
Beyond minimax optimization: 
 Learning Dynamics in adversarial learning

Gauthier Gidel, Mila and University of Montreal 

Adversarial Approaches in ML workshop, Simons Institute, Feb 23rd 2022



Outline

● Part 1: Beyond minimax optimization by considering implicit biaises.  
              
               The implicit biais of Adam for GANs training. 

● Part 2: Beyond minimax optimization by replacing optimization by sampling. 
 
              A distributional robustness perspective for adversarial training



The implicit biais of Adam for GANs training

Joint work with Samy Jelassi, Arthur Mensch and Yuanzhi Li 
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[Goodfellow et al. NIPS 2014]



Payoff of GANs

How well the dataset is classified as “real” How well the fake image is 
classified as “fake”
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Training Dynamics

Generator Discriminator
Training: The Deep Learning way! 

1. Compute (stochastic) gradient for theta 

2. Update theta with your favorite optimizer 
3. Compute gradient for w 

4. Update w 

5. Repeat



Principled optimization for minimax games

BUT Gradient descent ascent does (should) not work!

Principled minimax methods for GANs: 
● Two timescale updates [Heusel et al. 2017] 
● Optimistic method [Daskalakis et al. 2018] 
● Hamiltonian Gradient Descent [Balduzzi et al. 2018] 
● Extra-Gradient [G. et al 2019],  
● Negative momentum [G. et al. 2019] 
● Anchoring [Ryu et al 2019]



An inconvenient 
truth

 
Principled methods I tried for GANs: 

● Extra-Gradient [G. et al 2019],  
● Negative momentum [G. et al. 2019] 

These principled methods alone could 
not close this gap! (At least for me)



An inconvenient 
truth

 
Principled methods I tried for GANs: 

● Extra-Gradient [G. et al 2019],  
● Negative momentum [G. et al. 2019] 

These principled methods alone could 
not close this gap! (At least for me)

My Goal today: 
I want to address this practical gap due to the choice of the optimizer 

Then: principled methods for minimax optimization can be used 
(extragradient/Optimism,…) 



Some Facts; beyond the anecdote
- SGD is outperformed (significantly) by Adam.  
- Adam is the optimizer of choice of all the latest SOTA results on GANs:

- Principled methods only work on top of Adam: 
- Optimistic Adam [Daskalakis et al. 2018]  
- Extra-Adam [Gidel et al 2019],  
- Negative momentum with Adam [Gidel et al. 2019] 
- Adam with anchoring [Ryu et al 2019]

Source: https://paperswithcode.com/sota/image-generation-on-cifar-10

[Gulrajani et al. 2017]

[Heusel et al. 2017]
[Miyato et al. 2018]

[Tran et al. 2018]
[Brock et al. 2019]

[Terjék 2020]

[Gong et al. 2020]

[Tran et al. 2020]



Some Facts; beyond the anecdote
- SGD is outperformed (significantly) by Adam.  
- Adam is the optimizer of choice of all the latest SOTA results on GANs:

Question:  Why does Adam do that SGD does not?

- Adam (not that principled) is added on top of principled methods: 
- Two timescale updates [Heusel et al. 2017] 
- Optimistic Adam [Daskalakis et al. 2018]  
- Extra-Adam [G. et al 2019],  
- Negative momentum with Adam [G. et al. 2019] 
- Adam with anchoring [Ryu et al 2019]



What does Adam do?

- It’s an adaptive method. 
- Many justifications to explain why it works well 

in practice: 
- Rescale “each coordinate” of the gradient. (so moves 

globally faster) 
- Avoid saddle points [Ovieto et al. 2021] 

- But:   
- Oral presentation at Neurips 2017: [Wilson et al. 2017] 

Outperformed by SGD for image classification 
- Best paper award at ICLR 2018 [Reddi et al. 2018] 

showed it does not converge!

Momentum 

Coordinate-wise 
renormalization



What does Adam do?

Has a direction and a norm  
that differs from SGD



What we did

Check whether it is the direction or the norm (or both?) of the Adam update that 
implies superior performance

AdaLR: 

AdaDir: 

Direction of SGD

Direction of Adam

norm of Adam

norm of SGD

(constant step-size)



Results

1. AdaLR is as good as Adam (i.e. the direction does not matter) 
2. The norm of the Adam direction is constant across time. 



The method that worked

AdaLR: 

Direction of SGD

norm of Adam

If constant (verified in 
practice )

Hypothesis: 

Should work as well as Adam!



NormSGDA vs. Adam

l-nSGDA: layer normalized SGDA 
g-nSGDA: normalized SGDA



Experimental Conclusion

- (In our GAN setting) normalized SGD is a proxy for Adam
- Adam is a proxy for normalized SGD! 

Why is it great:  

1. Way easier to analyze and understand normalized SGD and its implicit 
biaises.  

2. Way easier to tune (significantly less hyperparameters)  
3. Room for improvement (easier to build on top of Normalized SGD than Adam) 



Analysis of Normalized SGDA vs SGDA

Linear Generator: Distribution with two modes : 

 
with  and 

u1, u2

⟨u1, u2⟩ > 0 X = u1 or X = u2

Binary Latent random variable: 
 

[Allen-Zhu & Li (2021)]:  can be seen at the distribution of the hidden layers 
of a deeper NN: they are sparse, non-negative, and non-positively correlated.

zi



Analysis of Normalized SGDA vs SGDA

Cubic Discriminator: 

Objective: 



Our Results: SGDA 

Informal: For any stepwise choice w.h.p. SGD suffer from mode collapse. 
(Precisely, can only learn the direction of ). 

 

u1 + u2



Illustration: SGDA mode collapse (learn the average)



Our Results: normalized SGDA 

Informal: For a correct choice of step-size nSGDA learns the direction of both 
modes.   

Remarks: 
1. For specific initialization and choice of Generator/Discriminator. 
2. Result only about learned directions (not the norm). 
3. No guarantees that nSGD learns the correct weighting for .X = s1u1 + s2u2



Illustration normalized SGD learns both modes:



Conclusion (Part 1)
- GANs has some very bad (approximate) stationary points/local equilibrium. 

- Normalized gradients seems to be key for training GANs. 

- Converge guarantees are not enough! 

- The implicit biases of each learning algorithms is significant! 

- Need fined-grained understanding of the dynamics (depends on the game.) 

- General nonconvex-nonconcave minimax optimization too general.  

Next Question:  
1. Importance of the minibatch-size (not too large mini batches seems critical) 
2. Can we extend this to more complex generators and discriminators?   
3. Does this idea extend to other setting? Multi-Agent RL?
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A distributional robustness 
perspective for adversarial training

Joint work with David Dobre, Chiara Regniez, and Hugo Berard



Adversarial examples

“Machine Learning can make pigs fly’’  [Mądry and Kolter, 2018] 

Image Source: https://gradientscience.org/intro_adversarial/



Training robust models

Goal: Robust classifier 
i.e. not having flying pigs. 

Idea: Train your model against 
adversarial examples 

Not from  anymore !pdata



Distributional robustness 
perspective

Distributional robustness perspective: 
- [Delage and Ye, 2010] [Ben-Tal and Nemirovski, 1998] 

Connection with Adversarial examples:  
- [Gao et al., 2017] [Sinha et al., 2018] 

Novelty here:  
- Distributional robustness formulation of adversarial training (i.e. the right )  
- Connection with optimal transport and  constraint.  

𝒫
∞ − ∞ − Wasserstein Ball

=

x̃ ∼ padv

???



Distributional robustness perspective

=

We want to transport  to  with the proximity constraint: x x̃



Distributional robustness perspective

=

∞ − ∞ − Wasserstein Ball

=

- -Wasserstein distance:p ∞



Distributional robustness 
perspective

Distributional robustness perspective: 
- [Delage and Ye, 2010] [Ben-Tal and Nemirovski, 1998] 

Connection with Adversarial examples:  
- [Gao et al., 2017] [Sinha et al., 2018] 

Novelty here:  
- Distributional robustness formulation of adversarial training (i.e. equality above)  
- Connection with the  constraint.  
- Connection with optimal transport.

∞ − ∞ − Wasserstein Ball

∞ − ∞ − Wasserstein Ball

=



Insight from optimal transport 

● We need to (entropy) regularize the transport plan between  and . 

● By using duality we have a closed form for the optimal  (depends on ): 

pdata padv

p*adv θ

Not easy to compute this integral

● Can simulate  using Langevin Monte Carlo sampling. 

● Inner problem of adversarial training: optimization  sampling

padv

→



Practical implementation

maintain an adversarial dataset!

Update the adversarial 
dataset (depends on 𝞱) 
via Langevin

Update the model (to 
be more robust) 

Key insight: the adversarial dataset is a 
continuous function of 𝞱 (because of the 
regularization). 
Only need one inner step of Langevin



Results: MNIST

X 30 faster



Results: CIFAR

X 10 faster



Conclusion (part 2)

● Distributional robustness perspective on Adversarial Training 

● Closed form for the (regularized) optimal adversarial distribution. 

● Replace inner optimization by sampling  

● By maintaining an adversarial dataset  warm start the sampling. 

● No inner problem anymore (can alternate step of Langevin and step of SGD) 

● Huge speed-up  

● Caveat 1: need to keep an adversarial dataset in memory. 

● Caveat 2: hard to deal with dataset augmentation.  

→



Thanks, Questions?


