# Learning Uninformative Representations

Richard Zemel

Simons Workshop Adversarial Approaches in Machine Learning

February, 2022



### Removing Information from Representations

Long-standing aim of representation learning: preserve information in data

- Infomax: objective is to learn a representation Z of input X that maximizes the average Shannon mutual information between Z and X (Linsker 1988)
- related to the principle of redundancy reduction proposed for biological sensory processing by Barlow (1961)
- one application: Independent Components Analysis -- decompose input into non-Gaussian independent components (Comon, 1991; Bell & Sejnowski, 1997)

However, in many contexts, a key aim is instead to *remove* information about particular quantities

### (1). Info Removal: Remove spurious features

Aim to learn predictor, factor out particular known spurious features

Example: diabetes predictors, uncovering factors beyond BMI



### (2). Info Removal: Information Bottleneck

Form representation *T* that only retains information in input *X* that is needed to predict *Y* 

$$\min_{p(t|x)} \ I(X;T) - eta I(T;Y),$$

(Tishby, Pereira & Bialek, 1999)

### (3). Info Removal: Self-Supervised Learning



InfoMin Principle: Form representation that retains information in multiple views of input relevant to target, loses all other information between views

maximize  $I(\mathbf{v_1}; \mathbf{y})$  and  $I(\mathbf{v_2}; \mathbf{y})$  minimize  $I(\mathbf{v_1}; \mathbf{v_2})$ 

(Tian, et al, 2020)

### (4). Info Removal: Invariant learning

Training data: disjoint "domains"/"environments"

Assumes each example comes with side-information *c* indicating which environment data from

Environment-based loss:

$$\ell_c(f) = \frac{1}{n_c} \sum_{i=1}^n \ell(f(x_i), y_i) \mathbb{1}\{c_i = c\}$$

| Dataset         | Domain               | IS                             |          |           |       |        |
|-----------------|----------------------|--------------------------------|----------|-----------|-------|--------|
| Colored MNIST   | +90%                 | +80%<br>3<br>rrelation between | -90%     | 1)        |       |        |
| Rotated MNIST   | 0°<br>9              | 15°<br>٦                       | 30°      | 45°       | 60°   | 75°    |
| VLCS            | Caltech101           | LabelMe                        | SUN09    | VOC2007   |       |        |
| PACS            | Art                  | Cartoon                        | Photo    | Sketch    |       |        |
| Office-Home     | Art                  | Clipart                        | Product  | Photo     |       |        |
| Terra Incognita | L100<br>(camera trap | L38                            | L43      | L46       |       |        |
| DomainNet       | Clipart              | Infographic                    | Painting | QuickDraw | Photo | Sketch |

(Gulrajani and Lopez-Paz 2020)

### Invariant Learning

Invariant Learning: A form of domain generalization in which we generalize from training to test environments by **learning and predicting from invariant features** learned from environments seen in training

Aim of invariant learning: Discover features that reliably predict the class label regardless of the environment -- loses information about the environment

Invariant Risk Minimization: For input X<sup>e</sup> and labels Y<sup>e</sup>, find a transform  $\Phi$  of input space such that, P(Y<sup>e</sup> |  $\Phi$ (X<sup>e</sup>)) is the same for all environments e (Arjovsky et al, 2019)

## Illustration of Invariant Learning

### Colored MNIST

#### Digits with misleading colors

|             | Y=0  | Y=1  |
|-------------|------|------|
| {0,1,2,3,4} | 0.75 | 0.25 |
| {5,6,7,8,9} | 0.25 | 0.75 |

The optimal classification rate on the basis of the shape only is 75%.

Random guess is 50%.

| ~ | T          | Y |   | 0     |    |          | 7 | 7 | 0            | 2  | 7 |
|---|------------|---|---|-------|----|----------|---|---|--------------|----|---|
| 9 | 8          | 0 | 9 | 4     | 1  | 4        | 4 | 6 | 0            | 4  | 5 |
|   |            |   |   |       |    |          |   |   |              |    |   |
|   |            |   |   |       |    |          |   |   |              |    |   |
|   |            |   |   |       | Do | <b>.</b> |   |   | <b>C</b> 110 |    |   |
|   |            |   |   |       | Re | a        |   |   | Gre          | en |   |
|   | Y=         | 0 |   |       | е  |          |   |   | 1 –          | е  |   |
|   | <b>Y</b> = | 1 |   | 1 - e |    |          |   | е |              |    |   |
|   |            |   |   |       |    |          |   |   |              |    |   |

409112432738

During the training  $e \in \{0.8, 0.9\}$ . The color is a better indicator than the shape, but not a stable one.

Then we test with e = 0.1.

| Training with $e \in \{0.8, 0.9\}$                                     | Testing with $e \in \{0.8, 0.9\}$ | Testing with $e = 0.1$ |
|------------------------------------------------------------------------|-----------------------------------|------------------------|
| Minimize empirical risk<br>after mixing data from<br>both environments | 84.3%                             | 10.1%                  |
| Minimize empirical risk<br>with invariant<br>regularization            | 70.0%                             | 70.0%                  |

Network is a MLP with 256 hidden units on 14x14 images.

Invariant regularization tuned high : regularization term is nearly zero.

## (5). Info Removal: Fair representation learning

Fair classification is the most common setup, involving:

- X, some data
- Y, a label to predict
- $\hat{Y}$ , the model prediction
- A, a sensitive attribute (race, gender, age, socio-economic status)

We want to learn a classifier which is:

- accurate
- 2 fair with respect to A

- Fair classification: learn  $X \xrightarrow{f} Z \xrightarrow{g} \hat{Y}$ 
  - encoder *f* , classifier *g*
- Fair representation: learn  $X \xrightarrow{f} Z \xrightarrow{g} \hat{Y}$
- Z = f(X) should:
  - Maintain useful information in X
  - Yield fair downstream classification for vendors g

(Zemel et al, 2014)

### Info Removal Methods: Distribution Matching

Match moments of distributions:

• consider distance between empirical statistics of the distributions:

$$\left\|\frac{1}{N_0}\sum_{i=1}^{N_0}\psi(\mathbf{x}_i) - \frac{1}{N_1}\sum_{i=1}^{N_1}\psi(\mathbf{x}'_i)\right\|^2$$

• estimate via kernel trick: Maximum Mean Discrepancy (Gretton, 2006)

$$\ell_{ ext{MMD}}(\mathbf{X}, \mathbf{X}') = rac{1}{N_0^2} \sum_{n=1}^{N_0} \sum_{m=1}^{N_0} k(\mathbf{x}_n, \mathbf{x}_m) + rac{1}{N_1^2} \sum_{n=1}^{N_1} \sum_{m=1}^{N_1} k(\mathbf{x}'_n, \mathbf{x}'_m) - rac{2}{N_0 N_1} \sum_{n=1}^{N_0} \sum_{m=1}^{N_1} k(\mathbf{x}_n, \mathbf{x}'_m)$$

• formulate as regularizer in VAE (Louizos et al, 2015)

$$\ell_{\text{MMD}}(\mathbf{Z}_{1s=0}, \mathbf{Z}_{1s=1}) = \| \mathbb{E}_{\tilde{p}(\mathbf{x}|s=0)}[\mathbb{E}_{q(\mathbf{z}_{1}|\mathbf{x},s=0)}[\psi(\mathbf{z}_{1})]] - E_{\tilde{p}(\mathbf{x}|s=1)}[\mathbb{E}_{q(\mathbf{z}_{1}|\mathbf{x},s=1)}[\psi(\mathbf{z}_{1})]] \|^{2}$$

### Info Removal Methods: Adversarial

$$\begin{split} & \mathcal{Y} \longleftarrow \overset{\text{Classifier}}{g(Z)} \longleftarrow \overset{\text{Adversary}}{h(Z)} \overset{\text{Ad$$

## Invariant Learning with Unknown Environments

What if environment labels are not known?

- environment labels may not be known for all applications
- may be suboptimal when are known

*Subgroup fairness* without demographic labels: Multicalibration [Kim et al 2018], Fairness Gerrymandering [Kearns et al 2018]

#### Fairness for Unobserved Characteristics: Insights from Technological Impacts on Queer Communities

Nenad Tomasev nenadt@deepmind.com DeepMind London, United Kingdom

Jackie Kay\* kayj@deepmind.com DeepMind London, United Kingdom Kevin R. McKee kevinrmckee@deepmind.com DeepMind London, United Kingdom

Shakir Mohamed shakir@deepmind.com DeepMind London, United Kingdom

How to define environments that will help identify those features?

How to identify what information we want to be removed from the representation?

### **Environment Inference for Invariant Learning**

*ICML 2021* arXiv:2010.07249

Elliot Creager

Joern Jacobsen





### Notation & Definitions

input space  $\mathcal{X}$ , set of environments (a.k.a. "domains")  $\mathcal{E}$ , target space  $\mathcal{Y}$ , representation space  $\mathcal{H}$ observational data  $x, y, e \sim p^{obs}(x, y, e)$  with  $x \in \mathcal{X}, y \in \mathcal{Y}$ , and  $e \in \mathcal{E}$ , loss  $\ell : \mathcal{H} \times \mathcal{Y} \to \mathbb{R}$ 

Predictor  $w \circ \Phi$  comprises linear classifier  $w : \mathcal{H} \to \mathcal{Y}$ applied to representation extractor ("model")  $\Phi : \mathcal{X} \to \mathcal{H}$  $C^{ERM}(\Phi) = \mathbb{E}_{p^{obs}(x,y,e)}[\ell(\Phi(x),y)]$ 

• Domain Generalization: low error rates on samples  $p(x, y | e_{test})$  from unseen  $e_{test} \notin \mathcal{E}^{obs}$ 

• Domain Adaptation: model parameters can be adapted at test time using unlabelled samples



Many parallels between invariant learning and algorithmic fairness

Consider the sensitive attribute in fairness analogous to environment indicator *e* 

• IRM aims to minimize Environment Invariance Constraint:

$$\mathbb{E}[y|\Phi(x) = h, e_1] = \mathbb{E}[y|\Phi(x) = h, e_2]$$
$$\forall h \in \mathcal{H} \ \forall e_1, e_2 \in \mathcal{E}^{obs}.$$

• Group-sufficiency [Chouldechova et al, 2017; Liu et al, 2018]:

match  $\mathbb{E}[y|S(x), e] \ \forall \ e$ 

### **Environment Inference for Invariant Learning**

Hypothesis: Learning systems tend to find shortcuts (Geirhos et al, 2020)





environments defined based on shortcuts  $\rightarrow$  invariant learning will focus on other features

Example: shortcut classifier relies on color in Color-MNIST assign E1=red; E2=green → color features are not invariant across domains

Idea: Find "worst case" environments

### **Environment Inference for Invariant Learning**

Recall the aim is to satisfy the Environment Invariance Constraint (EIC):

$$\mathbb{E}[y|\Phi(x) = h, e_1] = \mathbb{E}[y|\Phi(x) = h, e_2]$$
$$\forall h \in \mathcal{H} \ \forall e_1, e_2 \in \mathcal{E}^{obs}.$$

Per-environment risk:

$$R^e = \mathbb{E}_{p^{obs}(x,y|e)}[\ell]$$

IRM regularizes ERM with a differentiable proxy to EIC:

$$C^{IRM}(\Phi) = \sum_{e \in \mathcal{E}^{obs}} R^e(\Phi) + \lambda ||\nabla_{\bar{w}} R^e(\bar{w} \circ \Phi)||.$$

Worst case environment found by maximizing EIC, based on proxy regularizer

# Summary of EIIL

- Requirement of hand-crafted environments replaced with reference model
- Reference model can be learned directly from observational data: maps X to Y, defines putative invariant features
- Experiments: environment assignment per example a Bernoulli probability q

1. Input reference model  $\tilde{\Phi}$ 

- 2. Fix  $\Phi \leftarrow \tilde{\Phi}$  and fully optimize the inner loop of (EIIL) to infer environments  $\tilde{\mathbf{q}}_i(e) = \tilde{q}(e|x_i, y_i)$
- 3. Fix  $\mathbf{q} \leftarrow \tilde{\mathbf{q}}$  and fully optimize the outer loop to yield the new model  $\Phi$ .

### EIIL Results: Color-MNIST

| Method | Handcrafted<br>Environments | Train          | Test                             |
|--------|-----------------------------|----------------|----------------------------------|
| ERM    | ×                           | $86.3 \pm 0.1$ | $13.8\pm0.6$                     |
| IRM    | $\checkmark$                | $71.1\pm0.8$   | $65.5\pm2.3$                     |
| EIIL   | ×                           | $73.7\pm0.5$   | $\textbf{68.4} \pm \textbf{2.7}$ |

### EIIL Results: Waterbirds





### ERM: poor worst-group performance

GDRO (oracle) can mitigate [Sagawa et al, 2020]

EIIL: infer environments, then optimize GDRO based on those

| Method        | Train (avg) | Test (avg) | Test (worst group) |
|---------------|-------------|------------|--------------------|
| ERM           | 100.0       | 97.3       | 60.3               |
| EIIL          | 99.6        | 96.9       | 78.7               |
| GDRO (oracle) | 99.1        | 96.6       | 84.6               |

### EIIL: Dependence on reference model



## Discussion & Open Questions

### EIIL

- Important aim is to discover environments (sensitive groups)
- Challenging -- dependent on reference model -- can we infer target new environments
- What kinds of distribution shift, out-of-context generalization are feasible, relevant?

Current methods for removing information from representations are insufficient

- distribution matching does not scale to high dimensional, continuous representation space
- adversarial methods present computational challenges
- differentiable proxies have unclear relationship to desired invariance properties