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Removing Information from Representations

Long-standing aim of representation learning: preserve information in data

* Infomax: objective is to learn a representation Z of input X that maximizes the
average Shannon mutual information between Z and X (Linsker 1988)

* related to the principle of redundancy reduction proposed for biological sensory
processing by Barlow (1961)

e one application: Independent Components Analysis -- decompose input into non-
Gaussian independent components (Comon, 1991; Bell & Sejnowski, 1997)

However, in many contexts, a key aim is instead to remove information about
particular quantities



(1). Info Removal: Remove spurious features

Aim to learn predictor, factor out particular known spurious features

Example: diabetes predictors, uncovering factors beyond BMI

Deriving ethnic-specific BMI cutoff points for assessing diabetes risk

Chiu M, Austin PC, Manuel DG, Shah BR, Tu JV.

Diabetes Care. 2011;34(8):1741-8.
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(2). Info Removal: Information Bottleneck

Form representation T that only retains information in input X that is needed to
predict Y

min I(X;T)— BI(T;Y)
p(t|z)

(Tishby, Pereira & Bialek, 1999)



(3). Info Removal: Self-Supervised Learning
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InfoMin Principle: Form representation that retains information in multiple
views of input relevant to target, loses all other information between views

maximize I(vi;y) and I(vz;y)

minimize I(vi;Vv2)

(Tian, et al, 2020)



(4). Info Removal: Invariant learning

Dataset Domains
Training data: disjoint “domains”/”environments” Colored MNIST . . .
(dg relation between color dlbl)
Assumes each example comes with side-information ¢ Rotated MNIST . . . . . .
indicating which environment data from bkl Lo SUNB  vocHO?

VLCS

Environment-based loss:
PACS
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DomainNet

(Gulrajani and Lopez-Paz 2020)



Invariant Learning

Invariant Learning: A form of domain generalization in which we generalize from
training to test environments by learning and predicting from invariant features
learned from environments seen in training

Aim of invariant learning: Discover features that reliably predict the class label
regardless of the environment -- loses information about the environment

Invariant Risk Minimization: For input X® and labels Y¢, find a transform ® of input
space such that, P(Y¢| D(X®)) is the same for all environments e (Arjovsky et al, 2019)



lllustration of Invariant Learning

M[a[7[71212[Y13 =737
Colored MINIST ERNERARGEEE
7074 71al¢[6led|+

Digits with misleading colors

| Y=0 | v=1
EREYN o075 0.25
ANEX)Y 025 0.75

The optimal classification rate on
the basis of the shape only is 75%.

Random guess is 50%.

Y=0 e 1—e

o

During the training e € { 0.8,0.9 }.
The color is a better indicator than
the shape, but not a stable one.

Then we test with e = 0.1.

Training with Testing with Testing with
e €{0.8,0.9} e€{0.8,0.9} e=0.1

Minimize empirical risk

after mixing data from 84.3% 10.1%
both environments
Minimize empirical risk
with invariant 70.0% 70.0%

regularization

=*Network is a MLP with 256 hidden units on 14x14 images.
=Invariant regularization tuned high : regularization term is nearly zero.




(5). Info Removal: Fair representation learning

Fair classification is the most common setup, involving:
e X, some data
e Y, a label to predict

° \A/, the model prediction

o A, a sensitive attribute (race, gender, age, socio-economic status)

We want to learn a classifier which is:
@ accurate
@ fair with respect to A

. . f A
o Fair classification: learn X > Z 5 Y
e encoder f, classifier g

@ Fair representation: learn X 74y
o Z = f(X) should:

e Maintain useful information in X
e Yield fair downstream classification for vendors g

(Zemel et al, 2014)



Info Removal Methods: Distribution Matching

Match moments of distributions:

e consider distance between empirical statistics of the distributions:
2
N1

1 1 ,
N, Z¢(Xi) A Z¢(Xi)

=1

e estimate via kernel trick: Maximum Mean Discrepancy (Gretton, 2006)
No N

gMMD X X, N2 Z Z k(Xn,Xm N2 Z Z k N02N1 Z Z k‘(Xn,X;n).

n=1 m=1 n=1m=1 n=1m=1

* formulate as regularizer in VAE (Louizos et al, 2015)

fMMD(lezoa Z1s=1) . || ]Eﬁ(x|s=O) []EQ(le)(,S:O) W(Zl)]] - Eﬁ(xlszl)[]Eq(zllx,s=1)W(Zl)]]”2



Info Removal Methods: Adversarial
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Invariant Learning with Unknown Environments

What if environment labels are not known?
* environment labels may not be known for all applications
* may be suboptimal when are known

Subgroup fairness without demographic labels: Multicalibration [Kim et al 2018], Fairness
Gerrymandering [Kearns et al 2018]

Fairness for Unobserved Characteristics:
Insights from Technological Impacts on Queer Communities
Nenad Tomasev Kevin R. McKee

nenadt@deepmind.com kevinrmckee @deepmind.com
DeepMind DeepMind

London, United Kingdom London, United Kingdom
Jackie Kay* Shakir Mohamed
kayj@deepmind.com shakir@deepmind.com
DeepMind DeepMind
London, United Kingdom London, United Kingdom

How to define environments that will help identify those features?

How to identify what information we want to be removed from the representation?



Environment Inference for Invariant Learning

ICML 2021 arXiv:2010.07249

Elliot Creager Joern Jacobsen



https://arxiv.org/pdf/2010.07249.pdf

Notation & Definitions

input space X, set of environments (a.k.a. “domains”) &, target space ), representation space H

observational data x, y, e ~ p"bs(x,)}, e) with x € X, y €Y, andec& lossl:HxY—R

Predictor w o ® comprises linear classifier w : H — Y

applied to representation extractor (“model”’) ¢ : X — H

CERM((I)) — Tk £(®(x),y)]

4
“p°bs (x,y,e)

« Domain Generalization: low error rates on samples P(%, y|€test) from unseen €ieqt & £obs

* Domain Adaptation: model parameters can be adapted at test time using unlabelled samples



Invariant Learning <) Fairness

Many parallels between invariant learning and algorithmic fairness

Consider the sensitive attribute in fairness analogous to environment indicator e

* |IRM aims to minimize Environment Invariance Constraint:

Ely|®(x) = h,e1] = Ely|®(z) = h, e2]
VheH Ve, e, € E.

e Group-sufficiency [Chouldechova et al, 2017; Liu et al, 2018]:

match Ely|S(z),e] Ve



Environment Inference for Invariant Learning

Hypothesis: Learning systems tend to find shortcuts (Geirhos et al, 2020)

environments defined based on shortcuts = invariant learning will focus on other features
Example: shortcut classifier relies on color in Color-MNIST
assign El=red; E2=green -

color features are not invariant across domains

ldea: Find “worst case” environments



Environment Inference for Invariant Learning

Recall the aim is to satisfy the Environment Invariance Constraint (EIC):

E[y‘q)(ilﬁ) — h) 61] — E[y|(1)(£l?) — h7 62]
VheH Ve, e € ES.

Per-environment risk:
R® = Epovs (g,y/e) |4
IRM regularizes ERM with a differentiable proxy to EIC:
CTEM(@) = Y R(®) + A||[VgR(w o @)||

eegobs

Worst case environment found by maximizing EIC, based on proxy regularizer



Summary of EllL

Requirement of hand-crafted environments replaced with reference model
Reference model can be learned directly from observational data: maps X to
Y, defines putative invariant features

Experiments: environment assignment per example a Bernoulli probability q

1. Input reference model P

2. Fix ® < ® and fully optimize the inner loop of (EIIL)
to infer environments q;(e) = q(e|z;, y;)

3. Fix q < q and fully optimize the outer loop to yield
the new model .




EIIL Results: Color-MNIST

Method  Handcrafted Train Test
Environments
ERM X 86.3 0.1 13.8+0.6
IRM v Tl =08 655+ 23
EIIL X 73.7 0.5 684+ 2.7




EIIL Results: Waterbirds

ERM: poor worst-group performance

GDRO (oracle) can mitigate [Sagawa et al, 2020]

ElIL: infer environments, then optimize GDRO based on those

Method Train (avg) Test (avg) Test (worst group)
ERM 100.0 97.3 60.3
EIIL 99.6 96.9 78.7

GDRO (oracle) 99.1 96.6 84.6




EIIL: Dependence on reference model

Accuracy (%)
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Discussion & Open Questions

ElIL

* Important aim is to discover environments (sensitive groups)

* Challenging -- dependent on reference model -- can we infer target new environments
* What kinds of distribution shift, out-of-context generalization are feasible, relevant?

Current methods for removing information from representations are insufficient

e distribution matching does not scale to high dimensional, continuous representation
space

e adversarial methods present computational challenges

* differentiable proxies have unclear relationship to desired invariance properties



