MIN-MAX OPTIMIZATION FROM A DYNAMICAL SYSTEMS VIEWPOINT

Panayotis Mertikopoulos

French National Center for Scientific Research (CNRS)

Laboratoire d'Informatique de Grenoble (LIG)

Criteo Al Lab

(Adversarial Approaches in ML | UC Berkeley | February 23, 2022)

Backgı ●00	ound 0000		From algorithms to flows	Implications for min-max problems	
cnrs	Outline				
	 Backgro 	und			

2 Preliminaries

- B From algorithms to flows
- **④** From flows to algorithms
- **(5)** Implications for min-max problems

Backgro O●OO	ound DOOO		From algorithms to flows		Implications for min-max problems	
cnrs	Bilinea	r min-max probleı	ms			
	A playgr	ound for adversaria	l approaches: $\min_{a \le x_1 \le b} n_{a \le x_1 \le b}$	$\max_{x_2\leq b}f(x_1,x_2)=x_1x_2$		

Backgroi O⊙OO	und 000		From algorithms to flows 00000		Implications for min-max problems	
cnrs	Bilinear	min-max proble	ms			
	A playgro	und for adversaria	l approaches: $\min_{a \le x_1 \le b} n_{a \le x_1 \le b}$	$\max_{x_2\leq b}f(x_1,x_2)=x_1x_2$		

(b) Extra-gradient [Korpelevich, 1976] $X_{n+1/2} = X_n - \gamma_n V_n$ $X_{n+1} = X_n - \gamma_n V_{n+1/2}$

(EG)

-2

(a) Vanilla gradient

 $V \leftarrow \text{oracle}(\partial_1 f, -\partial_2 f)$

 $X_{n+1} = X_n - \gamma_n V_n$

$$= X_n - \gamma_n V_{n-1/2}$$
(OG)
= $X_n - \gamma_n V_{n+1/2}$

(c) Optimistic gradient [Popov, 1980]

 $X_{n+1/2}$

 X_{n+1}

Improved properties of $(EG)/(OG) \implies$ huge literature + testing ground for new algorithms

Background	From algorithms to flows	From flows to algorithms	
000000			

Stochastic min-max problems

The stochastic world is **different**:

Cnr

Background	From algorithms to flows	From flows to algorithms	
000000			

Stochastic min-max problems

The stochastic world is **different**:

- Iterate averaging
- Variance reduction
- Double step-size policies

[For convex-concave problems] [Chavdarova et al., 2019] [Hsieh et al., 2020; Diakonikolas et al., 2021]

Background	From algorithms to flows	From flows to algorithms	
000000			

Stochastic min-max problems

The stochastic world is **different**:

Double step-size extra-gradient

$$X_{n+1/2} = X_n - \gamma_n V_n$$

$$X_{n+1} = X_n - \eta_n V_{n+1/2}$$
(DSEG)
where $\eta_n / \gamma_n \to 0$

"Explore aggressively, update conservatively"

Noise mitigation mechanisms:

Double step-size policies

[Hsieh et al., 2020]

O

Background 000●000		From algorithms to flows 00000	Implications for min-max problems	
CITS Trainir	ıg landscape			

A deep learning loss landscape

[Source: Li et al., 2018]

Background	Preliminaries	From algorithms to flows	From flows to algorithms	Implications for min-max problems	
CITS CIT					

Out of the bilinear sandbox

The non-monotone world is **fundamentally different**:

2 1 -1 -2				
-2	-1		1	2
		<i>x</i>		
	(a) Vanill	la gradient	Ł	

$$\min_{a \le x_1 \le b} \max_{a \le x_2 \le b} f(x_1, x_2) = x_1 x_2 + \varepsilon (x_2^2/2 - x_2^4/4) \quad [\varepsilon \approx 0]$$

Background	Preliminaries	From algorithms to flows	From flows to algorithms	Implications for min-max problems	
cors					

Out of the bilinear sandbox

The non-monotone world is **fundamentally different**:

$$\min_{a \le x_1 \le b} \max_{a \le x_2 \le b} f(x_1, x_2) = x_1 x_2 + \varepsilon (x_2^2/2 - x_2^4/4) \quad [\varepsilon \approx 0]$$

(b) Extra-gradient (stoch.)

- Different methods no longer lead to different outcomes, even for arbitrarily small ε
- Stochasticity is not important in the long run

(a) Vanilla gradient (stoch.)

[Converge to same limit cycle]

[Here: $\varepsilon = 10^{-2}$]

(c) Double step-size extra-gradient (stoch.)

Backgro	ound					
0000	0000	0000000000	00000	0000000	000000000000000000000000000000000000000	
cnrs	Out of th	e bilinear sandbox				

The non-monotone world is **fundamentally different**:

 $\min_{a \le x_1 \le b} \max_{a \le x_2 \le b} f(x_1, x_2) = x_1 x_2 + \varepsilon \left(x_2^2 / 2 - x_2^4 / 4 \right) \quad [\varepsilon \approx 0]$

Why does this happen?

Different methods no longer lead to different outcomes, even for arbitrarily small ε

[Here: $\varepsilon = 10^{-2}$]

Stochasticity is not important in the long run

[Converge to same limit cycle]

Background		From algorithms to flows	From flows to algorithms	
0000000				
Chrs Overviev	N			

Background		From algorithms to flows	From flows to algorithms	
0000000				
Chrs Overview	,			

In minimization problems:

- ✓ First-order (= gradient-based) algorithms converge to critical points
- ✓ Saddle points are avoided (one way or another)

Background	From algorithms to flows	From flows to algorithms	
0000000			
Corc			

In minimization problems:

Overview

- ✓ First-order (= gradient-based) algorithms converge to critical points
- ✓ Saddle points are avoided (one way or another)

In min-max problems / games:

- Do gradient methods converge to critical points?
- Mhat are the possible limit sets?

Background	From algorithms to flows	From flows to algorithms	
0000000			
Corc			

In minimization problems:

Overview

- ✓ First-order (= gradient-based) algorithms converge to critical points
- ✓ Saddle points are avoided (one way or another)

In min-max problems / games:

- ∠ Do gradient methods converge to critical points?
- Mhat are the possible limit sets?

Dynamical systems viewpoint: from discrete to continuous time and back

Background	From algorithms to flows	From flows to algorithms	
000000			
About			

V. Cevher

Y.-P. Hsieh Y.-G. Hsieh

F. lutzeler

I. Malick

- Z. Zhou
- Hsieh, M & Cevher, The limits of min-max optimization algorithms: convergence to spurious non-critical sets, ICML 2021 •
 - Hsieh, lutzeler, Malick & M, Explore aggressively, update conservatively: Stochastic extragradient methods with variable stepsize scaling, NeurIPS 2020
 - M, Papadimitriou & Piliouras, Cycles in adversarial regularized learning, SODA 2018
 - ► M, Hsieh & Cevher, Online learning in games: A unified view through the lens of stochastic approximation, forthcoming
 - M & Zhou, Learning in games with continuous action sets and unknown payoff functions. Mathematical Programming, vol. 173, pp. 465-507. Jan. 2019

Backgro 0000		Preliminaries ●000000000	From algorithms to flows	Implications for min-max problems	
CITS	Outline				
	Backgroup				
	 Prelimi 	naries			
	8 From a	lgorithms to flows			
	4 From fl	ows to algorithms			
	Implication	ntions for min-max pro			

Backgro 0000		Preliminaries 000000000	From algorithms to flows 00000		Implications for min-max problems	
CITS	Mathe	matical formulation	on			
	Minim	ization problems				
			$\min_{x\in\mathcal{X}} f(x)$	x)		(Opt)
	_					
	Min-m	ax / Saddle-point	problems			
			$\min_{x_1\in\mathcal{X}_1}\max_{x_2\in\mathcal{X}_2} f(x_1)$	(x_1, x_2)		(SP)
	_					

	Preliminaries		
	000000000		
onrs			

Mathematical formulation

Minimization problems (stochastic)

 $\min_{x\in\mathcal{X}} f(x) = \mathbb{E}_{\theta}[F(x;\theta)]$

(Opt)

Min-max / Saddle-point problems (stochastic)

$$\min_{x_1 \in \mathcal{X}_1} \max_{x_2 \in \mathcal{X}_2} f(x_1, x_2) = \mathbb{E}_{\theta} [F(x_1, x_2; \theta)]$$
(SP)

Background 0000000	Preliminaries 000000000	From algorithms to flows	Implications for min-max problems	
Proble	m formulation			

Main difficulties:

- No convex structure
- Difficult to manipulate f in closed form

[technical assumptions later]

[black-box oracle methods]

Backgro 0000		Preliminaries 000000000	From algorithms to flows		Implications for min-max problems	
cnrs	Proble	m formulation				
	Main di	fficulties:				
	No	convex structure			[technical assumption	ns later]
	• Difficult to manipulate f in closed form				[black-box oracle m	ethods]
	Critical	points:	F. 1 *			(500)
			Find x^{-1} su	ch that $v(x^{*}) = 0$		(FOS)
	where <i>i</i>	v(x) is the problem	s defining vector field			
	► Gr	adient field for (Op	t):	$f(x) = \nabla f(x)$		
			ι	$f(x) = \sqrt{f(x)}$		

Individual gradient field for (SP):

$$v(x) = (\nabla_{x_1} f(x_1, x_2), -\nabla_{x_2} f(x_1, x_2))$$

[Notation: $x \leftarrow (x_1, x_2), \mathcal{X} \leftarrow \mathcal{X}_1 \times \mathcal{X}_2$]

Background 0000000	Preliminaries 0000000000	From algorithms to flows	Implications for min-max problems	
Corc				

Blanket assumptions

Assumptions

Unconstrained problems:

 \mathcal{X} = finite-dimensional Euclidean space

Existence of solutions:

 $\operatorname{crit}(f) = \{x^* \in \mathcal{X} : v(x^*) = 0\} \text{ is nonempty}$

Lipschitz continuity:

$$|f(x') - f(x)| \le G ||x' - x|| \quad \text{for all } x, x' \in \mathcal{X}$$
 (LC)

Lipschitz smoothness:

$$\|v(x') - v(x)\| \le L \|x' - x\| \quad \text{for all } x, x' \in \mathcal{X}$$
 (LS)

Background 0000000	Preliminaries 000000000	From algorithms to flows	Implications for min-max problems	
Chrs Alexie		4		

Algorithms I: Gradient descent

Gradient descent (+/ascent):

[Arrow et al., 1958]

 $X_{n+1} = X_n - \gamma_n v(X_n)$ (GD)

Background	Preliminaries	From algorithms to flows	From flows to algorithms	
	0000000000			

Algorithms II: Proximal point method

Proximal point method:

[Martinet, 1970; Rockafellar, 1976]

CINIS

Background 0000000	Preliminaries 000000●000	From algorithms to flows	Implications for min-max problems	
CITS Algorit	thms III: Extra-arad	iont		

Algorithms III: Extra-gradient

Extra-gradient:

[Korpelevich, 1976]

$$X_{n+1/2} = X_n - \gamma_n v(X_n) \qquad X_{n+1} = X_n - \gamma_n v(X_{n+1/2})$$
(EG)

Background 0000000	Preliminaries 000000●000	From algorithms to flows	Implications for min-max problems	
CITS Algorit	thms III: Extra-arad	iont		

Algorithms III: Extra-gradient

Extra-gradient:

[Korpelevich, 1976]

$$X_{n+1/2} = X_n - \gamma_n v(X_n) \qquad X_{n+1} = X_n - \gamma_n v(X_{n+1/2})$$
(EG)

Background 0000000	Preliminaries 000000●000	From algorithms to flows	Implications for min-max problems	
CITS Algorit	thms III: Extra-arad	iont		

Algorithms III: Extra-gradient

Extra-gradient:

[Korpelevich, 1976]

$$X_{n+1/2} = X_n - \gamma_n v(X_n) \qquad X_{n+1} = X_n - \gamma_n v(X_{n+1/2})$$
(EG)

Background 0000000	Preliminaries 0000000●00	From algorithms to flows	Implications for min-max problems	
CITS				

Algorithms IV: Optimistic gradient

Optimistic gradient:

[Popov, 1980; Rakhlin & Sridharan, 2013]

$$X_{n+1/2} = X_n - \gamma_n v(X_{n-1/2}) \qquad X_{n+1} = X_n - \gamma_n v(X_{n+1/2})$$
(OG)

Background 0000000	Preliminaries 0000000●00	From algorithms to flows	Implications for min-max problems	
CITS				

Algorithms IV: Optimistic gradient

Optimistic gradient:

[Popov, 1980; Rakhlin & Sridharan, 2013]

$$X_{n+1/2} = X_n - \gamma_n v(X_{n-1/2}) \qquad X_{n+1} = X_n - \gamma_n v(X_{n+1/2})$$
(OG)

Background 0000000	Preliminaries 0000000●00	From algorithms to flows	Implications for min-max problems	
CITS				

Algorithms IV: Optimistic gradient

Optimistic gradient:

[Popov, 1980; Rakhlin & Sridharan, 2013]

$$X_{n+1/2} = X_n - \gamma_n v(X_{n-1/2}) \qquad X_{n+1} = X_n - \gamma_n v(X_{n+1/2})$$
(OG)

000000000000000000000000000000000000000	Preliminaries		
	0000000000		

Algorithms V: more than you can shake a stick at...

Variants for min-max problems:

Alternating algorithms:

Player 1:
$$X_{1,n+1} = X_{1,n} - \gamma_n v(X_{1,n}, X_{2,n})$$

Player 2: $X_{2,n+1} = X_{2,n} - \gamma_n v(X_{1,n+1}, X_{2,n})$ (GD_{alt})

(+ variants for extra/optimistic/...)

CINIS

0000000 000000000 00000 00000 000000 0	Preliminaries		
	000000000		

Algorithms V: more than you can shake a stick at...

Variants for min-max problems:

Alternating algorithms:

Player 1:
$$X_{1,n+1} = X_{1,n} - \gamma_n v(X_{1,n}, X_{2,n})$$

Player 2: $X_{2,n+1} = X_{2,n} - \gamma_n v(X_{1,n+1}, X_{2,n})$ (GD_{alt})

(+ variants for extra/optimistic/...)

▶ *k* : 1 algorithms:

Player 1:
$$X_{1,n+1}^{(1)} = X_{1,n} - \gamma_n v(X_{1,n}, X_{2,n})$$

Player 1: $X_{1,n+1}^{(2)} = X_{1,n+1}^{(1)} - \gamma_n v(X_{1,n+1}^{(1)}, X_{2,n})$
... (GD_{k:1})
Player 1: $X_{1,n+1} = X_{1,n+1}^{(k-1)} - \gamma_n v(X_{1,n+1}^{(k-1)}, X_{2,n})$

Player 2:
$$X_{2,n+1} = X_{2,n} - \gamma_n v(X_{1,n+1}, X_{2,n})$$

(practical implementation of two-time-scale methods)

Cnr

0000000 000000000 00000 00000 000000 0	Preliminaries		
	000000000		

Algorithms V: more than you can shake a stick at...

Variants for min-max problems:

Alternating algorithms:

Player 1:
$$X_{1,n+1} = X_{1,n} - \gamma_n v(X_{1,n}, X_{2,n})$$

Player 2: $X_{2,n+1} = X_{2,n} - \gamma_n v(X_{1,n+1}, X_{2,n})$ (GD_{alt})

(+ variants for extra/optimistic/...)

▶ *k* : 1 algorithms:

Player 1:
$$X_{1,n+1}^{(1)} = X_{1,n} - \gamma_n v(X_{1,n}, X_{2,n})$$

Player 1: $X_{1,n+1}^{(2)} = X_{1,n+1}^{(1)} - \gamma_n v(X_{1,n+1}^{(1)}, X_{2,n})$
... (GD_{k:1})

Player 1:
$$X_{1,n+1} = X_{1,n+1}^{(K-1)} - \gamma_n v(X_{1,n+1}^{(K-1)}, X_{2,n})$$

Player 2: $X_{2,n+1} = X_{2,n} - \gamma_n v(X_{1,n+1}, X_{2,n})$

(practical implementation of two-time-scale methods)

Chambolle-Pock; step-size scaling; variance reduction; ...

Cnr
Background	Preliminaries	From algorithms to flows	From flows to algorithms	
	000000000			

The Robbins-Monro template

Generalized Robbins-Monro algorithm

$$X_{n+1} = X_n - \gamma_n [v(X_n) + U_n + b_n]$$

(RM)

with $\sum_{n} \gamma_n = \infty$, $\gamma_n \to 0$, and $\mathbb{E}[U_n \mid X_n, \dots, X_1] = 0$

Examples

- Gradient descent (+/ascent): $b_n = 0$
- Proximal point method (det.): $U_n = 0, b_n = v(X_{n+1}) v(X_n)$
- Extra-gradient: $b_n = v(X_{n+1/2}) v(X_n)$
- Optimistic gradient: $b_n = v(X_{n+1/2}) v(X_n)$
- Single-point stochastic approximation (stoch.): $U_n = (d/\varepsilon)f(\hat{X}_n)W_n v_{\varepsilon}(X_n), \ b_n = v_{\varepsilon}(X_n) v(X_n)$ where

$$f_{\varepsilon}(x) = \frac{1}{\operatorname{vol}(\mathbb{B}_{\delta})} \int_{\mathbb{B}_{\delta}} f(x + \varepsilon z) \, dz$$

<u>►</u> ...

Backgro 0000	ound DOOO	Preliminaries 0000000000	From algorithms to flows ●○○○○	From flows to algorithms	Implications for min-max problems	References O
CITS	Outl	ine				
	Bac	ckground				
	Pre					
	3 Fro	m algorithms to flows				
	4 Fro	m flows to algorithms				
	6 Imj	plications for min-max				

Background 0000000		From algorithms to flows ○●○○○	Implications for min-max problems	
Chrs Mean d	unamics in contin	uous tima		

Mean dynamics in continuous time

Characteristic property of Robbins-Monro (RM) schemes

$$\frac{X_{n+1}-X_n}{\gamma_n}=-v(X_n)+Z_n$$

Mean dynamics

$$\dot{x}(t) = -v(x(t))$$

(MD)

Background 0000000		From algorithms to flows ○○●○○	Implications for min-max problems	
Stocha	stic approximation	1		

Basic idea: if γ_n is "small", the errors wash out and " $\lim_{t\to\infty} (RM) = \lim_{t\to\infty} (MD)$ "

Background 0000000	From algorithms to flows	Implications for min-max problems	

Stochastic approximation

Basic idea: if γ_n is "small", the errors wash out and " $\lim_{t\to\infty} (RM) = \lim_{t\to\infty} (MD)$ "

→ ODE method of stochastic approximation

[Ljung, 1977; Benveniste et al., 1990; Kushner & Yin, 1997; Benaïm, 1999]

• Virtual time: $\tau_n = \sum_{k=1}^n \gamma_k$

Virtual trajectory:
$$X(t) = X_n + \frac{t - \tau_n}{\tau_{n+1} - \tau_n} (X_{n+1} - X_n)$$

Asymptotic pseudotrajectory (APT):

 $\lim_{t\to\infty}\sup_{0\leq h\leq T}\|X(t+h)-\Phi_h(X(t))\|=0$

where $\Phi_s(x)$ denotes the position at time *s* of an orbit of (MD) starting at *x*

• Long run: X(t) tracks (MD) with arbitrary accuracy over windows of arbitrary length

[Benaïm & Hirsch, 1995, 1996; Benaïm, 1999; Benaïm et al., 2005, 2006]

CINS

Background	From algorithms to flows	From flows to algorithms	
	00000		

Stochastic approximation criteria

When is a sequence generated by (RM) an APT?

(Base) **f** is Lipschitz continuous and smooth:

$$|f(x') - f(x)| \le G ||x' - x||$$
 (LC)

$$\|v(x') - v(x)\| \le L \|x' - x\|$$
(LS)

- ▶ *f* is weakly coercive: $\langle v(x), x \rangle \ge 0$ for sufficiently large *x*
- (**Impl**) $b_n \rightarrow 0$ with probability 1
 - $\mathbf{E}[\sum_n \gamma_n \|b_n\|] < \infty$
 - $\mathbb{E}\left[\sum_{n} \gamma_n^2 (1 + \|U_n\|^2)\right] < \infty$

Proposition (Benaïm & Hirsch, 1996)

- ► Assume: (Base) + (Impl)
- \mathbb{A} Then: X_n is an APT of (MD) with probability 1

Cnr

Background 0000000		From algorithms to flows ○○○○●	Implications for min-max problems	
CITS APT cri	iteria: explicit			

Explicit algorithmic criteria:

(Expl) • Black-box oracle:

 $V(x) = v(x) + \operatorname{err}(x)$

Oracle returns unbiased gradients with finite mean square error

 $\mathbb{E}[\mathsf{V}(x)] = v(x) \qquad \mathbb{V}[\mathsf{V}(x)] \le \sigma^2$

NB: unbiasedness at query point **does not mean** $b_n = 0$ in (RM)

•
$$A/n \le \gamma_n \le B/\sqrt{n(\log n)^{1+\varepsilon}}$$
 for some $A, B, \varepsilon > 0$

Proposition (Hsieh, M & Cevher, 2021)

- Assume: (Base) + (Expl)
- \measuredangle Then: the sequence X_n generated by any of the Algorithms I-V is an APT

Backgr 0000			From algorithms to flows	From flows to algorithms ●0000000	Implications for min-max problems	
CITS	Outl	ine				
	1 Bac	ckground				
	Pre					
	3 Fro	m algorithms to flows				
	4 Fro	m flows to algorithms				
	6 Im	olications for min-max				

Background	From algorithms to flows	From flows to algorithms	
		0000000	

Convergence of gradient flows

Gradient flow of a function $f: \mathcal{X} \to \mathbb{R}$

$$\dot{x}(t) = -\nabla f(x(t))$$

Main property: *f* is a (strict) *Lyapunov function* for (GF)

 $df/dt = -\|\nabla f(x(t))\|^2 \le 0$ w/ equality iff $\nabla f(x) = 0$

(GF)

CIN

Background 0000000	From algorithms to flows	From flows to algorithms	Implications for min-max problems	
cors				

Single- vs. multi-agent setting

In minimization problems:

- ✓ RM methods onverge to the problem's critical set
- ✓ RM methods avoid spurious, saddle-point manifolds

[Ljung, 1977; Kushner & Yin, 1997; Benaïm & Hirsch, 1996]

[Pemantle, 1990; Ge et al., 2015; Lee et al., 2019; M et al., 2020]

Background 0000000	From algorithms to flows	From flows to algorithms	Implications for min-max problems	
corc				

Single- vs. multi-agent setting

In minimization problems:

- ✓ RM methods onverge to the problem's critical set
- ✓ RM methods avoid spurious, saddle-point manifolds

[Ljung, 1977; Kushner & Yin, 1997; Benaïm & Hirsch, 1996]

[Pemantle, 1990; Ge et al., 2015; Lee et al., 2019; M et al., 2020]

Does this intuition carry over to min-max optimization problems?

Do min-max algorithms:

- ∠ Converge to unilaterally stable/stationary points?
- 🖾 Avoid spurious, non-equilibrium sets?

Background 0000000		From algorithms to flows	From flows to algorithms ○○○●○○○○	Implications for min-max problems	
Min-m	ax dynamics				

The main issue:

- ✓ Minimization problems: (MD) is a gradient flow
- X Min-max problems: (MD) can be arbitrarily complicated

Background 0000000		From algorithms to flows	From flows to algorithms ○○○●○○○○	Implications for min-max problems	
Min-ma	ıx dynamics				

The main issue:

- ✓ Minimization problems: (MD) is a gradient flow
- X Min-max problems: (MD) can be arbitrarily complicated

An assorted zoology of stationary sets

• Invariant: image of S under (MD) = S

 $[\Phi_t(\mathcal{S}) = \mathcal{S} \text{ for all } t]$

- Attracting: invariant + attracts all nearby orbits of (MD)
- Internally chain transitive: invariant + (MD) restricted on S contains no proper attractors

			From flows to algorithms		
000000	000000000	00000	0000000	000000000000000	
CITS Examples					

Some examples (more later):

Figure: An attracting limit cycle (the Van Der Pol osillator)

Backgr 000			From algorithms to flows	From flows to algorithms ○○○○●○○○	Implications for min-max problems	
cnrs	Examples					
	Some exan	nples (more later)):			

Figure: An attracting heteroclinic cycle (Bowen's eye)

Background 0000000	From algorithms to flows	From flows to algorithms ○○○○○●○○	Implications for min-max problems	
Corre				

Convergence to ICT sets

Theorem (Benaïm, 1999; implicit)

- ➡ Assume: (Base) + (Impl)
- \measuredangle Then: with probability 1, the sequence X_n generated by (RM) converges to an ICT set of (MD)

Theorem (Hsieh, M & Cevher, 2021; explicit)

➡ Assume: (Base) + (Expl)

 \measuredangle Then: with probability 1, the sequence X_n generated by any of the Algs. I-V converges to an ICT set of (MD)

	From flows to algorithms	
	00000000	

Avoidance of unstable points and periodic orbits

Generically, any ICT set S possesses **stable** and **unstable** manifolds:

- ▶ Stable manifold: invariant + all trajectories starting here converge to S
- ▶ Unstable manifold: invariant + all trajectories starting here diverge from S
- Unstable point / periodic orbit: possesses a nontrivial unstable manifold

CINIS

Background 000000	Preliminaries 0000000000	From algorithms to flows	From flows to algorithms	Implications for min-max problems	

Avoidance of unstable points and periodic orbits

Generically, any ICT set ${\mathcal S}$ possesses **stable** and **unstable** manifolds:

- ▶ Stable manifold: invariant + all trajectories starting here converge to S
- ▶ Unstable manifold: invariant + all trajectories starting here diverge from S
- Unstable point / periodic orbit: possesses a nontrivial unstable manifold

Theorem (Hsieh, M & Cevher, 2021)

Assume:

- *f* satisfies (LC) and (LS)
- ▶ *U_n* is finite (a.s.) and **uniformly exciting**

 $\mathbb{E}[\langle U, z \rangle^+] \geq c \quad \text{for all unit vectors } z \in \mathbb{S}^{d-1}, x \in \mathcal{X}$

• $\gamma_n \propto 1/n^p$ for some $p \in (0,1]$

Background	From algorithms to flows	From flows to algorithms	
		0000000	

Minimization vs. min-max optimization

Qualitatively similar landscape (??)

- ► Components of critical points ↔ ICT sets
- ► Avoidance of strict saddles ↔ avoidance of unstable periodic orbits

Is there a fundamental difference between min and min-max problems?

Cnr

Background 0000000	From algorithms to flows 00000	From flows to algorithms ○○○○○○○●	Implications for min-max problems	

Minimization vs. min-max optimization

Qualitatively similar landscape (??)

- ► Components of critical points ↔ ICT sets
- ► Avoidance of strict saddles ↔ avoidance of unstable periodic orbits

Is there a fundamental difference between min and min-max problems?

Non-gradient problems may have spurious ICT sets!

Х

Background 0000000		From algorithms to flows	Implications for min-max problems ○●○○○○○○○○○○○○○○	
Bilined	ır games redux			
Bilinea	r min-max games			

$$\min_{x_1 \in \mathcal{X}_1} \max_{x_2 \in \mathcal{X}_2} \quad f(x_1, x_2) = (x_1 - b_1)^{\mathsf{T}} A(x_2 - b_2)$$

Mean dynamics:

$$\dot{x}_1 = -A(x_2 - b_2)$$
 $\dot{x}_2 = A^{\mathsf{T}}(x_1 - b_1)$

Backgr 0000			From algorithms to flor		Implications for min-max problems ○●○○○○○○○○○○○	
cnrs	Bilinear g	ames redux				
	Bilinear m	in-max games				
			$\min_{x_1 \in \mathcal{X}_1} \max_{x_2 \in \mathcal{X}_2}$	$f(x_1, x_2) = (x_1 - b_1)' A(x_2 - b_2)$		

Mean dynamics:

$$\dot{x}_1 = -A(x_2 - b_2)$$
 $\dot{x}_2 = A^{\mathsf{T}}(x_1 - b_1)$

Energy function:

$$E(x) = \frac{1}{2} ||x_1 - b_1||^2 + \frac{1}{2} ||x_2 - b_2||^2$$

Lyapunov property:

$$\frac{dE}{dt} \le 0 \quad \text{w/ equality if } A = A^{\top}$$

→ distance to solutions (*weakly*) decreasing along (MD)

Background 0000000		From algorithms to flows 00000	Implications for min-max problems	
CITS Periodi	c orbits			

Roadblock: the energy may be a **constant of motion**

Figure: Hamiltonian flow of $f(x_1, x_2) = x_1x_2$

					000000000000000000000000000000000000000	
--	--	--	--	--	---	--

Poincaré recurrence

Definition (Poincaré, 1890's)

A system is **Poincaré recurrent** if almost all solution trajectories return **infinitely close** to their starting point **infinitely often**

Background	Preliminaries	From algorithms to flows	From flows to algorithms	Implications for min-max problems	
	000000000	00000	00000000		0

Poincaré recurrence

Definition (Poincaré, 1890's)

A system is **Poincaré recurrent** if almost all solution trajectories return *infinitely close* to their starting point *infinitely often*

Theorem (M, Papadimitriou, Piliouras, 2018; unconstrained version)

(MD) is Poincaré recurrent in all bilinear min-max games that admit an interior equilibrium

Background 0000000		From algorithms to flows	Implications for min-max problems	
CITS Behavi	or of aradient desc	rent		

Behavior of gradient descent

Vanilla gradient:

$$X_{n+1} = X_n - \gamma_n v(X_n)$$

Background		From flows to algorithms	Implications for min-max problems	
			000000000000000000000000000000000000000	

Behavior of gradient descent

Vanilla gradient:

$$X_{n+1} = X_n - \gamma_n v(X_n)$$

Energy no longer a constant:

$$\frac{1}{2} \|X_{n+1} - x^*\|^2 = \frac{1}{2} \|X_n - x^*\|^2 + \gamma_n \underbrace{(v(X_n), X_n - x^*)}_{\text{from (MD)}} + \frac{1}{2} \underbrace{\gamma_n^2 \|v(X_n)\|^2}_{\text{discretization error}}$$

...even worse

Background 0000000		From algorithms to flows	Implications for min-max problems	
CITS Rehavi	or of aradient desc	ont		

Behavior of gradient descent

Vanilla gradient:

$$X_{n+1} = X_n - \gamma_n v(X_n)$$

Background 0000000		From algorithms to flows	Implications for min-max problems	
Behavior	r of extra-gradier	ıt		

Extra-gradient:

$$X_{n+1/2} = X_n - \gamma_n v(X_n)$$
 $X_{n+1} = X_n - \gamma_n v(X_{n+1/2})$

Background 0000000	From algorithms to flows	Implications for min-max problems	
CITS Recap			

Long-run behavior of min-max learning algorithms:

Mean dynamics: Poincaré recurrent [periodic orbits]
Individual gradient descent: divergence [outward spirals]
Extra-gradient: convergence [inward spirals]

Background 0000000	From algorithms to flows	Implications for min-max problems	
CITS Recap			

Long-run behavior of min-max learning algorithms:

- 🚈 Mean dynamics: Poincaré recurrent
- ✗ Individual gradient descent: divergence
- ✓ Extra-gradient: convergence

[periodic orbits]

[outward spirals]

[inward spirals]

Different outcomes despite same mean dynamics!

Background 0000000		From algorithms to flows 00000	Implications for min-max problems ○○○○○○○○○○○○○○○○○○	
Cnrs	. .			

Figure: Behavior of (GD), (EG) and (OG) with stochastic first-order oracle feedback

Proposition (Hsieh, M & Cevher, 2021)

Under (Base) + (Expl), all Algs. I-V converge to a (possibly random) periodic orbit

Background 0000000	From algorithms to flows	Implications for min-max problems	

The degeneracy issue

Degeneracy of ICTs

- The state space "foliates" into disjoint periodic orbits
- All periodic orbits are Lyapunov stable
- None of these orbits is attracting
- ► Long-run behavior difficult to predict!

[Every point is recurrent]

[Nearby initializations remain nearby]

[No "preferred" outcome]

Background		From algorithms to flows		Implications for min-max problems	
	0000000000	00000	00000000		0

The degeneracy issue

Degeneracy of ICTs

- The state space "foliates" into disjoint periodic orbits
- All periodic orbits are Lyapunov stable
- None of these orbits is attracting
- Long-run behavior difficult to predict!

[Every point is recurrent]

[Nearby initializations remain nearby]

[No "preferred" outcome]

How common is this situation?

Background	From algorithms to flows	From flows to algorithms	Implications for min-max problems	
			00000000000000000	

The Kupka-Smale theorem

Systems with the structure of bilinear games are rare:

Theorem (Kupka, 1963)

Let $\mathcal{V} = C^2(\mathbb{R}^d; \mathbb{R}^d)$ be the space of C^2 vector fields on \mathbb{R}^d endowed with the Whitney topology. Then the set of vector fields with a non-trivial recurrent set is **meager** (in the Baire category sense).
Background	From algorithms to flows	From flows to algorithms	Implications for min-max problems	
			00000000000000000	

The Kupka-Smale theorem

Systems with the structure of bilinear games are rare:

Theorem (Kupka, 1963)

Let $\mathcal{V} = C^2(\mathbb{R}^d; \mathbb{R}^d)$ be the space of C^2 vector fields on \mathbb{R}^d endowed with the Whitney topology. Then the set of vector fields with a non-trivial recurrent set is **meager** (in the Baire category sense).

Theorem (Smale, 1963)

For any vector field $v \in V$, the following properties are generic (in the Baire category sense):

- All closed orbits are hyperbolic
- Heteroclinic orbits are transversal (i.e., stable and unstable manifolds intersect transversally)

Background	From algorithms to flows	From flows to algorithms	Implications for min-max problems	
			00000000000000000	

The Kupka-Smale theorem

Systems with the structure of bilinear games are rare:

Theorem (Kupka, 1963)

Let $\mathcal{V} = C^2(\mathbb{R}^d; \mathbb{R}^d)$ be the space of C^2 vector fields on \mathbb{R}^d endowed with the Whitney topology. Then the set of vector fields with a non-trivial recurrent set is **meager** (in the Baire category sense).

Theorem (Smale, 1963)

For any vector field $v \in V$, the following properties are generic (in the Baire category sense):

- All closed orbits are hyperbolic
- Heteroclinic orbits are transversal (i.e., stable and unstable manifolds intersect transversally)

TL;DR

Non-attracting periodic orbits are non-generic (they occur negligibly often)

Background 0000000	Preliminaries 0000000000	From algorithms to flows	From flows to algorithms	Implications for min-max problems	References O
Conve	rgence to attractor	rs			
Attrac	<mark>tors</mark> → natural solutic	on concepts for non-min	imization problems		
Theor	em (Hsieh, M & Cev	her, 2021; implicit)			
🛏 A	ssume: (Base) + (Im	pl); ${\mathcal S}$ is an attractor; X_n	is generated by (RM)		
🖾 T	hen: for all $\alpha > 0$, the	re exists a neighborhood l	${\cal A}$ of ${\cal S}$ such that		

 $\mathbb{P}(X_n \text{ converges to } \mathcal{S} \mid X_1 \in \mathcal{U}) \geq 1 - \alpha$

Theorem (Hsieh, M & Cevher, 2021; explicit)

Sisted and the set of the set of

 $\mathbb{P}(X_n \text{ converges to } \mathcal{S} \mid X_1 \in \mathcal{U}) \geq 1 - \alpha$

Background 0000000		From algorithms to flows	Implications for min-max problems ○○○○○○○○○○○○○○○	
Foliatio	ns are fragile			

Consider again the "almost bilinear" game

$$\min_{x_1\in\mathcal{X}_1}\max_{x_2\in\mathcal{X}_2} \quad f(x_1,x_2) = x_1x_2 + \varepsilon\phi(x_2)$$

where $\varepsilon > 0$ and $\phi(x) = (1/2)x^2 - (1/4)x^4$

Properties:

- Unique critical point at the origin
- Unstable under (MD)
- (MD) attracted to unique, stable limit cycle from almost all initial conditions

[Hsieh, M & Cevher, 2021]

		Implications for min-max problems	
		000000000000000000000000000000000000000	

Spurious attractors in almost bilinear games

Trajectories of (RM) converge to a spurious limit cycle with no critical points

Figure: Left: stochastic gradient descent (SGD); right: stochastic extra-gradient

CINIS

Background 0000000		From algorithms to flows 00000	Implications for min-max problems	
CITS Forsal	van solutions			

Another almost bilinear game

$$\min_{x_1\in\mathcal{X}_1}\max_{x_2\in\mathcal{X}_2} \quad f(x_1,x_2) = x_1x_2 + \varepsilon[\phi(x_1) - \phi(x_2)]$$

where $\varepsilon > 0$ and $\phi(x) = (1/4)x^2 - (1/2)x^4 + (1/6)x^6$

Properties:

- Unique (local) min-max point near the origin
- Two isolated non-constant periodic orbits:
 - One unstable, shielding critical point, but small
 - One stable, attracts all trajectories of (MD) outside small basin

[Hsieh, M & Cevher, 2021]

		Implications for min-max problems	
		000000000000000000000000000000000000000	

Forsaken solutions in almost bilinear games

With high probability, (RM) forsakes the game's unique (local) equilibrium

Figure: Left: stochastic gradient descent; right: stochastic extra-gradient

CINIS

Background 0000000		From algorithms to flows	Implications for min-max problems	
Conclus	sions			

Minimization and min-max optimization are fundamentally different:

- First-order min-max methods may have limit points that are **neither stable nor stationary**
- Bilinear games may not be representative case studies for min-max optimization
- Cannot avoid spurious, non-equilibrium sets with positive probability
- Different approaches needed (mixed-strategy learning, multiple-timescales,...)

Background 0000000	Preliminaries 0000000000	From algorithms to flows	From flows to algorithms	Implications for min-max problems	
Conclusi	ons				

Minimization and min-max optimization are fundamentally different:

- First-order min-max methods may have limit points that are neither stable nor stationary
- Bilinear games may not be representative case studies for min-max optimization
- Cannot avoid spurious, non-equilibrium sets with positive probability
- Different approaches needed (mixed-strategy learning, multiple-timescales,...)

Many open questions:

- How to detect spurious cycles in a real system?
- Is there any first-order method that converges only to critical points?
- What about finite games (where bilinear games are no longer fragile)?
- Which equilibria are stable under first-order methods?

<u>۱۰۰</u>

Background 0000000		From algorithms to flows	Implications for min-max problems	References O
CITS Referenc	es l			

Arrow, K. J., Hurwicz, L., and Uzawa, H. Studies in linear and non-linear programming. Stanford University Press, 1958.

- Benaïm, M. Dynamics of stochastic approximation algorithms. In Azéma, J., Émery, M., Ledoux, M., and Yor, M. (eds.), Séminaire de Probabilités XXXIII, volume 1709 of Lecture Notes in Mathematics, pp. 1-68. Springer Berlin Heidelberg, 1999.
- Benaïm, M. and Hirsch, M. W. Dynamics of Morse-Smale urn processes. Ergodic Theory and Dynamical Systems, 15(6):1005–1030, December 1995.
- Benaïm, M. and Hirsch, M. W. Asymptotic pseudotrajectories and chain recurrent flows, with applications. Journal of Dynamics and Differential Equations, 8(1):141-176, 1996.
- Benaïm, M., Hofbauer, J., and Sorin, S. Stochastic approximations and differential inclusions. SIAM Journal on Control and Optimization, 44(1): 328-348, 2005.
- Benaïm, M., Hofbauer, J., and Sorin, S. Stochastic approximations and differential inclusions, part II: Applications. Mathematics of Operations Research, 31(4):673-695, 2006.
- Benveniste, A., Métivier, M., and Priouret, P. Adaptive Algorithms and Stochastic Approximations. Springer, 1990.
- Chavdarova, T., Gidel, G., Fleuret, F., and Lacoste-Julien, S. Reducing noise in GAN training with variance reduced extragradient. In NeurIPS '19: Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019.
- Diakonikolas, J., Daskalakis, C., and Jordan, M. I. Efficient methods for structured nonconvex-nonconcave min-max optimization. In AISTATS '21: Proceedings of the 24th International Conference on Artificial Intelligence and Statistics, 2021.

Background		From algorithms to flows	From flows to algorithms	References
CITS Referenc	es II			

- Ge, R., Huang, F., Jin, C., and Yuan, Y. Escaping from saddle points Online stochastic gradient for tensor decomposition. In COLT '15: Proceedings of the 28th Annual Conference on Learning Theory, 2015.
- Gidel, G., Berard, H., Vignoud, G., Vincent, P., and Lacoste-Julien, S. A variational inequality perspective on generative adversarial networks. In ICLR '19: Proceedings of the 2019 International Conference on Learning Representations, 2019.
- Hsieh, Y.-G., lutzeler, F., Malick, J., and Mertikopoulos, P. Explore aggressively, update conservatively: Stochastic extragradient methods with variable stepsize scaling. In NeurIPS '20: Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020.
- Hsieh, Y.-P., Mertikopoulos, P., and Cevher, V. The limits of min-max optimization algorithms: Convergence to spurious non-critical sets. In ICML '21: Proceedings of the 38th International Conference on Machine Learning, 2021.
- Juditsky, A., Nemirovski, A. S., and Tauvel, C. Solving variational inequalities with stochastic mirror-prox algorithm. Stochastic Systems, 1(1): 17-58, 2011.
- Korpelevich, G. M. The extragradient method for finding saddle points and other problems. Èkonom. i Mat. Metody, 12:747-756, 1976.
- Kushner, H. J. and Yin, G. G. Stochastic approximation algorithms and applications. Springer-Verlag, New York, NY, 1997.
- Lee, J. D., Panageas, I., Piliouras, G., Simchowitz, M., Jordan, M. I., and Recht, B. First-order methods almost always avoid strict saddle points. Mathematical Programming, 176(1):311-337, February 2019.
- Li, H., Xu, Z., Taylor, G., Suder, C., and Goldstein, T. Visualizing the loss landscape of neural nets. In NeurIPS '18: Proceedings of the 32nd International Conference of Neural Information Processing Systems, 2018.

Background 0000000		From algorithms to flows	Implications for min-max problems	References O
Chrs Referen	ces III			

Ljung, L. Analysis of recursive stochastic algorithms. IEEE Trans. Autom. Control, 22(4):551-575, August 1977.

Martinet, B. Régularisation d'inéquations variationnelles par approximations successives. ESAIM: Mathematical Modelling and Numerical Analysis, 4(R3):154-158, 1970.

- Mertikopoulos, P. and Zhou, Z. Learning in games with continuous action sets and unknown payoff functions. *Mathematical Programming*, 173 (1-2):465-507, January 2019.
- Mertikopoulos, P., Papadimitriou, C. H., and Piliouras, G. Cycles in adversarial regularized learning. In SODA '18: Proceedings of the 29th annual ACM-SIAM Symposium on Discrete Algorithms, 2018.
- Mertikopoulos, P., Hallak, N., Kavis, A., and Cevher, V. On the almost sure convergence of stochastic gradient descent in non-convex problems. In NeurIPS '20: Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020.

Pemantle, R. Nonconvergence to unstable points in urn models and stochastic aproximations. Annals of Probability, 18(2):698-712, April 1990.

- Popov, L. D. A modification of the Arrow-Hurwicz method for search of saddle points. Mathematical Notes of the Academy of Sciences of the USSR, 28(5):845-848, 1980.
- Rakhlin, A. and Sridharan, K. Optimization, learning, and games with predictable sequences. In NIPS '13: Proceedings of the 27th International Conference on Neural Information Processing Systems, 2013.

Rockafellar, R. T. Monotone operators and the proximal point algorithm. SIAM Journal on Optimization, 14(5):877-898, 1976.

Background 0000000	Preliminaries 0000000000	From algorithms to flows	From flows to algorithms	Implications for min-max problems	References
CITS					