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Bilinear min-max problems

A playground for adversarial approaches: min
a≤x≤b

max
a≤x≤b

f (x , x) = xx
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(a) Vanilla gradient

Xn+ = Xn − γnVn

V ← oracle(∂ f , −∂ f )
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(b) Extra-gradient [Korpelevich, 1976]

Xn+/ = Xn − γnVn

Xn+ = Xn − γnVn+/
(EG)
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(c) Optimistic gradient [Popov, 1980]

Xn+/ = Xn − γnVn−/

Xn+ = Xn − γnVn+/
(OG)

Improved properties of (EG) / (OG) Ô⇒ huge literature + testing ground for new algorithms
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Stochastic min-max problems

The stochastic world is different:
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(a) Stochastic gradient
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(b) Stochastic EG [Juditsky et al., 2011]
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(c) Stochastic OG [Gidel et al., 2019]

Noise mitigation mechanisms:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

▸ Iterate averaging [For convex-concave problems]
▸ Variance reduction [Chavdarova et al., 2019]

▸ Double step-size policies [Hsieh et al., 2020]
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(c) Stochastic OG [Gidel et al., 2019]

Noise mitigation mechanisms:
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▸ Iterate averaging [For convex-concave problems]
▸ Variance reduction [Chavdarova et al., 2019]
▸ Double step-size policies [Hsieh et al., 2020; Diakonikolas et al., 2021]
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(d) Double step-size EG

Double step-size extra-gradient

Xn+/ = Xn − γnVn

Xn+ = Xn − ηnVn+/
(DSEG)

where ηn/γn → 

“Explore aggressively, update conservatively”

Noise mitigation mechanisms:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

▸ Iterate averaging [For convex-concave problems]
▸ Variance reduction [Chavdarova et al., 2019]

▸ Double step-size policies [Hsieh et al., 2020]
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Training landscape

A deep learning loss landscape

[Source: Li et al., 2018]
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Out of the bilinear sandbox

The non-monotone world is fundamentally different: min
a≤x≤b

max
a≤x≤b

f (x , x) = xx + ε(x
/ − x

 /) [ε ≈ ]
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(b) Extra-gradient
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(c) Double step-size extra-gradient

▸ Different methods no longer lead to different outcomes, even for arbitrarily small ε [Here: ε = − ]

▸ Stochasticity is not important in the long run [Converge to same limit cycle]

Why does this happen?
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Overview

What is the long-run behavior of first-order methods in non-linear min-max games?

In minimization problems:

3 First-order (= gradient-based) algorithms converge to critical points

3 Saddle points are avoided (one way or another)

In min-max problems / games:

- Do gradient methods converge to critical points?

- What are the possible limit sets?

Dynamical systems viewpoint: from discrete to continuous time and back

P. Mertikopoulos CNRS & Criteo AI Lab
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About

V. Cevher Y.-P. Hsieh Y.-G. Hsieh F. Iutzeler J. Malick C. Papadimitriou G. Piliouras Z. Zhou

▸ Hsieh, M & Cevher, The limits of min-max optimization algorithms: convergence to spurious non-critical sets, ICML 2021

▸ Hsieh, Iutzeler, Malick & M, Explore aggressively, update conservatively: Stochastic extragradient methods with variable stepsize scaling,
NeurIPS 2020

▸ M, Papadimitriou & Piliouras, Cycles in adversarial regularized learning, SODA 2018

▸ M, Hsieh & Cevher, Online learning in games: A unified view through the lens of stochastic approximation, forthcoming

▸ M & Zhou, Learning in games with continuous action sets and unknown payoff functions, Mathematical Programming, vol. 173, pp.
465–507, Jan. 2019
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Mathematical formulation

Minimization problems

min
x∈X

f (x)

= Eθ[F(x; θ)]

(Opt)

Min-max / Saddle-point problems

min
x∈X

max
x∈X

f (x , x)

= Eθ[F(x , x ; θ)]

(SP)

P. Mertikopoulos CNRS & Criteo AI Lab
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Mathematical formulation

Minimization problems (stochastic)

min
x∈X

f (x) = Eθ[F(x; θ)] (Opt)

Min-max / Saddle-point problems (stochastic)

min
x∈X

max
x∈X

f (x , x) = Eθ[F(x , x ; θ)] (SP)
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Problem formulation

Main difficulties:

▸ No convex structure [technical assumptions later]

▸ Difficult to manipulate f in closed form [black-box oracle methods]

Critical points:
Find x∗ such that υ(x∗) =  (FOS)

where υ(x) is the problem’s defining vector field

▸ Gradient field for (Opt):
υ(x) = ∇ f (x)

▸ Individual gradient field for (SP):

υ(x) = (∇x f (x , x),−∇x f (x , x))

[Notation: x ← (x , x), X ← X ×X ]

P. Mertikopoulos CNRS & Criteo AI Lab
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Assumptions

Blanket assumptions

▸ Unconstrained problems:
X = finite-dimensional Euclidean space

▸ Existence of solutions:
crit( f ) = {x∗ ∈ X ∶ υ(x∗) = } is nonempty

▸ Lipschitz continuity:

∣ f (x′) − f (x)∣ ≤ G∥x′ − x∥ for all x , x′ ∈ X (LC)

▸ Lipschitz smoothness:

∥υ(x′) − υ(x)∥ ≤ L∥x′ − x∥ for all x , x′ ∈ X (LS)

P. Mertikopoulos CNRS & Criteo AI Lab
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Algorithms I: Gradient descent

Gradient descent (+/ascent): [Arrow et al., 1958]

Xn+ = Xn − γnυ(Xn) (GD)

x

x+

−γυ(x)

P. Mertikopoulos CNRS & Criteo AI Lab
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Algorithms II: Proximal point method

Proximal point method: [Martinet, 1970; Rockafellar, 1976]

Xn+ = Xn − γnυ(Xn+) (PPM)

x

x+
−γυ(x+)
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Algorithms III: Extra-gradient

Extra-gradient: [Korpelevich, 1976]

Xn+/ = Xn − γnυ(Xn) Xn+ = Xn − γnυ(Xn+/) (EG)

x

xlead

−γυ(x)

−γυ(xlead)

x+
−γυ(xlead)
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Algorithms IV: Optimistic gradient

Optimistic gradient: [Popov, 1980; Rakhlin & Sridharan, 2013]

Xn+/ = Xn − γnυ(Xn−/) Xn+ = Xn − γnυ(Xn+/) (OG)

x

xlead

−γυ(xlag)

−γυ(xlead)

x+
−γυ(xlead)
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Algorithms V: more than you can shake a stick at…

Variants for min-max problems:

▸ Alternating algorithms:
Player 1: X,n+ = X,n − γnυ(X,n , X,n)
Player 2: X,n+ = X,n − γnυ(X,n+ , X,n)

(GDalt)

(+ variants for extra/optimistic/…)

▸ k ∶  algorithms:
Player 1: X(),n+ = X,n − γnυ(X,n , X,n)

Player 1: X(),n+ = X
()
,n+ − γnυ(X

()
,n+ , X,n)

⋯

Player 1: X,n+ = X(k−),n+ − γnυ(X
(k−)
,n+ , X,n)

Player 2: X,n+ = X,n − γnυ(X,n+ , X,n)

(GDk∶)

(practical implementation of two-time-scale methods)

▸ Chambolle–Pock; step-size scaling; variance reduction; …

P. Mertikopoulos CNRS & Criteo AI Lab
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The Robbins-Monro template

Generalized Robbins-Monro algorithm

Xn+ = Xn − γn[υ(Xn) +Un + bn] (RM)

with∑n γn =∞, γn → , and E[Un ∣ Xn , . . . , X] = 

Examples
▸ Gradient descent (+/ascent): bn = 

▸ Proximal point method (det.): Un = , bn = υ(Xn+) − υ(Xn)

▸ Extra-gradient: bn = υ(Xn+/) − υ(Xn)

▸ Optimistic gradient: bn = υ(Xn+/) − υ(Xn)

▸ Single-point stochastic approximation (stoch.): Un = (d/ε) f (X̂n)Wn − υε(Xn), bn = υε(Xn) − υ(Xn) where

fε(x) =


vol(Bδ) ∫Bδ
f (x + εz) dz

▸ ⋯
P. Mertikopoulos CNRS & Criteo AI Lab
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Mean dynamics in continuous time

Characteristic property of Robbins–Monro (RM) schemes

Xn+ − Xn

γn
= −υ(Xn) + Zn

Mean dynamics

ẋ(t) = −υ(x(t)) (MD)

P. Mertikopoulos CNRS & Criteo AI Lab
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Stochastic approximation

Basic idea: if γn is “small”, the errors wash out and “ limt→∞ (RM) = limt→∞ (MD) ”

Ô⇒ ODE method of stochastic approximation

[Ljung, 1977; Benveniste et al., 1990; Kushner & Yin, 1997; Benaïm, 1999]

▸ Virtual time: τn = ∑n
k= γk

▸ Virtual trajectory: X(t) = Xn +
t − τn

τn+ − τn
(Xn+ − Xn)

▸ Asymptotic pseudotrajectory (APT):
lim
t→∞

sup
≤h≤T

∥X(t + h) −Φh(X(t))∥ = 

where Φs(x) denotes the position at time s of an orbit of (MD) starting at x

▸ Long run: X(t) tracks (MD) with arbitrary accuracy over windows of arbitrary length

[Benaïm & Hirsch, 1995, 1996; Benaïm, 1999; Benaïm et al., 2005, 2006]

P. Mertikopoulos CNRS & Criteo AI Lab
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Stochastic approximation criteria

When is a sequence generated by (RM) an APT?

(Base) ▸ f is Lipschitz continuous and smooth:

∣ f (x′) − f (x)∣ ≤ G∥x′ − x∥ (LC)

∥υ(x′) − υ(x)∥ ≤ L∥x′ − x∥ (LS)

▸ f is weakly coercive: ⟨υ(x), x⟩ ≥  for sufficiently large x

(Impl) ▸ bn →  with probability 

▸ E[∑n γn∥bn∥] <∞
▸ E[∑n γn( + ∥Un∥)] <∞

Proposition (Benaïm & Hirsch, 1996)

å Assume: (Base) + (Impl)

- Then: Xn is an APT of (MD) with probability 

P. Mertikopoulos CNRS & Criteo AI Lab
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APT criteria: explicit

Explicit algorithmic criteria:

(Expl) ▸ Black-box oracle:
V(x) = υ(x) + err(x)

▸ Oracle returns unbiased gradients with finite mean square error

E[V(x)] = υ(x) V[V(x)] ≤ σ 

NB: unbiasedness at query point does not mean bn =  in (RM)

▸ A/n ≤ γn ≤ B/
√
n(log n)+ε for some A, B, ε > 

Proposition (Hsieh, M & Cevher, 2021)

å Assume: (Base) + (Expl)

- Then: the sequence Xn generated by any of the Algorithms I–V is an APT

P. Mertikopoulos CNRS & Criteo AI Lab
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Convergence of gradient flows

Gradient flow of a function f ∶X → R
ẋ(t) = −∇ f (x(t)) (GF)

Main property: f is a (strict) Lyapunov function for (GF)

d f /dt = −∥∇ f (x(t))∥ ≤  w/ equality iff ∇ f (x) = 

P. Mertikopoulos CNRS & Criteo AI Lab



26/50

Background Preliminaries From algorithms to flows From flows to algorithms Implications for min-max problems References

Single- vs. multi-agent setting

In minimization problems:

3 RM methods onverge to the problem’s critical set [Ljung, 1977; Kushner & Yin, 1997; Benaïm & Hirsch, 1996]

3 RM methods avoid spurious, saddle-point manifolds [Pemantle, 1990; Ge et al., 2015; Lee et al., 2019; M et al., 2020]

Does this intuition carry over to min-max optimization problems?

Do min-max algorithms:

- Converge to unilaterally stable/stationary points?

- Avoid spurious, non-equilibrium sets?

P. Mertikopoulos CNRS & Criteo AI Lab
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Min-max dynamics

The main issue:

3 Minimization problems: (MD) is a gradient flow

7 Min-max problems: (MD) can be arbitrarily complicated

An assorted zoology of stationary sets

▸ Invariant: image of S under (MD) = S [Φ t(S) = S for all t]

▸ Attracting: invariant + attracts all nearby orbits of (MD)

▸ Internally chain transitive: invariant + (MD) restricted on S contains no proper attractors

P. Mertikopoulos CNRS & Criteo AI Lab
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Examples

Some examples (more later):

Figure: An attracting limit cycle (the Van Der Pol osillator)
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Examples

Some examples (more later):

Figure: An attracting heteroclinic cycle (Bowen’s eye)
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Convergence to ICT sets

Theorem (Benaïm, 1999; implicit)

å Assume: (Base) + (Impl)

- Then: with probability , the sequence Xn generated by (RM) converges to an ICT set of (MD)

Theorem (Hsieh, M & Cevher, 2021; explicit)

å Assume: (Base) + (Expl)

- Then: with probability , the sequence Xn generated by any of the Algs. I–V converges to an ICT set of (MD)

P. Mertikopoulos CNRS & Criteo AI Lab



30/50

Background Preliminaries From algorithms to flows From flows to algorithms Implications for min-max problems References

Avoidance of unstable points and periodic orbits

Generically, any ICT set S possesses stable and unstable manifolds:

▸ Stable manifold: invariant + all trajectories starting here converge to S

▸ Unstable manifold: invariant + all trajectories starting here diverge from S

▸ Unstable point / periodic orbit: possesses a nontrivial unstable manifold

Theorem (Hsieh, M & Cevher, 2021)
å Assume:

▸ f satisfies (LC) and (LS)

▸ Un is finite (a.s.) and uniformly exciting

E[⟨U , z⟩+] ≥ c for all unit vectors z ∈ Sd− , x ∈ X
▸ γn ∝ /np for some p ∈ (, ]

- Then: P(Xn converges to an unstable point / periodic orbit) = 

P. Mertikopoulos CNRS & Criteo AI Lab
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Minimization vs. min-max optimization

Qualitatively similar landscape (??)

▸ Components of critical points↭ ICT sets

▸ Avoidance of strict saddles↭ avoidance of unstable periodic orbits

Is there a fundamental difference between min and min-max problems?

Non-gradient problems may have spurious ICT sets!

P. Mertikopoulos CNRS & Criteo AI Lab
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Bilinear games redux

Bilinear min-max games
min
x∈X

max
x∈X

f (x , x) = (x − b)⊺A(x − b)

Mean dynamics:

ẋ = −A(x − b) ẋ = A⊺(x − b)

Energy function:

E(x) = 

∥x − b∥ +



∥x − b∥

Lyapunov property:
dE
dt
≤  w/ equality if A = A⊺

Ô⇒ distance to solutions (weakly) decreasing along (MD)

P. Mertikopoulos CNRS & Criteo AI Lab
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Periodic orbits

Roadblock: the energy may be a constant of motion
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Figure: Hamiltonian flow of f (x , x) = xx
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Poincaré recurrence

Definition (Poincaré, 1890's)
A system is Poincaré recurrent if almost all solution trajectories return infinitely close to their starting point
infinitely often

Theorem (M, Papadimitriou, Piliouras, 2018; unconstrained version)
(MD) is Poincaré recurrent in all bilinear min-max games that admit an interior equilibrium

P. Mertikopoulos CNRS & Criteo AI Lab
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Behavior of gradient descent

Vanilla gradient:
Xn+ = Xn − γnυ(Xn)

P. Mertikopoulos CNRS & Criteo AI Lab
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Behavior of gradient descent

Vanilla gradient:
Xn+ = Xn − γnυ(Xn)

Energy no longer a constant:



∥Xn+ − x∗∥ =



∥Xn − x∗∥ + γn

hhhhhhh⟨υ(Xn), Xn − x∗⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

from (MD)

+ 

γn∥υ(Xn)∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
discretization error

…even worse

P. Mertikopoulos CNRS & Criteo AI Lab
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Behavior of gradient descent

Vanilla gradient:
Xn+ = Xn − γnυ(Xn)
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Behavior of extra-gradient

Extra-gradient:
Xn+/ = Xn − γnυ(Xn) Xn+ = Xn − γnυ(Xn+/)
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Recap

Long-run behavior of min-max learning algorithms:

- Mean dynamics: Poincaré recurrent [periodic orbits]

7 Individual gradient descent: divergence [outward spirals]

3 Extra-gradient: convergence [inward spirals]

Different outcomes despite same mean dynamics!

P. Mertikopoulos CNRS & Criteo AI Lab
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The stochastic case
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Figure: Behavior of (GD), (EG) and (OG) with stochastic first-order oracle feedback

Proposition (Hsieh, M & Cevher, 2021)

Under (Base) + (Expl), all Algs. I–V converge to a (possibly random) periodic orbit

[But see also Chavdarova et al., 2019; Hsieh et al., 2020]
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The degeneracy issue

Degeneracy of ICTs

▸ The state space “foliates” into disjoint periodic orbits [Every point is recurrent]

▸ All periodic orbits are Lyapunov stable [Nearby initializations remain nearby]

▸ None of these orbits is attracting [No “preferred” outcome]

å Long-run behavior difficult to predict!

How common is this situation?

P. Mertikopoulos CNRS & Criteo AI Lab
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The Kupka-Smale theorem

Systems with the structure of bilinear games are rare:

Theorem (Kupka, 1963)

Let V = C(Rd ;Rd) be the space of C vector fields on Rd endowed with the Whitney topology. Then the set of
vector fields with a non-trivial recurrent set is meager (in the Baire category sense).

Theorem (Smale, 1963)
For any vector field υ ∈ V , the following properties are generic (in the Baire category sense):
▸ All closed orbits are hyperbolic

▸ Heteroclinic orbits are transversal (i.e., stable and unstable manifolds intersect transversally)

TL;DR
å Non-attracting periodic orbits are non-generic (they occur negligibly often)

P. Mertikopoulos CNRS & Criteo AI Lab
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Convergence to attractors

Attractors↝ natural solution concepts for non-minimization problems

Theorem (Hsieh, M & Cevher, 2021; implicit)

å Assume: (Base) + (Impl) ; S is an attractor; Xn is generated by (RM)

- Then: for all α > , there exists a neighborhood U of S such that

P(Xn converges to S ∣ X ∈ U) ≥  − α

Theorem (Hsieh, M & Cevher, 2021; explicit)

å Assume: (Base) + (Expl) ; S is an attractor; Xn is generated by any of Algorithms I–V

- Then: for all α > , there exists a neighborhood U of S such that

P(Xn converges to S ∣ X ∈ U) ≥  − α

P. Mertikopoulos CNRS & Criteo AI Lab
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Foliations are fragile

Consider again the “almost bilinear” game

min
x∈X

max
x∈X

f (x , x) = xx + εϕ(x)

where ε >  and ϕ(x) = (/)x − (/)x

Properties:

▸ Unique critical point at the origin

▸ Unstable under (MD)

▸ (MD) attracted to unique, stable limit cycle from almost all initial conditions
[Hsieh, M & Cevher, 2021]

P. Mertikopoulos CNRS & Criteo AI Lab
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Spurious attractors in almost bilinear games
Trajectories of (RM) converge to a spurious limit cycle with no critical points
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Figure: Left: stochastic gradient descent (SGD); right: stochastic extra-gradient

P. Mertikopoulos CNRS & Criteo AI Lab



45/50

Background Preliminaries From algorithms to flows From flows to algorithms Implications for min-max problems References

Forsaken solutions

Another almost bilinear game

min
x∈X

max
x∈X

f (x , x) = xx + ε[ϕ(x) − ϕ(x)]

where ε >  and ϕ(x) = (/)x − (/)x + (/)x

Properties:

▸ Unique (local) min-max point near the origin

▸ Two isolated non-constant periodic orbits:
▸ One unstable, shielding critical point, but small

▸ One stable, attracts all trajectories of (MD) outside small basin

[Hsieh, M & Cevher, 2021]
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Forsaken solutions in almost bilinear games
With high probability, (RM) forsakes the game’s unique (local) equilibrium
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Figure: Left: stochastic gradient descent; right: stochastic extra-gradient
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Conclusions

Minimization and min-max optimization are fundamentally different:

▸ First-order min-max methods may have limit points that are neither stable nor stationary

▸ Bilinear games may not be representative case studies for min-max optimization

▸ Cannot avoid spurious, non-equilibrium sets with positive probability

▸ Different approaches needed (mixed-strategy learning, multiple-timescales,…)

Many open questions:

▸ How to detect spurious cycles in a real system?

▸ Is there any first-order method that converges only to critical points?

▸ What about finite games (where bilinear games are no longer fragile)?

▸ Which equilibria are stable under first-order methods?

▸ ⋯

P. Mertikopoulos CNRS & Criteo AI Lab



47/50

Background Preliminaries From algorithms to flows From flows to algorithms Implications for min-max problems References

Conclusions

Minimization and min-max optimization are fundamentally different:

▸ First-order min-max methods may have limit points that are neither stable nor stationary

▸ Bilinear games may not be representative case studies for min-max optimization

▸ Cannot avoid spurious, non-equilibrium sets with positive probability

▸ Different approaches needed (mixed-strategy learning, multiple-timescales,…)

Many open questions:

▸ How to detect spurious cycles in a real system?

▸ Is there any first-order method that converges only to critical points?

▸ What about finite games (where bilinear games are no longer fragile)?

▸ Which equilibria are stable under first-order methods?

▸ ⋯

P. Mertikopoulos CNRS & Criteo AI Lab



48/50

Background Preliminaries From algorithms to flows From flows to algorithms Implications for min-max problems References

References I

Arrow, K. J., Hurwicz, L., and Uzawa, H. Studies in linear and non-linear programming. Stanford University Press, 1958.

Benaïm, M. Dynamics of stochastic approximation algorithms. In Azéma, J., Émery, M., Ledoux, M., and Yor, M. (eds.), Séminaire de Probabilités
XXXIII, volume 1709 of Lecture Notes in Mathematics, pp. 1–68. Springer Berlin Heidelberg, 1999.

Benaïm, M. and Hirsch, M. W. Dynamics of Morse-Smale urn processes. Ergodic Theory and Dynamical Systems, 15(6):1005–1030, December
1995.

Benaïm, M. and Hirsch, M. W. Asymptotic pseudotrajectories and chain recurrent flows, with applications. Journal of Dynamics and Differential
Equations, 8(1):141–176, 1996.

Benaïm, M., Hofbauer, J., and Sorin, S. Stochastic approximations and differential inclusions. SIAM Journal on Control and Optimization, 44(1):
328–348, 2005.

Benaïm, M., Hofbauer, J., and Sorin, S. Stochastic approximations and differential inclusions, part II: Applications. Mathematics of Operations
Research, 31(4):673–695, 2006.

Benveniste, A., Métivier, M., and Priouret, P. Adaptive Algorithms and Stochastic Approximations. Springer, 1990.

Chavdarova, T., Gidel, G., Fleuret, F., and Lacoste-Julien, S. Reducing noise in GAN training with variance reduced extragradient. In NeurIPS ’19:
Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019.

Diakonikolas, J., Daskalakis, C., and Jordan, M. I. Efficient methods for structured nonconvex-nonconcave min-max optimization. In AISTATS ’21:
Proceedings of the 24th International Conference on Artificial Intelligence and Statistics, 2021.

P. Mertikopoulos CNRS & Criteo AI Lab



49/50

Background Preliminaries From algorithms to flows From flows to algorithms Implications for min-max problems References

References II

Ge, R., Huang, F., Jin, C., and Yuan, Y. Escaping from saddle points – Online stochastic gradient for tensor decomposition. In COLT ’15:
Proceedings of the 28th Annual Conference on Learning Theory, 2015.

Gidel, G., Berard, H., Vignoud, G., Vincent, P., and Lacoste-Julien, S. A variational inequality perspective on generative adversarial networks. In
ICLR ’19: Proceedings of the 2019 International Conference on Learning Representations, 2019.

Hsieh, Y.-G., Iutzeler, F., Malick, J., and Mertikopoulos, P. Explore aggressively, update conservatively: Stochastic extragradient methods with
variable stepsize scaling. In NeurIPS ’20: Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020.

Hsieh, Y.-P., Mertikopoulos, P., and Cevher, V. The limits of min-max optimization algorithms: Convergence to spurious non-critical sets. In ICML
’21: Proceedings of the 38th International Conference on Machine Learning, 2021.

Juditsky, A., Nemirovski, A. S., and Tauvel, C. Solving variational inequalities with stochastic mirror-prox algorithm. Stochastic Systems, 1(1):
17–58, 2011.

Korpelevich, G. M. The extragradient method for finding saddle points and other problems. Èkonom. i Mat. Metody, 12:747–756, 1976.

Kushner, H. J. and Yin, G. G. Stochastic approximation algorithms and applications. Springer-Verlag, New York, NY, 1997.

Lee, J. D., Panageas, I., Piliouras, G., Simchowitz, M., Jordan, M. I., and Recht, B. First-order methods almost always avoid strict saddle points.
Mathematical Programming, 176(1):311–337, February 2019.

Li, H., Xu, Z., Taylor, G., Suder, C., and Goldstein, T. Visualizing the loss landscape of neural nets. In NeurIPS ’18: Proceedings of the 32nd
International Conference of Neural Information Processing Systems, 2018.

P. Mertikopoulos CNRS & Criteo AI Lab



50/50

Background Preliminaries From algorithms to flows From flows to algorithms Implications for min-max problems References

References III

Ljung, L. Analysis of recursive stochastic algorithms. IEEE Trans. Autom. Control, 22(4):551–575, August 1977.

Martinet, B. Régularisation d’inéquations variationnelles par approximations successives. ESAIM: Mathematical Modelling and Numerical Analysis,
4(R3):154–158, 1970.

Mertikopoulos, P. and Zhou, Z. Learning in games with continuous action sets and unknown payoff functions. Mathematical Programming, 173
(1-2):465–507, January 2019.

Mertikopoulos, P., Papadimitriou, C. H., and Piliouras, G. Cycles in adversarial regularized learning. In SODA ’18: Proceedings of the 29th annual
ACM-SIAM Symposium on Discrete Algorithms, 2018.

Mertikopoulos, P., Hallak, N., Kavis, A., and Cevher, V. On the almost sure convergence of stochastic gradient descent in non-convex problems. In
NeurIPS ’20: Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020.

Pemantle, R. Nonconvergence to unstable points in urn models and stochastic aproximations. Annals of Probability, 18(2):698–712, April 1990.

Popov, L. D. A modification of the Arrow–Hurwicz method for search of saddle points. Mathematical Notes of the Academy of Sciences of the USSR,
28(5):845–848, 1980.

Rakhlin, A. and Sridharan, K. Optimization, learning, and games with predictable sequences. In NIPS ’13: Proceedings of the 27th International
Conference on Neural Information Processing Systems, 2013.

Rockafellar, R. T. Monotone operators and the proximal point algorithm. SIAM Journal on Optimization, 14(5):877–898, 1976.

P. Mertikopoulos CNRS & Criteo AI Lab



Background Preliminaries From algorithms to flows From flows to algorithms Implications for min-max problems References

P. Mertikopoulos CNRS & Criteo AI Lab


	Background
	Preliminaries
	From algorithms to flows
	From flows to algorithms
	Implications for min-max problems
	
	

	References

