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Minimax Optimization

min
x∈X

max
y∈Y

ϕ(x, y)

Wide applications: game theory, reinforcement learning, robust optimization, and GANs, etc.

Figure: Games Figure: GANs
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Problem Class, Oracles, Complexity
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Smooth Minimax Optimization

min
x∈X

max
y∈Y

ϕ(x, y)

▶ Problem Class: F(Lx, Ly, Lxy, µx, µy)

▶ Smoothness constants: for all x, x1, x2 ∈ X , y, y1, y2 ∈ Y:

∥∇xϕ(x1, y)−∇xϕ(x2, y)∥ ≤ Lx∥x1 − x2∥; ∥∇yϕ(x1, y)−∇yϕ(x2, y)∥ ≤ Lxy∥x1 − x2∥

∥∇xϕ(x, y1)−∇xϕ(x, y2)∥ ≤ Lxy∥y1 − y2∥; ∥∇yϕ(x, y1)−∇yϕ(x, y2)∥ ≤ Ly∥y1 − y2∥

▶ Convexity constants: for all x, x1, x2 ∈ X , y, y1, y2 ∈ Y:

µx∥x1 − x2∥ ≤ ∥∇xϕ(x1, y)−∇xϕ(x2, y)∥; µy∥y1 − y2∥ ≤ ∥∇yϕ(x, y1)−∇yϕ(x, y2)∥

• µx > 0, strongly convex; µx = 0, convex; µx < 0, weakly convex

• µy > 0, strongly concave; µy = 0, concave; µy < 0, weakly concave
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Critical Regimes

▶ Convex-Concave (C-C)

▶ Strongly-Convex-Strongly-Concave (SC-SC)

(Extensive literature)

▶ Strongly-Convex-Concave (SC-C)

[The+19; LJJ20b; WL20; Yan+20] ...

▶ Nonconvex-Strongly-Concave (NC-SC)

[LJJ20a; LJJ20b; Zha+21; Li21] ...

▶ Nonconvex-Concave (NC-C)

[The+19; LJJ20a; LJJ20b; OLR20; Yan+20] ...

▶ Nonconvex-Nonconcave (NC-NC)

[Lin+18; DP18; FR20; JNJ20; DSZ21] ...
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The Classical (Balanced) Setting

▶ Balanced setting: µx = µy := µ ≥ 0, Lx = Ly = Lxy := L

▶ Variational inequalities with µ-strongly-montone and L-Lipschitz operator F :

Z = X × Y and F (z = [x; y]) = [∇xϕ(x, y);−∇yϕ(x, y)]

▶ Lower bound [NY83]: O(Lµ log 1
ϵ ) if µ > 0 and O(Lϵ ) if µ = 0

▶ Optimal first-order algorithms:

– Extragradient method (EG) [Kor76]: zt+1 = zt − ηF (zt − ηF (zt))

– Optimistic GDA [Pop80]: zt+1 = zt − η(2F (zt)− F (zt−1))

– Reflected-Forward-Backward Splitting [Mal15]: zt+1 = zt − ηF (2zt − zt−1)

– Accelerated dual extrapolation (DE) [NS06]
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The (Unbalanced) Strongly-Convex-Strongly-Concave Seting

▶ Generic setting: F(Lx, Ly, Lxy, µx, µy) with µx > 0, µy > 0

▶ Lower bound [ZHZ19]:

Ω

(√
Lx

µx
+

L2
xy

µxµy
+

Ly

µy
· log 1

ϵ

)

▶ Consider the bilinear coupled minimax problem:

min
x∈X

max
y∈Y

ϕ(x, y) = f(x) + ⟨y,Ax⟩ − h(y)

Here f(x) is µx-strongly-convex and Lx-smooth, and similarly for h(y), and they can only

be accessed through first-order gradient oracles. Note that Lxy = ∥A∥.
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The (Unbalanced) Strongly-Convex-Strongly-Concave Seting

Method Complexity for ϵ primal-dual gap # Loops

EG/OGDA/MP/Reflective FB/DE O
( L
min(µx,µy)

)
log 1

ϵ Single
[MOP20]

Catalyst-EG/OGDA O
( L√

µxµy

)
log 1

ϵ Two
[Yan+20; Zha+21]

Relative Lipschitz MP O
(
Lx

µx
+

Lxy√
µxµy

+
Ly

µy

)
log 1

ϵ Single
[CST21]

Proximal Best Response
Õ
(√

Lx

µx
+

LxyL
µxµy

+
Ly

µy

)
log 1

ϵ Four
[WL20]

L = max(Lx, Lxy, Ly)
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Question

Q1: Can we close the gap?
Q2: Can we achieve it by single-loop algorithms?

Ω

(√
Lx

µx
+

L2
xy

µxµy
+

Ly

µy
· log 1

ϵ

)
Õ
(√Lx

µx
+

LxyL
µxµy

+
Ly

µy
· log 1

ϵ

)
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Motivation

▶ Why do we care about achieving optimal complexity in SC-SC setting?

▶ Why do we care about designing simple single-loop algorithms?

[Yan+20] Yang, Zhang, Kiyavash, He. A Catalyst Framework for Minimax Optimization. NeurIPS 2020.
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Short Answer

▶ YES for bilinearly coupled minimax optimization (Bi-SC-SC)!

[Thekumparampil-He-Oh, AISTATS 2022] Primal-dual lifting.

min
x∈X

max
y∈Y

ϕ(x, y) = f(x) + ⟨y,Ax⟩ − h(y)

▶ Recent work: Nearly YES for separable minimax optimization!

[Jin-Sidford-Tian, ArXiv 2022]

min
x∈X

max
y∈Y

ϕ(x, y) = f(x) + g(x, y)− h(y)

▶ NB: distinct from existing work on linear convergence of Bi-SC-SC:

– Both f and h are proximal-friendly [CP11]

– Only h is proximal-friendly [CP16]

– Only h is strongly convex but A is full rank [DH19]
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Example: Quadratic Minimax Problems

The most prominent example is quadratic minimax problems:

min
x

max
y

ϕ(x, y) = x⊤Bx+ y⊤Ax− y⊤Cy

▶ Numerical analysis

▶ Constrained matrix games

▶ Robust least square [EGL97]

▶ MSPBE for policy evaluation [DH19]

▶ ....
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Inspiration I: Primal-Dual for Bilinear Problems

Consider composite blinear problems with simple terms:

min
x

max
y

F (x) + ⟨y,Ax⟩ −H(y)

F,H are µx, µy-strongly convex w.r.t. Bregman divergences V r
x′(x), V s

y′(y) & proximal-friendly.

Primal-Dual [CP16]


ỹk+1 = yk + θ(yk − yk−1)

xk+1 = argmin
x

〈
A⊤ỹk+1, x

〉
+

1

ηx
V r
xk
(x) + F (x)

yk+1 = argmin
y

−⟨Axk+1, y⟩+
1

ηy
V s
yk
(y) +H(x)

▶ Can be viewed as approximation of

Proximal Point Algorithm

▶ Iteration complexity is at most

O
( ∥A∥√

µxµy
log 1

ϵ

)
, which is optimal.
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Inspiration II: Primal-Dual for Convex Minimization

Consider the smooth minimization with strongly convex objective:

min
x

f(x) ⇐⇒ min
x

max
u

µ

2
∥x∥2 + ⟨x, u⟩ − f∗(u)

where f(x) = f(x)− µ
2 ∥x∥

2, f∗(u) = maxx ⟨u, x⟩ − f(x) is the Fenchel dual.

Primal-Dual = Accelerated Gradient Descent
∇̃k+1 = ∇f(xk) + θ(∇f(xk)−∇f(xk−1))

xk+1 = (xk − ηx∇̃k+1)/(1 + ηxµ)

xk+1 = (xk + ηuxk+1)/(1 + ηu)

▶ Game perspective of Nesterov’s

acceleration [LZ18]

▶ Slight variation in extrapolation
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Our Approach: Acceleration via Lifting

▶ Original problem of interest:

min
x∈X

max
y∈Y

f(x) + ⟨y,Ax⟩ − h(y)

▶ Reformulation on lifted space:

min
x∈X ,v

max
y∈Y,u

Φ(x, y;u, v) :=
[
− f∗(u) + ⟨u, x⟩+µx

2
∥x∥2

]
+ ⟨y,Ax⟩

−
[µy

2
∥y∥2 + ⟨v, y⟩ − h∗(v)

]
▶ Key feature: only bilinear coupling + proximal-friendly terms: µx

2 ∥ · ∥2, µy

2 ∥ · ∥2, f∗, & h∗
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Single-loop Algorithm: Lifted Primal-Dual Method

Lifted Primal-Dual (LPD)

(x̃k+1, ỹk+1) = (1 + θ)(xk, yk)− θ(xk−1, yk−1)

(ũk+1, ṽk+1) = (1 + θ)(uk, vk)− θ(uk−1, vk−1)

xk+1 = argmin
x∈X

〈
A⊤ỹk+1 + ũk+1, x

〉
+ ∥x− xk∥2/2ηx + µx∥x∥2/2

yk+1 = argmin
y∈Y

−
〈
A⊤x̃k+1 + ṽk+1, y

〉
+ ∥y − yk∥2/2ηy + µy∥y∥2/2

uk+1 = argmin
u

−⟨xk+1, u⟩+ f∗(u) + V
f∗

uk (u)/ηu

vk+1 = argmin
v

−⟨yk+1, v⟩+ h∗(v) + V h∗

vk
(v)/ηv
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Single-loop Algorithm: Lifted Primal-Dual Method

Simplified Implementable Lifted Primal-Dual (LPD)

x̃k+1 = xk + θk(xk − xk−1)

ỹk+1 = yk + θk(yk − yk−1)

∇̃x,k+1 = ∇f(xk) + θk(∇f(xk)−∇f(xk−1))

∇̃y,k+1 = ∇h(y
k
) + θk(∇h(y

k
)−∇h(y

k−1
))

xk+1 = PX ((xk − ηx(A
⊤ỹk+1 + ∇̃x,k+1))

yk+1 = PY((yk + ηy(Ax̃k+1 − ∇̃y,k+1))

xk+1 = (xk + ηu xk+1)/(1 + ηu)

y
k+1

= (y
k
+ ηv yk+1)/(1 + ηv)
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Main Result for SC-SC Setting

Theorem (Informal, Bi-SC-SC [THO22])

Let κx = Lx/µx, κy = Ly/µy, κxy = ∥A∥/√µxµy. Define κ =
√
κx − 1 + 2κxy +

√
κy − 1 .

Denote

∆(x, y) = κxy(µx∥x− x∗∥2 + µy∥y − y∗∥2).

LPD with T iterations sastisfies

∆(xT , yT ) ≤ O(e−
T
κ )∆(x0, y0)

▶ The gradient complexity is

O
((√Lx

µx
− 1 +

∥A∥
√
µxµy

+

√
Ly

µy
− 1
)
log
(1
ϵ

))
▶ Optimal as it matches exactly with lower bound in [ZHZ19].
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Extension to C-SC Setting

▶ LPD + Smoothing: setting µx = O(ϵ) leads to gradient complexity of

O

(√
Lx

ϵ
+

∥A∥
√
µyϵ

+

√
Ly

µy

)
log
(1
ϵ

)
Near-optimal up to logarithmic term.

▶ LPD + Decaying Stepsize: attains O
(

1
T 2

)
convergence rate and gradient complexity of

O
(√Lx

ϵ
+

∥A∥
√
µyϵ

+

√
Ly − µy

ϵ

)
.

Improve over O
(

L√
µyϵ

log 1
ϵ

)
achieved by Catalyst-EG/OGDA [Yan+20]
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Summary and Open Questions

Single-loop and (near-)optimal algorithm for bilinearly coupled minimax optimization in

(strongly-)convex-strongly-concave setting

Open Question: Can we extend the success to

▶ General non-separable minimax optimization?

▶ Other settings: NC-SC, NC-C?

▶ Stochastic and finite-sum settings?
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Nonconvex-PL (NC-PL) Minimax Optimization

min
x∈Rd1

max
y∈Rd2

f(x, y) ≜ E[F (x, y; ξ)].

Setting:

▶ f is L-Lipschitz smooth

▶ −f(x, ·) satisfies µ-PL inequality, i.e., ∥∇yf(x, y)∥2 ≥ 2µ[maxy f(x, y)− f(x, y)], ∀x, y.

Note

▶ Does not require concavity nor strong concavity in y.

▶ PL inequality holds in many nonconvex applications

– Linear–quadratic regulator [Faz+18];

– Over-parametrized neural networks [LZB20];

– Reinforcement learning [Mei+20].
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A Single-loop Algorithm: Smoothed AGDA

Smoothed GDA

At each iteration t: draw two i.i.d. samples ξt1, ξ
t
2

xt+1 = xt − τ1[∇Fx(xt, yt, ξ
t
1) + p(xt − zt)]

yt+1 = yt + τ2∇Fy(xt+1, yt, ξ
t
2)

zt+1 = zt + β(xt+1 − zt).

▶ Smoothed AGDA was first introduced in [Zha+20] for deterministic nonconvex-concave

minimax problems

▶ Mimics the primal-dual method with stochastic gradients
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Convergence of Smoothed AGDA

Theorem (informal, [Yan+22])

Under the NC-PL setting, Smoothed AGDA can find an ϵ-stationary point with

▶ Deterministic case: O(κϵ−2) iteration complexity

▶ Stochastic case: O(κ2ϵ−4) sample complexity

▶ No need for mini-batch to achieve O(ϵ−4) complexity unlike Stoc-GDA [LJJ20a]

▶ Improved dependence on κ compared to other single-loop algorithms

▶ Much weaker assumption
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NC-PL Problems: Deterministic Case

Table: Oracle complexity to find ϵ-stationary point of Φ.

Algorithms Complexity Loops Additional assumptions

GDA [LJJ20a] O(κ2∆lϵ−2) 1 strong concavity in y

Multi-GDA [Nou+19] Õ(κ3∆lϵ−2)1 2

Catalyst-AGDA[Yan+22] O(κ∆lϵ−2) 2

Smoothed-AGDA [Yan+22] O(κ∆lϵ−2) 1

1 The complexity is derived by translating from another stationary measure.
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NC-PL Problems: Stochastic Case

Table: Sample complexity to find ϵ-stationary point of Φ.

Algorithms Complexity Batch size Additional assumptions

Stoc-GDA [LJJ20a] O(κ3∆lϵ−4) O(ϵ−2) strong concavity in y

Stoc-GDA [LJJ20a] O(κ3∆lϵ−5) O(1) strong concavity in y

PDSM [Guo+21] O(κ3∆lϵ−4) O(1) strong concavity in y

ALSET [CSY21] O(κ3∆lϵ−4) O(1) strong concavity in y, Lipschitz1

Stoc-AGDA[Yan+22] O(κ4∆lϵ−4) O(1)

Stoc-Smoothed-AGDA[Yan+22] O(κ2∆lϵ−4) O(1)

1 It assumes f is Lipschitz continuous about x and its Hessian is Lipschitz continuous.
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Toy WGAN with linear generator

▶ Linear generator Gµ,σ(z) = µ+ σz and quadratic discriminator Dϕ(x) = ϕ1x+ ϕ2x
2

min
µ,σ

max
ϕ1,ϕ2

E(xreal,z)∼D ϕ1xreal + ϕ2x
2
real − ϕ1 · (µ+ σz)− ϕ2 · (µ+ σz)

2 − λ∥ϕ∥2.
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Toy WGAN with Neural Generator

▶ One hidden layer neural network generator Gθ and quadratic discriminator

min
θ

max
ϕ1,ϕ2

E(xreal,z)∼D ϕ1xreal + ϕ2x
2
real − ϕ1 ·Gθ(z)− ϕ2 · (Gθ(z))

2 − λ∥ϕ∥2.

28 / 35



References I

[CP11] Antonin Chambolle and Thomas Pock. “A first-order primal-dual algorithm for convex problems with

applications to imaging”. In: Journal of mathematical imaging and vision 40.1 (2011), pp. 120–145.

[CP16] Antonin Chambolle and Thomas Pock. “On the ergodic convergence rates of a first-order primal–dual

algorithm”. In: Mathematical Programming 159.1 (2016), pp. 253–287.

[CST21] Michael B. Cohen, Aaron Sidford, and Kevin Tian.

Relative Lipschitzness in Extragradient Methods and a Direct Recipe for Acceleration. 2021. arXiv: 2011.06572

[math.OC].

[CSY21] Tianyi Chen, Yuejiao Sun, and Wotao Yin. “Tighter Analysis of Alternating Stochastic Gradient Method for

Stochastic Nested Problems”. In: arXiv preprint arXiv:2106.13781 (2021).

[DH19] Simon S Du and Wei Hu. “Linear convergence of the primal-dual gradient method for convex-concave saddle

point problems without strong convexity”. In:

The 22nd International Conference on Artificial Intelligence and Statistics. PMLR. 2019, pp. 196–205.

[DP18] Constantinos Daskalakis and Ioannis Panageas. “The limit points of (optimistic) gradient descent in min-max

optimization”. In: Advances in Neural Information Processing Systems 31 (2018).

[DSZ21] Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis. “The complexity of constrained min-max

optimization”. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 2021,

pp. 1466–1478.

29 / 35

https://arxiv.org/abs/2011.06572
https://arxiv.org/abs/2011.06572


References II
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Supplementary: Catalyst Acceleration

SC-SC SC-C NC-SC NC-C

GDA
O
(

L2

min{µ2
x,µ

2
y}

log 1
ϵ

)
[FP07]

?
O
(

L3

µ2 ϵ
−2
)

[LJJ20a]

O
(
L3ℓ2ϵ−6

)
[LJJ20a]

SOTA

(before ours)

O
(

L√
µxµy

log3 1
ϵ

)
[LJJ20b]

O
(

L√
µϵ log

3 1
ϵ

)
[LJJ20b]

O
(

L3/2
√
µ ϵ−2 log2 1

ϵ

)
[LJJ20b]

O
(
L2ϵ−3 log2 1

ϵ

)
[LJJ20b]

[The+19]

Lower bound
Ω
(

L√
µxµy

log 1
ϵ

)
[ZHZ19]

Ω
(

L√
µϵ

)
[HXZ21]

Ω
(

L3/2
√
µ ϵ−2

)
?

Catalyst-EG/OGDA O
(

L√
µxµy

log 1
ϵ

)
O
(

L√
µϵ log

1
ϵ

)
O
(

L3/2
√
µ ϵ−2

)
O
(
L2ϵ−3 log 1

ϵ

)
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Proximal Best Response [WL20]
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