Energy-based model supported on a low-dimenional subspace
- Robust to mismatch in model/data support

Arbel, Zhou, G., Generalized Energy Based Models (ICLR 2021)

Outline

Divergences D(P, Q)

- Integral probability metrics (MMD, Wasserstein)
- ϕ -divergences (f-divergences) and a variational lower bound (KL)

Generalized energy-based models:

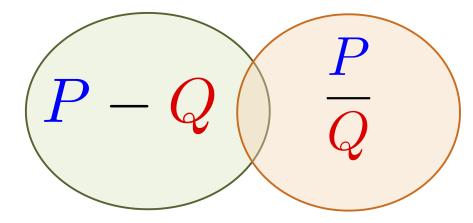
- Energy-based model supported on a low-dimenional subspace
- Robust to mismatch in model/data support

GEBM vs GAN:

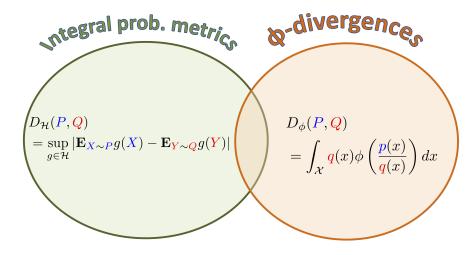
- "Like a GAN" but incorporate critic into sample generation
- Perform better than using generator alone

Arbel, Zhou, G., Generalized Energy Based Models (ICLR 2021)

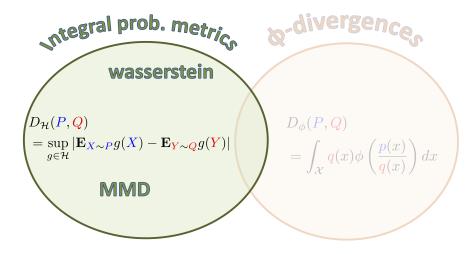
Divergence measures (critics)



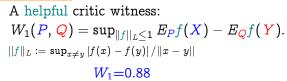
Divergences

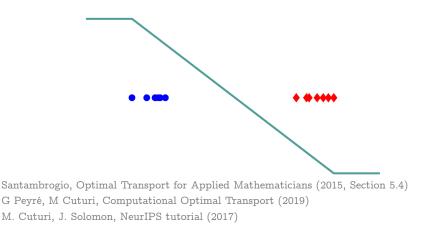


The Integral Probability Metrics



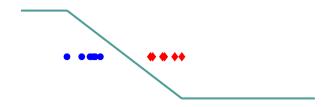
Wasserstein distance





Wasserstein distance

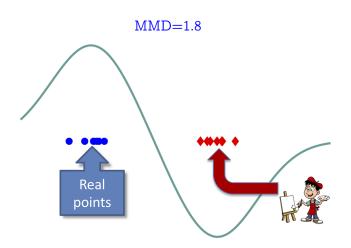
A helpful critic witness: $W_1(P, Q) = \sup_{||f||_L \le 1} E_P f(X) - E_Q f(Y).$ $||f||_L := \sup_{x \ne y} |f(x) - f(y)| / ||x - y||$ $W_1 = 0.65$



Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4) G Peyré, M Cuturi, Computational Optimal Transport (2019) M. Cuturi, J. Solomon, NeurIPS tutorial (2017)

Maximum mean discrepancy

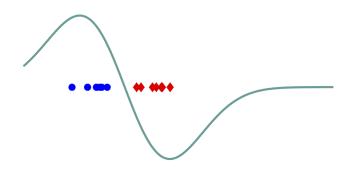
A helpful critic witness: $MMD(P, Q) = \sup_{||f||_{\mathcal{F}} \leq 1} E_P f(X) - E_Q f(Y).$



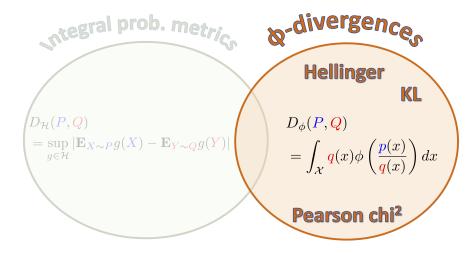
Maximum mean discrepancy

A helpful critic witness: $MMD(P, Q) = \sup_{||f||_{\mathcal{F}} \leq 1} E_P f(X) - E_Q f(Y)$

MMD=1.1



The ϕ -divergences



The ϕ -divergences

Define the ϕ -divergence(*f*-divergence):

$$D_{\phi}(P, Q) = \int \phi\left(rac{p(z)}{q(z)}
ight) q(z) dz$$

where ϕ is convex, lower-semicontinuous, $\phi(1) = 0$.

Example: $\phi(u) = u \log(u)$ gives KL divergence.

The ϕ -divergences

Define the ϕ -divergence(*f*-divergence):

$$D_{\phi}(P, Q) = \int \phi\left(rac{p(z)}{q(z)}
ight) q(z) dz$$

where ϕ is convex, lower-semicontinuous, $\phi(1) = 0$.

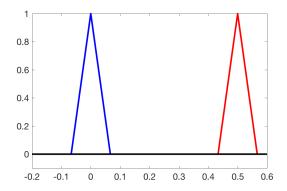
Example: $\phi(u) = u \log(u)$ gives KL divergence.

Are ϕ -divergences good critics?

Simple example: disjoint support.

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

 $D_{KL}(\boldsymbol{P},\boldsymbol{Q}) = \infty$ $D_{JS}(\boldsymbol{P},\boldsymbol{Q}) = \log 2$

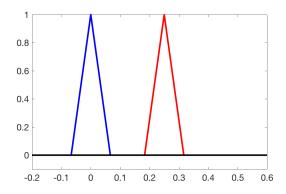


Are ϕ -divergences good critics?

Simple example: disjoint support.

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

 $D_{KL}(P, Q) = \infty$ $D_{JS}(P, Q) = \log 2$



A lower-bound ϕ -divergence approximation:

$$D_{\phi}(P, Q) = \int q(z) \phi\left(rac{p(z)}{q(z)}
ight) dz$$

A lower-bound ϕ -divergence approximation:

$$egin{aligned} D_{\phi}(P, oldsymbol{Q}) &= \int oldsymbol{q}(z) \phi\left(rac{p(z)}{q(z)}
ight) dz \ &= \int oldsymbol{q}(z) ext{sup} \left(rac{p(z)}{q(z)} f_z - \phi^*(f_z)
ight) \ & \underbrace{\int_{\mathcal{F}_z} f_z - \phi^*(f_z)
ight) \ & \phi\left(rac{p(z)}{q(z)}
ight) \end{aligned}$$

 $\phi^*(v)$ is dual of $\phi(x)$.

A lower-bound ϕ -divergence approximation:

$$egin{aligned} D_{\phi}(P,oldsymbol{Q}) &= \int q(z) \phi\left(rac{p(z)}{q(z)}
ight) dz \ &= \int q(z) \sup_{f_z} \left(rac{p(z)}{q(z)} f_z - \phi^*(f_z)
ight) \ &\geq \sup_{f\in\mathcal{H}} \mathrm{E}_P f(X) - \mathrm{E}_{oldsymbol{Q}} \phi^*\left(f(oldsymbol{Y})
ight) \end{aligned}$$

(restrict the function class)

A lower-bound ϕ -divergence approximation:

$$egin{aligned} D_{\phi}(P,oldsymbol{Q}) &= \int q(z) \phi\left(rac{p(z)}{q(z)}
ight) dz \ &= \int q(z) \sup_{f_z} \left(rac{p(z)}{q(z)} f_z - \phi^*(f_z)
ight) \ &\geq \sup_{f\in\mathcal{H}} \mathrm{E}_P f(X) - \mathrm{E}_{oldsymbol{Q}} \phi^*\left(f(oldsymbol{Y})
ight) \end{aligned}$$

(restrict the function class)

Bound tight when:

$$f^\diamond(z) = \partial \phi \left(rac{p(z)}{q(z)}
ight)$$

if ratio defined.

$$D_{KL}(P, oldsymbol{Q}) = \int \log\left(rac{p(z)}{oldsymbol{q}(z)}
ight) p(z) dz$$

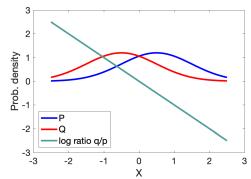
$$egin{aligned} D_{KL}(P, oldsymbol{Q}) &= \int \log\left(rac{p(z)}{q(z)}
ight) p(z)dz \ &\geq \sup_{f\in\mathcal{H}} -\mathrm{E}_P f(X) + 1 - \mathrm{E}_{oldsymbol{Q}} \exp\left(-f(oldsymbol{Y})
ight) \ &\phi^*(-f(oldsymbol{Y})+1) \end{aligned}$$

$$egin{aligned} D_{KL}(P, oldsymbol{Q}) &= \int \log\left(rac{p(z)}{q(z)}
ight) p(z)dz \ &\geq \sup_{f\in\mathcal{H}} - \mathbb{E}_P f(X) + 1 - \mathbb{E}_oldsymbol{Q} \exp\left(-f(Y)
ight) \end{aligned}$$

Bound tight when:

$$f^\diamond(z) = -\log rac{p(z)}{q(z)}$$

if ratio defined.



$$egin{split} D_{KL}(P, oldsymbol{Q}) &= \int \log\left(rac{p(z)}{q(z)}
ight) p(z)dz \ &\geq \sup_{f\in\mathcal{H}} - \mathrm{E}_P f(X) + 1 - \mathrm{E}_{oldsymbol{Q}}\exp\left(-f(oldsymbol{Y})
ight) \ &pprox \sup_{f\in\mathcal{H}} \left[-rac{1}{n}\sum_{j=1}^n f(x_i) - rac{1}{n}\sum_{i=1}^n \exp(-f(y_i))
ight] + 1 \end{split}$$

 $egin{array}{ccc} x_i \stackrel{ ext{i.i.d.}}{\sim} P \ y_i \stackrel{ ext{i.i.d.}}{\sim} Q \end{array}$

$$egin{split} D_{KL}(m{P},m{Q}) &= \int \log\left(rac{p(z)}{q(z)}
ight)m{p}(z)dz \ &\geq \sup_{f\in\mathcal{H}} - ext{E}_{m{P}}f(m{X}) + 1 - ext{E}_{m{Q}}\exp\left(-f(m{Y})
ight) \ &pprox \sup_{f\in\mathcal{H}}\left[-rac{1}{n}\sum_{j=1}^n f(m{x}_i) - rac{1}{n}\sum_{i=1}^n \exp(-f(m{y}_i))
ight] + 1 \end{split}$$

This is a

 \mathbf{KL}

Approximate

Lower-bound

Estimator.

$$egin{split} D_{KL}(m{P},m{Q}) &= \int \log\left(rac{p(z)}{q(z)}
ight)m{p}(z)dz \ &\geq \sup_{f\in\mathcal{H}} - ext{E}_{m{P}}f(m{X}) + 1 - ext{E}_{m{Q}}\exp\left(-f(m{Y})
ight) \ &pprox \sup_{f\in\mathcal{H}}\left[-rac{1}{n}\sum_{j=1}^n f(m{x}_i) - rac{1}{n}\sum_{i=1}^n \exp(-f(m{y}_i))
ight] + 1 \end{split}$$

This is a

K

A L

2

 \mathbf{E}

$$egin{split} D_{KL}(P,oldsymbol{Q}) &= \int \log\left(rac{p(z)}{q(z)}
ight) p(z)dz \ &\geq \sup_{f\in\mathcal{H}} - ext{E}_P f(X) + 1 - ext{E}_oldsymbol{Q}\exp\left(-f(oldsymbol{Y})
ight) \ &pprox \sup_{f\in\mathcal{H}} \left[-rac{1}{n}\sum_{j=1}^n f(x_i) - rac{1}{n}\sum_{i=1}^n \exp(-f(oldsymbol{y_i}))
ight] + 1 \end{split}$$

The KALE divergence

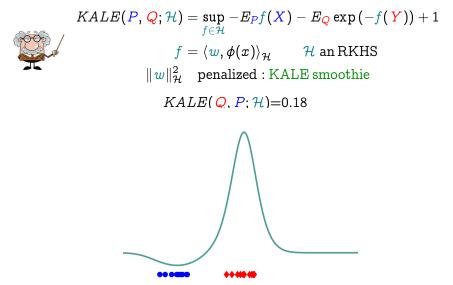
1

$$egin{aligned} & ext{KALE}(P, \, oldsymbol{Q}; \mathcal{H}) = \sup_{f \in \mathcal{H}} - E_P f(X) - E_{oldsymbol{Q}} \exp\left(-f(\, oldsymbol{Y})
ight) + 1 \ & f = \langle w, \phi(x)
angle_{\mathcal{H}} \qquad \mathcal{H} ext{ an RKHS} \ & \|w\|_{\mathcal{H}}^2 \quad ext{penalized} : \end{aligned}$$

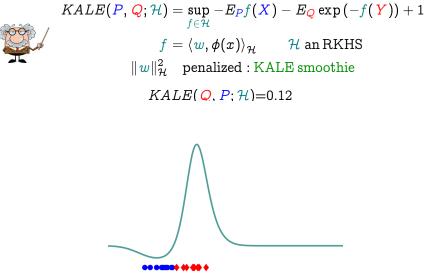
Glaser, Arbel, G. "KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support," (NeurIPS 2021, Section 2) 16/35

$$egin{aligned} & ext{KALE}(P, oldsymbol{Q}; \mathcal{H}) = \sup_{f \in \mathcal{H}} - E_P f(X) - E_oldsymbol{Q} \exp\left(-f(oldsymbol{Y})
ight) + 1 \ & f = \langle w, \phi(x)
angle_{\mathcal{H}} \qquad \mathcal{H} ext{ an RKHS} \ & \|w\|_{\mathcal{H}}^2 \quad ext{penalized} : ext{KALE smoothie} \end{aligned}$$

Glaser, Arbel, G. "KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support," (NeurIPS 2021, Section 2) 16/35



Glaser, Arbel, G. "KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support," (NeurIPS 2021, Section 2)



Glaser, Arbel, G. "KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support," (NeurIPS 2021, Section 2) 16/35

Topological properties of KALE (1)

Key requirements on \mathcal{H} and \mathcal{X} :

- Compact domain \mathcal{X} ,
- \mathcal{H} dense in the space $C(\mathcal{X})$ of continuous functions on \mathcal{X} wrt $\|\cdot\|_{\infty}$.
- If $f \in \mathcal{H}$ then $-f \in \mathcal{H}$ and $cf \in \mathcal{H}$ for $0 \leq c \leq C_{\max}$.

Theorem: $KALE(P, Q; \mathcal{H}) \geq 0$ and $KALE(P, Q; \mathcal{H}) = 0$ iff P = Q.

Zhang, Liu, Zhou, Xu, and He. "On the Discrimination-Generalization Tradeoff in GANs" (ICLR 2018, Corollary 2.4; Theorem B.1) Arbel, Liang, G. (ICLR 2021, Proposition 1)

Topological properties of KALE (1)

Key requirements on \mathcal{H} and \mathcal{X} :

- Compact domain \mathcal{X} ,
- \mathcal{H} dense in the space $C(\mathcal{X})$ of continuous functions on \mathcal{X} wrt $\|\cdot\|_{\infty}$.
- If $f \in \mathcal{H}$ then $-f \in \mathcal{H}$ and $cf \in \mathcal{H}$ for $0 \leq c \leq C_{\max}$.

Theorem: $KALE(P, Q; \mathcal{H}) \geq 0$ and $KALE(P, Q; \mathcal{H}) = 0$ iff P = Q.

 \mathcal{H} dense in $C(\mathcal{X})$ for $\mathcal{X} \subset \mathbb{R}^d$ when:

 $\mathcal{H} = ext{span}\{\sigma(w op x + b) : [w, b] \in \Theta\}$ $\sigma(u) = ext{max}\{u, 0\}^{lpha}, \, lpha \in \mathbb{N}, \, ext{and} \, \{\lambda heta : \lambda > 0, heta \in \Theta\} = \mathbb{R}^{d+1}.$

Zhang, Liu, Zhou, Xu, and He. "On the Discrimination-Generalization Tradeoff in GANs" (ICLR 2018, Corollary 2.4; Theorem B.1) Arbel, Liang, G. (ICLR 2021, Proposition 1)

Topological properties of KALE (2)

Additional requirement: all functions in \mathcal{H} Lipschitz in their inputs with constant L

Theorem: $KALE(P, Q^n; \mathcal{H}) \to 0$ iff $Q^n \to P$ under the weak topology.

Liu, Bousquet, Chaudhuri. "Approximation and Convergence Properties of Generative Adversarial Learning" (NeurIPS 2017); Arbel, Liang, G. (ICLR 2021, Proposition 1) ^{18/35}

Topological properties of KALE (2)

Additional requirement: all functions in \mathcal{H} Lipschitz in their inputs with constant L

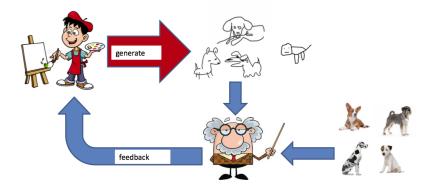
Theorem: $KALE(P, Q^n; \mathcal{H}) \to 0$ iff $Q^n \to P$ under the weak topology.

Partial proof idea:

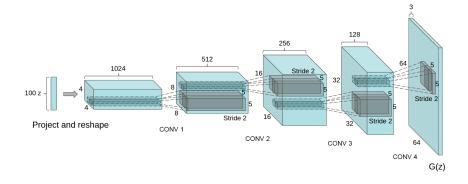
$$egin{aligned} & \mathit{KALE}(\mathit{P}, \mathcal{Q}; \mathcal{H}) = -\int f \, d\mathit{P} - \int \exp(-f) d\mathcal{Q} + 1 \ & = \int f(x) d\mathcal{Q}(x) - f(x') d\mathit{P}(x') \ & -\int \underbrace{(\exp(-f) + f - 1)}_{\geq 0} d\mathcal{Q} \ & \leq \int f(x) d\mathcal{Q}(x) - f(x') d\mathit{P}(x') \leq LW_1(\mathit{P}, \mathcal{Q}) \end{aligned}$$

Liu, Bousquet, Chaudhuri. "Approximation and Convergence Properties of Generative Adversarial Learning" (NeurIPS 2017); Arbel, Liang, G. (ICLR 2021, Proposition 1) ^{18/35}

Visual notation: GAN setting

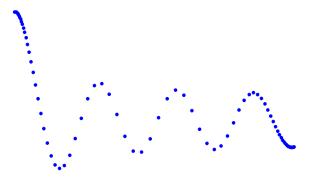


Reminder: the generator



Radford, Metz, Chintala, ICLR 2016

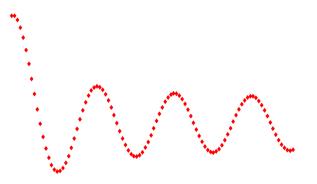
Target distribution P



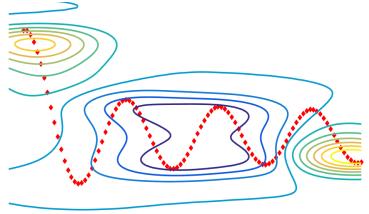
GAN (generator)

$$X \sim Q_{\theta} \quad \Longleftrightarrow \quad X = B_{\theta}(Z), \quad Z \sim \eta,$$

correct support but wrong mass



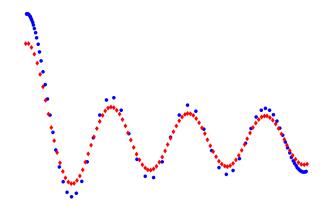
Log energy function and Q_{θ}



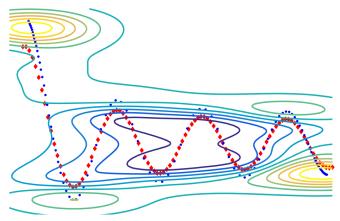
Key:

- Orange: increase mass
- Blue: reduce mass

Target distribution P and GAN (generator) Q_{θ} , wrong support and wrong mass



Log energy function, P, and Q_{θ}



Key:

- Orange: increase mass
- Blue: reduce mass

Define a model $Q_{B_{\theta},E}$ as follows:

Sample from generator with parameters θ

$$X \sim \mathcal{Q}_{ heta} \iff X = \mathcal{B}_{ heta}(Z), \quad Z \sim \eta$$

Reweight the samples according to importance weights:

$$f_{oldsymbol{Q},E}(x)=rac{\exp(-E(x))}{Z_{oldsymbol{Q}_{ heta},E}},\qquad Z_{oldsymbol{Q},E}=\int\exp(-E(x))doldsymbol{Q}_{oldsymbol{ heta}}(x),$$

where $E \in \mathcal{E}$, the energy function class.

 $f_{Q,E}(x)$ is Radon-Nikodym derivative of $Q_{B_{\theta},E}$ wrt Q_{θ} .

- When Q_θ has density wrt Lebesgue on X, standard energy-based model (special case)
- Sample from model via HMC on posterior of Z.

Define a model $Q_{B_{\theta},E}$ as follows:

Sample from generator with parameters θ

$$X\sim oldsymbol{Q}_{oldsymbol{ heta}} \quad \Longleftrightarrow \quad X=oldsymbol{B}_{oldsymbol{ heta}}(Z), \quad Z\sim \eta$$

Reweight the samples according to importance weights:

$$f_{\mathcal{Q},E}(x)=rac{\exp(-E(x))}{Z_{\mathcal{Q}_{m{ heta}},E}},\qquad Z_{\mathcal{Q},E}=\int\exp(-E(x))d\mathcal{Q}_{m{ heta}}(x),$$

where $E \in \mathcal{E}$, the energy function class.

 $f_{Q,E}(x)$ is Radon-Nikodym derivative of $Q_{B_{\theta},E}$ wrt Q_{θ} .

 When Q_θ has density wrt Lebesgue on X, standard energy-based model (special case)

Sample from model via HMC on posterior of Z.

Define a model $Q_{B_{\theta},E}$ as follows:

Sample from generator with parameters θ

$$X\sim oldsymbol{Q}_{oldsymbol{ heta}} \quad \Longleftrightarrow \quad X=oldsymbol{B}_{oldsymbol{ heta}}(Z), \quad Z\sim \eta$$

Reweight the samples according to importance weights:

$$f_{\mathcal{Q},E}(x)=rac{\exp(-E(x))}{Z_{\mathcal{Q}_{\theta},E}},\qquad Z_{\mathcal{Q},E}=\int\exp(-E(x))d\mathcal{Q}_{ heta}(x),$$

where $E \in \mathcal{E}$, the energy function class.

 $f_{Q,E}(x)$ is Radon-Nikodym derivative of $Q_{B_{\theta},E}$ wrt Q_{θ} .

 When Q_θ has density wrt Lebesgue on X, standard energy-based model (special case)

Sample from model via HMC on posterior of Z.

Define a model $Q_{B_{\theta},E}$ as follows:

Sample from generator with parameters θ

$$X\sim oldsymbol{Q}_{oldsymbol{ heta}} \quad \Longleftrightarrow \quad X=oldsymbol{B}_{oldsymbol{ heta}}(Z), \quad Z\sim \eta$$

Reweight the samples according to importance weights:

$$f_{\mathcal{Q},E}(x)=rac{\exp(-E(x))}{Z_{\mathcal{Q}_{\theta},E}},\qquad Z_{\mathcal{Q},E}=\int\exp(-E(x))d\mathcal{Q}_{ heta}(x),$$

where $E \in \mathcal{E}$, the energy function class.

 $f_{Q,E}(x)$ is Radon-Nikodym derivative of $Q_{B_{\theta},E}$ wrt Q_{θ} .

 When Q_θ has density wrt Lebesgue on X, standard energy-based model (special case)

■ Sample from model via HMC on posterior of Z.

```
Arbel, Zhou, G. (ICLR 2021)
```

How do we learn the energy E?

How do we learn the energy E?

Fit the model using Generalized Log-Likelihood:

$$\mathcal{L}_{P,oldsymbol{Q}}(E):=\int \log(f_{oldsymbol{Q},E})dP=-\int E\,dP-\log Z_{oldsymbol{Q},E}$$

- When $KL(P, Q_{\theta})$ well defined, above is Donsker-Varadhan lower bound on KL
 - tight when $E(z) = -\log(p(z)/q(z))$.
- However, Generalized Log-Likelihood still defined when P and Q_θ mutually singular (as long as E smooth)!

Fit the model using Generalized Log-Likelihood:

$$\mathcal{L}_{P, \mathcal{Q}}(E) := \int \log(f_{\mathcal{Q}, E}) dP = -\int E dP - \log \int \exp(-E) d\mathcal{Q}_{\theta}$$

Fit the model using Generalized Log-Likelihood:

$$\mathcal{L}_{P,\mathcal{Q}}(E) := \int \log(f_{\mathcal{Q},E}) dP = -\int E dP - \log \int \exp(-E) d\mathcal{Q}_{\theta}$$

One last trick...(convexity of exponential)

$$-\log\int \exp(-E)d\mathcal{Q}_{ heta}\geq -c-e^{-c}\int \exp(-E)d\mathcal{Q}_{ heta}+1$$

tight whenever $c = \log \int \exp(-E) dQ_{\theta}$.

Fit the model using Generalized Log-Likelihood:

$$\mathcal{L}_{P,\mathcal{Q}}(E) := \int \log(f_{\mathcal{Q},E}) dP = -\int E dP - \log \int \exp(-E) d\mathcal{Q}_{\theta}$$

One last trick...(convexity of exponential)

$$-\log\int\exp(-E)dQ_{ heta}\geq -c-e^{-c}\int\exp(-E)dQ_{ heta}+1$$

tight whenever $c = \log \int \exp(-E) dQ_{\theta}$.

Generalized Log-Likelihood has the lower bound:

$$egin{aligned} \mathcal{L}_{P,oldsymbol{Q}}(E) &\geq -\int (E+c)dP - \int \exp(-E-c)doldsymbol{Q}_{ heta} + 1 \ &:= \mathcal{F}(P,oldsymbol{Q}_{ heta};\mathcal{E}+\mathbb{R}) \end{aligned}$$

Fit the model using Generalized Log-Likelihood:

$$\mathcal{L}_{P,\mathcal{Q}}(E) := \int \log(f_{\mathcal{Q},E}) dP = -\int E dP - \log \int \exp(-E) d\mathcal{Q}_{\theta}$$

One last trick...(convexity of exponential)

$$-\log\int\exp(-E)dQ_{ heta}\geq -c-e^{-c}\int\exp(-E)dQ_{ heta}+1$$

tight whenever $c = \log \int \exp(-E) dQ_{\theta}$.

Generalized Log-Likelihood has the lower bound:

$$egin{aligned} \mathcal{L}_{P,oldsymbol{Q}}(E) &\geq -\int (E+c)dP - \int \exp(-E-c)doldsymbol{Q}_{ heta} + 1 \ &:= \mathcal{F}(P,oldsymbol{Q}_{ heta};\mathcal{E}+\mathbb{R}) \end{aligned}$$

This is the KALE! with function class $\mathcal{E} + \mathbb{R}$.

Fit the model using Generalized Log-Likelihood:

$$\mathcal{L}_{P,\mathcal{Q}}(E) := \int \log(f_{\mathcal{Q},E}) dP = -\int E dP - \log \int \exp(-E) d\mathcal{Q}_{\theta}$$

One last trick...(convexity of exponential)

$$-\log\int\exp(-E)dQ_{ heta}\geq -c-e^{-c}\int\exp(-E)dQ_{ heta}+1$$

tight whenever $c = \log \int \exp(-E) dQ_{\theta}$.

Generalized Log-Likelihood has the lower bound:

$$egin{aligned} \mathcal{L}_{P,oldsymbol{Q}}(E) &\geq -\int (E+c)dP - \int \exp(-E-c)doldsymbol{Q}_{oldsymbol{ heta}} + 1 \ &:= \mathcal{F}(P,oldsymbol{Q}_{oldsymbol{ heta}};\mathcal{E}+\mathbb{R}) \end{aligned}$$

Jointly maximizing yields the maximum likelihood energy E^* and corresponding $c^* = \log \int \exp(-E) d Q_{\theta}$.

Training the base measure (generator)

Recall the generator:

$$X = B_{\theta}(Z), \quad Z \sim \eta$$

Define: $\mathcal{K}(\theta) := \mathcal{F}(P, Q_{\theta}; \mathcal{E} + \mathbb{R})$

Training the base measure (generator)

Recall the generator:

Define: $\mathcal{K}(\boldsymbol{\theta}) := \mathcal{F}(\boldsymbol{P})$

$$egin{aligned} X &= \mathcal{B}_{m{ heta}}(Z), \quad Z \sim \eta \ \mathcal{Q}_{m{ heta}}; \mathcal{E} + \mathbb{R}) \end{aligned}$$

Theorem: \mathcal{K} is lipschitz and differentiable for almost all $\theta \in \Theta$ with: $\nabla \mathcal{K}(\theta) = Z_{Q,E^*}^{-1} \int \nabla_x E^*(B_{\theta}(z)) \nabla_{\theta} B_{\theta}(z) \exp(-E^*(B_{\theta}(z))) \eta(z) dz.$ where E^* achieves supremum in $\mathcal{F}(P, Q; \mathcal{E} + \mathbb{R}).$

Training the base measure (generator)

Recall the generator:

$$X = egin{split} B_{m{ heta}}(Z), & Z \sim \eta \end{split}$$
 Define: $\mathcal{K}(m{ heta}) := \mathcal{F}(P, oldsymbol{Q}_{m{ heta}}; \mathcal{E} + \mathbb{R})$

Theorem: \mathcal{K} is lipschitz and differentiable for almost all $\theta \in \Theta$ with: $\nabla \mathcal{K}(\theta) = Z_{Q,E^*}^{-1} \int \nabla_x E^*(B_{\theta}(z)) \nabla_{\theta} B_{\theta}(z) \exp(-E^*(B_{\theta}(z))) \eta(z) dz.$ where E^* achieves supremum in $\mathcal{F}(P, Q; \mathcal{E} + \mathbb{R})$.

Assumptions:

- Functions in \mathcal{E} parametrized by $\psi \in \Psi$, where Ψ compact,
 - jointly continous w.r.t. (ψ, x) , L-lipschitz and L-smooth w.r.t. x.
- $(\theta, z) \mapsto B_{\theta}(z)$ jointly continuous wrt $(\theta, z), z \mapsto B_{\theta}(z)$ uniformly Lipschitz w.r.t. z, lipschitz and smooth wrt θ (see paper: constants depend on z)

Sampling from the model

$$f_{B,E}(x):=rac{\exp(-E(x))}{Z_{oldsymbol{Q},E}}$$

Sampling from the model

Consider end-to-end model $Q_{B_{\theta},E}$, where recall that $X = B_{\theta}(Z), \quad Z \sim \eta,$

$$f_{B,E}(x):=rac{\exp(-E(x))}{Z_{oldsymbol{Q},E}}$$

For a test function g,

$$\int g(x) d Q_{B,E}(x) = \int g(B(z)) f_{B,E}(B(z)) \eta(z) dz$$

Posterior latent distribution therefore

$$\nu_{B,E}(z) = \eta(z) f_{B,E}(B(z))$$

Sampling from the model

Consider end-to-end model $Q_{B_{\theta},E}$, where recall that $X = B_{\theta}(Z), \quad Z \sim \eta,$

$$f_{B,E}(x):=rac{\exp(-E(x))}{Z_{oldsymbol{Q},E}}$$

For a test function g,

$$\int g(x) d Q_{B,E}(x) = \int g(B(z)) f_{B,E}(B(z)) \eta(z) dz$$

Posterior latent distribution therefore

$$u_{B,E}(z)=\eta(z)f_{B,E}(B(z))$$

Sample $z \sim \nu_{B,E}$ via Langevin diffusion-derived algorithms (MALA, ULA, HMC,...) to exploit gradient information.

Generate new samples in \mathcal{X} via

$$X \sim \boldsymbol{Q}_{\boldsymbol{B},\boldsymbol{E}} \quad \Longleftrightarrow \quad Z \sim \boldsymbol{\nu}_{\boldsymbol{B},\boldsymbol{E}}, \quad X = \boldsymbol{B}_{\boldsymbol{\theta}}(Z).$$

27/35

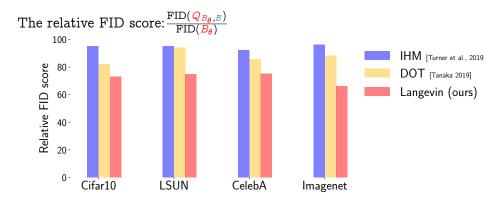
Experiments

Examples: sampling at modes

Tempered GEBM Cifar10 samples at different stages of sampling using a Kinetic Langevin Algorithm (KLA). Early samples \rightarrow late samples. Model run at *low temperature* ($\beta = 100$) for better quality samples.



Sampling at modes: results



For a given generator B_{θ} and energy E, samples always better (FID score) than generator alone.

Examples: moving between modes

Tempered GEBM Cifar10 samples at different stages of sampling using KLA. Early samples \rightarrow late samples. Model run at *lower friction* (but still low temperature, $\beta = 100$) for mode exploration.

Summary

Generalized energy based model:

- End-to-end model incorporating generator and critic
- Always better samples than generator alone.
- ICLR 2021

https://github.com/MichaelArbel/GeneralizedEBM

arXiv.org > stat > arXiv:2003.05033

Statistics > Machine Learning

[Submitted on 10 Mar 2020 (v1), last revised 24 Jun 2020 (this version, v3)]

Generalized Energy Based Models

Michael Arbel, Liang Zhou, Arthur Gretton

Summary

Generalized energy based model:

- End-to-end model incorporating generator and critic
- Always better samples than generator alone.
- ICLR 2021

https://github.com/MichaelArbel/GeneralizedEBM

ICLR 2021:

arXiv.org > cs > arXiv:2012.00780	Search Help Advar
Computer Science > Machine Learning	
[Submitted on 1 Dec 2020 (v1), last revised 5 Jun 2021 (this version, v4)]	
Refining Deep Generative Models via Di Gradient Flow	scriminator
Abdul Fatir Ansari, Ming Liang Ang, Harold Soh	
ICLR 2021:	
arXiv.org > cs > arXiv:2010.00654	Searc Help I
Computer Science > Machine Learning	
(Submitted on 1 Oct 2020 (v1), last revised 9 Feb 2021 (this version, v2)) VAEBM: A Symbiosis between Variatio Autoencoders and Energy-based Moo	

Zhisheng Xiao, Karsten Kreis, Jan Kautz, Arash Vahdat

Questions?

Post-credit scene: MMD flow

From NeurIPS 2019:

Maximum Mean Discrepancy Gradient Flow

Michael Arbel Gatsby Computational Neuroscience Unit University College London michael.n.arbel@gmail.com

> Adil Salim Visual Computing Center KAUST adil.salim@kaust.edu.sa

Anna Korba Gatsby Computational Neuroscience Unit University College London a.korba@ucl.ac.uk

Arthur Gretton Gatsby Computational Neuroscience Unit University College London arthur.gretton@gmail.com

Sanity check: reduction to EBM case

