February 22, 2022 Simons Institute

The Variational Method of Moments

Nathan Kallus Cornell University

Joint work with Andrew Bennett

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
●0000000	00000	000000	000	000000	00000	0000

Endogeneity

 $Y = \theta_0(X) - 2\epsilon + \eta, \quad \epsilon, \eta \sim \mathcal{N}(0, 1)$ $X = Z + 2\epsilon, \quad Z \sim \mathcal{N}(0, 1)$

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
0●000000	00000	000000	000	000000	00000	0000
IV Mo	del					

► Then θ_0 uniquely solves $\mathbb{E}[Y - \theta(X) \mid Z] = 0$ over $\theta \in \Theta$

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
0000000						

IV is Workhorse of Empirical Research

Outcome Variable	Endogenous Variable	Source of Instrumental Variable(s)	Reference
	1.	Natural Experiments	
Labor supply	Disability insurance replacement rates	Region and time variation in benefit rules	Gruber (2000)
Labor supply	Fertility	Sibling-Sex composition	Angrist and Evans (1998)
Education, Labor supply	Out-of-wedlock fertility	Occurrence of twin births	Bronars and Grogger (1994)
Wages	Unemployment insurance tax rate	State laws	Anderson and Meyer (2000)
Earnings	Years of schooling	Region and time variation in school construction	Duflo (2001)
Earnings	Years of schooling	Proximity to college	Card (1995)
Earnings	Years of schooling	Quarter of birth	Angrist and Krueger (1991)
Earnings	Veteran status	Cohort dummies	Imbens and van der Klaauw (1995)
Earnings	Veteran status	Draft lottery number	Angrist (1990)
Achievement test scores	Class size	Discontinuities in class size due to maximum class-size rule	Angrist and Lavy (1999)
College enrollment	Financial aid	Discontinuities in financial aid formula	van der Klaauw (1996)
Health	Heart attack surgery	Proximity to cardiac care centers	McClellan, McNeil and Newhouse (1994)
Crime	Police	Electoral cycles	Levitt (1997)
Employment and Earnings	Length of prison sentence	Randomly assigned federal judges	Kling (1999)
Birth weight	Maternal smoking	State cigarette taxes	Evans and Ringel (1999)

Conditional Moment Problem

 $\blacktriangleright \ \theta_0 \text{ uniquely solves the following over } \theta \in \Theta$

 $\mathbb{E}\left[\rho(O;\theta) \mid Z\right] = \mathbf{0}_m$

• Observe $O_1, \ldots, O_n \sim O$, Z is O-measurable

Conditional Moment Problem

 $\blacktriangleright \ \theta_0 \text{ uniquely solves the following over } \theta \in \Theta$

 $\mathbb{E}\left[\rho(O;\theta) \mid Z\right] = \mathbf{0}_m$

• Observe $O_1, \ldots, O_n \sim O$, Z is O-measurable

Examples:

- ► IV: O = (Z, X, Y), m = 1
- BLP model in industrial organization (Berry et al., 1995)
- q-functions and marginal density ratios in offline RL (Liu et al., 2018, Nachum et al., 2019; Kallus & Uehara, 2019)
- ▶ Policy learning with surrogate loss (Bennett & Kallus, 2020)
- Proximal causal inference (Cui et al. 2020)
- Panel data with confounders (Imbens et al., 2021)
 - Example with many θ_0 's, regularization to target minimal one

 Intro
 VMM
 Guarantees
 Inference
 Experiments
 Policy Learning
 POMDPs

 00000000
 000000
 000000
 000000
 000000
 000000
 00000
 00000

Reduction to Marginal Moment Problem

► Fix
$$f_j : \mathcal{Z} \to \mathbb{R}^m$$
, $j = 1, ..., k$
► $F(z) = (f_1(z), ..., f_k(z)) \in \mathbb{R}^{k \times m}$

Find $\theta_0 \in \Theta$ satisfying

$$\mathbb{E}\left[F(Z)\rho(O;\theta)\right] = \left(\mathbb{E}\left[f_j(Z)\rho(O;\theta)\right]\right)_{j=1}^k = \mathbf{0}_k$$

 Intro
 VMM
 Guarantees
 Inference
 Experiments
 Policy Learning
 POMDPs

 00000000
 00000
 000
 00000
 00000
 00000
 00000

Reduction to Marginal Moment Problem

► Fix
$$f_j : \mathcal{Z} \to \mathbb{R}^m$$
, $j = 1, ..., k$
► $F(z) = (f_1(z), ..., f_k(z)) \in \mathbb{R}^{k \times m}$

Find $\theta_0 \in \Theta$ satisfying

$$\mathbb{E}[F(Z)\rho(O;\theta)] = (\mathbb{E}[f_j(Z)\rho(O;\theta)])_{j=1}^k = \mathbf{0}_k$$

 Solve using Optimally-Weighted Generalized Method of Moments (OWGMM; Hansen, 1982 0)

$$\begin{split} \hat{\theta}_n &\in \operatorname*{argmin}_{\theta \in \Theta} \mathbb{E}_n[F(Z)\rho(O;\theta)]^\top \hat{\Gamma}_n^{-1}(\tilde{\theta}_n) \mathbb{E}_n[F(Z)\rho(O;\theta)], \\ \text{where } \hat{\Gamma}_n(\tilde{\theta}_n) &= \mathbb{E}_n[F(Z)\rho(O;\tilde{\theta}_n)\rho(O;\tilde{\theta}_n)^\top F(Z)^\top] \end{split}$$

 $(\mathbb{E}_n \text{ is the empirical average: } \mathbb{E}_n[h(O)] = \frac{1}{n} \sum_{i=1}^n h(O_i))$

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000●00	00000	000000	000	000000	00000	0000
OWGN	1M					

$$\hat{\theta}_n \in \operatorname*{argmin}_{\theta \in \Theta} \mathbb{E}_n[F(Z)\rho(O;\theta)]^\top \hat{\Gamma}_n^{-1}(\tilde{\theta}_n) \mathbb{E}_n[F(Z)\rho(O;\theta)]$$

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000●00	00000	000000	000	000000	00000	0000
OWGN	1M					

$$\hat{\theta}_n \in \operatorname*{argmin}_{\theta \in \Theta} \mathbb{E}_n[F(Z)\rho(O;\theta)]^\top \hat{\Gamma}_n^{-1}(\tilde{\theta}_n) \mathbb{E}_n[F(Z)\rho(O;\theta)]$$

- Benefits:
 - Consistent and asymptotically normal if θ_0 uniquely solves $\mathbb{E}[F(Z)\rho(O;\theta)] = \mathbf{0}_k$ over $\theta \in \Theta$

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000●00	00000	000000	000	000000	00000	0000
OWGN	1M					

$$\hat{\theta}_n \in \operatorname*{argmin}_{\theta \in \Theta} \mathbb{E}_n[F(Z)\rho(O;\theta)]^\top \hat{\Gamma}_n^{-1}(\tilde{\theta}_n) \mathbb{E}_n[F(Z)\rho(O;\theta)]$$

- Benefits:
 - Consistent and asymptotically normal if θ_0 uniquely solves $\mathbb{E}[F(Z)\rho(O;\theta)] = \mathbf{0}_k$ over $\theta \in \Theta$
 - Efficient in the model satisfying $\mathbb{E}[F(Z)\rho(O;\theta_0)] = \mathbf{0}_k$ (if $\tilde{\theta}_n \to \theta_0$)

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000●00	00000	000000	000	000000	00000	0000
OWGN	1M					

$$\hat{\theta}_n \in \operatorname*{argmin}_{\theta \in \Theta} \mathbb{E}_n[F(Z)\rho(O;\theta)]^\top \hat{\Gamma}_n^{-1}(\tilde{\theta}_n) \mathbb{E}_n[F(Z)\rho(O;\theta)]$$

- Benefits:
 - Consistent and asymptotically normal if θ_0 uniquely solves $\mathbb{E}[F(Z)\rho(O;\theta)] = \mathbf{0}_k$ over $\theta \in \Theta$
 - Efficient in the model satisfying $\mathbb{E}[F(Z)\rho(O;\theta_0)] = \mathbf{0}_k$ (if $\tilde{\theta}_n \to \theta_0$)
- Limitations:

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000●00	00000	000000	000	000000	00000	0000
OWGN	1M					

$$\hat{\theta}_n \in \operatorname*{argmin}_{\theta \in \Theta} \mathbb{E}_n[F(Z)\rho(O;\theta)]^\top \hat{\Gamma}_n^{-1}(\tilde{\theta}_n) \mathbb{E}_n[F(Z)\rho(O;\theta)]$$

- Benefits:
 - Consistent and asymptotically normal if θ_0 uniquely solves $\mathbb{E}[F(Z)\rho(O;\theta)] = \mathbf{0}_k$ over $\theta \in \Theta$
 - Efficient in the model satisfying $\mathbb{E}[F(Z)\rho(O;\theta_0)] = \mathbf{0}_k$ (if $\tilde{\theta}_n \to \theta_0$)
- Limitations:
 - $\mathbb{E}[F(Z)\rho(O;\theta_0)] = \mathbf{0}_k$ might not identify θ_0 (not unique)
 - E.g., almost anything that isn't linear IV

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000●00	00000	000000	000	000000	00000	0000
OWGN	1M					

$$\hat{\theta}_n \in \operatorname*{argmin}_{\theta \in \Theta} \mathbb{E}_n[F(Z)\rho(O;\theta)]^\top \hat{\Gamma}_n^{-1}(\tilde{\theta}_n) \mathbb{E}_n[F(Z)\rho(O;\theta)]$$

- Benefits:
 - Consistent and asymptotically normal if θ_0 uniquely solves $\mathbb{E}[F(Z)\rho(O;\theta)] = \mathbf{0}_k$ over $\theta \in \Theta$
 - Efficient in the model satisfying $\mathbb{E}[F(Z)\rho(O;\theta_0)] = \mathbf{0}_k$ (if $\tilde{\theta}_n \to \theta_0$)
- Limitations:
 - $\mathbb{E}[F(Z)\rho(O;\theta_0)] = \mathbf{0}_k$ might not identify θ_0 (not unique)
 - E.g., almost anything that isn't linear IV
 - Even if identifying, not efficient in the full conditional moment model
 - E.g., almost anything that isn't linear IV with linear $\mathbb{E}[X \mid Z]$

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
000000●0	00000	000000	000	000000		0000
Sieve a	approa	ches				

- Sieve OWGMM (Chamberlain, 1987; Ai & Chen, 2003)
 - $F = (f_1, \ldots, f_{k_n})$ first k_n elements of basis for L_2 , $k_n \to \infty$
 - E.g., Hermite polynomials, Fourier basis, B-splines, ...

Intro 000000●0	VMM 00000	Guarantees 000000	Inference 000	Experiments 000000	Policy Learning 00000	POMDPs 0000
<u>~</u> .						
Sieve	approa	ches				

- Sieve OWGMM (Chamberlain, 1987; Ai & Chen, 2003)
 - ▶ $F = (f_1, \ldots, f_{k_n})$ first k_n elements of basis for L_2 , $k_n \to \infty$
 - E.g., Hermite polynomials, Fourier basis, B-splines, ...
- Sieve-estimate the efficient instruments (Newey, 1993)
 - $\blacktriangleright F^*(Z) = (\mathbb{E}[\rho(O;\theta)\rho(O;\theta)^\top \mid Z])^{-1}\mathbb{E}[\partial_{\theta}\rho(O;\theta) \mid Z]$

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
000000●0	00000	000000	000	000000		0000
Sieve	approa	ches				

- Sieve OWGMM (Chamberlain, 1987; Ai & Chen, 2003)
 - ▶ $F = (f_1, \ldots, f_{k_n})$ first k_n elements of basis for L_2 , $k_n \to \infty$
 - E.g., Hermite polynomials, Fourier basis, B-splines, ...
- Sieve-estimate the efficient instruments (Newey, 1993)
 - $\blacktriangleright F^*(Z) = (\mathbb{E}[\rho(O;\theta)\rho(O;\theta)^\top \mid Z])^{-1}\mathbb{E}[\partial_{\theta}\rho(O;\theta) \mid Z]$

- Theoretically efficient (under appropriate conditions)
- Unwieldy in practice, especially when θ and Z are moderately-dimensional

Minimax approaches

$$\hat{\theta}_n \in \operatorname*{argmin}_{\theta \in \Theta} \sup_{f \in \mathcal{F}} \mathbb{E}_n[f(Z)^\top \rho(O; \theta)]$$

- Given a rich class of functions $\mathcal{F} \subset [\mathcal{Z} \to \mathbb{R}^m]$
 - E.g., neural nets with m outputs, product of RKHSs, ...
- Try to control all marginal moments for all $f \in \mathcal{F}$

• Not just f_1, \ldots, f_k

Lewis & Syrgkanis (2018), Bennett et al. (2019), Dikkala et al. (2020), Kallus et al. (2021), Uehara et al. (2021), ...

 Intro
 VMM
 Guarantees
 Inference
 Experiments
 Policy Learning
 POMDPs

 0000000
 000000
 000000
 000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 <

$$\hat{\theta}_n \in \operatorname*{argmin}_{\theta \in \Theta} \sup_{f \in \mathcal{F}} \mathbb{E}_n[f(Z)^\top \rho(O; \theta)]$$

Benefits:

- Identification more plausible
- No crazy sieves; much more ML-ish
- Rates for nonparametric Θ , \mathcal{F} (Dikkala et al., 2020)

$$\hat{\theta}_n \in \operatorname*{argmin}_{\theta \in \Theta} \sup_{f \in \mathcal{F}} \mathbb{E}_n[f(Z)^\top \rho(O; \theta)]$$

Benefits:

- Identification more plausible
- No crazy sieves; much more ML-ish
- Rates for nonparametric Θ , \mathcal{F} (Dikkala et al., 2020)
- Limitations:
 - Efficiency?
 - Big deal because *lots* of moments in \mathcal{F}
 - Inference?
 - Big deal because want to do science!

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	●0000	000000	000	000000	00000	0000

This talk

1 Introduction

- 3 Guarantees
- 4 Inference
- 5 Experiments
- 6 Application: Policy Learning Efficient Policy Learning from Surrogate-Loss Classification Reductions

7 Application: Evaluation in Confounded POMDPs

Proximal Reinforcement Learning

 Intro
 VMM
 Guarantees
 Inference
 Experiments
 Policy Learning
 POMDPs

 0000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

Variational Reformulation of OWGMM

• Given
$$F = (f_1, \ldots, f_k)$$
, $f_j : \mathcal{Z} \to \mathbb{R}^m$, recall

$$\hat{\theta}_n \in \operatorname*{argmin}_{\theta \in \Theta} \mathbb{E}_n[F(Z)\rho(O;\theta)]^\top \hat{\Gamma}_n^{-1}(\tilde{\theta}_n) \mathbb{E}_n[F(Z)\rho(O;\theta)]$$

 Intro
 VMM
 Guarantees
 Inference
 Experiments
 Policy Learning
 POMDPs

 0000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

Variational Reformulation of OWGMM

• Given
$$F = (f_1, \ldots, f_k)$$
, $f_j : \mathbb{Z} \to \mathbb{R}^m$, recall

$$\hat{\theta}_n \in \operatorname*{argmin}_{\theta \in \Theta} \mathbb{E}_n[F(Z)\rho(O;\theta)]^\top \hat{\Gamma}_n^{-1}(\tilde{\theta}_n) \mathbb{E}_n[F(Z)\rho(O;\theta)]$$

Theorem

Set $\mathcal{F} = \operatorname{span}(f_1, \dots, f_k) = \{z \mapsto \sum_{j=1}^k \beta_j f_j(z)^\top \beta : \beta \in \mathbb{R}^k\}$ OWGMM is equivalent to

$$\hat{\theta}_n \in \operatorname*{argmin}_{\theta \in \Theta} \sup_{f \in \mathcal{F}} \mathbb{E}_n[f(Z)^\top \rho(O; \theta)] - \frac{1}{4} \mathbb{E}_n[(f(Z)\rho(O; \tilde{\theta}_n))^2]$$

Arises by Euclidean-norm duality

Variational Reformulation of OWGMM

• Given
$$F = (f_1, \ldots, f_k)$$
, $f_j : \mathbb{Z} \to \mathbb{R}^m$, recall

$$\hat{\theta}_n \in \operatorname*{argmin}_{\theta \in \Theta} \mathbb{E}_n[F(Z)\rho(O;\theta)]^\top \hat{\Gamma}_n^{-1}(\tilde{\theta}_n) \mathbb{E}_n[F(Z)\rho(O;\theta)]$$

Theorem

Set $\mathcal{F} = \operatorname{span}(f_1, \dots, f_k) = \{z \mapsto \sum_{j=1}^k \beta_j f_j(z)^\top \beta : \beta \in \mathbb{R}^k\}$ OWGMM is equivalent to

$$\hat{\theta}_n \in \operatorname*{argmin}_{\theta \in \Theta} \sup_{f \in \mathcal{F}} \mathbb{E}_n[f(Z)^\top \rho(O; \theta)] - \frac{1}{4} \mathbb{E}_n[(f(Z)\rho(O; \tilde{\theta}_n))^2]$$

Arises by Euclidean-norm duality

VMM: just switch out *F* by other function classes ...

Variational Method of Moments

$$\hat{\theta}_n \in \underset{\theta \in \Theta}{\operatorname{argmin}} \sup_{f \in \mathcal{F}_n} \mathbb{E}_n[f(Z)^\top \rho(O; \theta)] - \frac{1}{4} \mathbb{E}_n[(f(Z)\rho(O; \tilde{\theta}_n))^2] - R_n(f)$$

IntroVMMGuaranteesInferenceExperimentsPolicy LearningPOMDPs00

Variational Method of Moments

 $\hat{\theta}_n \in \underset{\theta \in \Theta}{\operatorname{argmin}} \sup_{f \in \mathcal{F}_n} \mathbb{E}_n[f(Z)^\top \rho(O; \theta)] - \frac{1}{4} \mathbb{E}_n[(f(Z)\rho(O; \tilde{\theta}_n))^2] - R_n(f)$

VMM Variants								
Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs		
00000000	000●0	000000	000	000000	00000	0000		

Kernel VMM

• Set $\mathcal{F}_n = \mathcal{H}$ to a reproducing kernel Hilbert space (RKHS)

• E.g., Gaussian kernel, product of m Sobolev spaces

• Set $R_n(f) = \frac{\alpha_n}{4} \|f\|_{\mathcal{H}}^2$

\/N/N/	Variar)tc				
Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	000●0	000000	000	000000	00000	0000

- Kernel VMM
 - Set $\mathcal{F}_n = \mathcal{H}$ to a reproducing kernel Hilbert space (RKHS)
 - E.g., Gaussian kernel, product of m Sobolev spaces

• Set
$$R_n(f) = \frac{\alpha_n}{4} \|f\|_{\mathcal{H}}^2$$

- Neural VMM
 - Set *F_n* to a class of neural networks with a given architecture (possibly growing with *n*) and unknown weights
 - Kernel regularizer: set $R_n(f) = \frac{\alpha_n}{4} \inf_{h \in \mathcal{H}: h(Z_i) = f(Z_i) \forall i} ||h||_{\mathcal{H}}^2$ where \mathcal{H} is a given RKHS
 - $R_n(f)$ has a closed form as a quadratic in $f(Z_i)$ in terms of kernel Gram matrix

\/N/N/	Variar	ntc				
Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	000●0	000000	000	000000	00000	0000

- Kernel VMM
 - Set $\mathcal{F}_n = \mathcal{H}$ to a reproducing kernel Hilbert space (RKHS)
 - E.g., Gaussian kernel, product of m Sobolev spaces

• Set
$$R_n(f) = \frac{\alpha_n}{4} \|f\|_{\mathcal{H}}^2$$

- Neural VMM
 - Set *F_n* to a class of neural networks with a given architecture (possibly growing with *n*) and unknown weights
 - Kernel regularizer: set $R_n(f) = \frac{\alpha_n}{4} \inf_{h \in \mathcal{H}: h(Z_i) = f(Z_i) \forall i} ||h||_{\mathcal{H}}^2$ where \mathcal{H} is a given RKHS
 - $R_n(f)$ has a closed form as a quadratic in $f(Z_i)$ in terms of kernel Gram matrix

Frobenius regularizer: set $R_n(f) = \frac{\alpha_n}{4} \sum_{k=1}^m \sum_{i=1}^n f_k^2(Z_i)$

- Approximates Gaussian kernel regularizer w/ tiny length scale
- Heuristic practical version of neural VMM

It's a smooth game!

So, you tell me how to solve it

It's a smooth game!

- So, you tell me how to solve it
- Kernel VMM: inner sup has closed form as a convex quadratic in (ρ_j(O_i; θ))^{n,m}_{i=1,j=1}
 - In terms of kernel Gram matrices and $\rho_j(O_i; \tilde{\theta}_n)$
 - Can directly apply usual optimization algorithms to this

Intro VMM Guarantees Inference Experiments Policy Learning POMDPs 000000 Implementing VMM

It's a smooth game!

- So, you tell me how to solve it
- Kernel VMM: inner sup has closed form as a convex quadratic in (ρ_j(O_i; θ))^{n,m}_{i=1,j=1}
 - In terms of kernel Gram matrices and $\rho_j(O_i; \tilde{\theta}_n)$

Can directly apply usual optimization algorithms to this

- Neural VMM: will use OAdam (Daskalakis et al., 2017) in experiments
 - Lots of developments since and lots of opportunity to potentially improve
| Intro | VMM | Guarantees | Inference | Experiments | Policy Learning | POMDPs |
|----------|-------|------------|-----------|-------------|-----------------|--------|
| 00000000 | 00000 | ●00000 | 000 | 000000 | 00000 | 0000 |
| | | | | | | |

This talk

- 1 Introduction
- 2 VMM
- 3 Guarantees
- 4 Inference
- 5 Experiments
- 6 Application: Policy Learning Efficient Policy Learning from Surrogate-Loss Classification Reductions

Application: Evaluation in Confounded POMDPs

Proximal Reinforcement Learning

Some Regularity (Consistency)

- $\blacktriangleright \ \rho(o;\theta) \text{ is equi-Lipschitz in } \theta \text{ for all } o$
- $\blacktriangleright \sup_{o,\theta} \|\rho(o;\theta)\| < \infty$
- $\blacktriangleright \mathcal{Z} \subset \mathbb{R}^{d_z}$ bounded

•
$$\int \sqrt{\log N(\Theta, \epsilon)} < \infty$$

• (Trivial for $\Theta \subset \mathbb{R}^b$ compact)

 $\blacktriangleright \ \mathbb{E}[\lambda_{\min}(\mathbb{E}[\rho(O;\theta)\rho(O;\theta)^\top \mid Z])^{-2}] < \infty \text{ for all } \theta \in \Theta$

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	00000	00●000	000	000000		0000
Consis	tency					

▶ Set *H* as *any* smooth universal kernel (*e.g.*, Gaussian)

• Set
$$\alpha_n = o(1), \ \alpha_n = \omega(n^{-p})$$

Theorem

Kernel VMM with $\mathcal{F}_n = \mathcal{H}$ is consistent: $\hat{\theta}_n \rightarrow_p \theta_0$

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	00000	000000	000	000000		0000
Consis	tency					

▶ Set *H* as *any* smooth universal kernel (*e.g.*, Gaussian)

• Set
$$\alpha_n = o(1), \ \alpha_n = \omega(n^{-p})$$

Theorem

Kernel VMM with
$$\mathcal{F}_n = \mathcal{H}$$
 is consistent: $\hat{\theta}_n \rightarrow_p \theta_0$

Corollary

Same for neural VMM with fully connected net with width and depth at least a certain amount (in paper) and with kernel regularizer given by \mathcal{H}

 Intro
 VMM
 Guarantees
 Inference
 Experiments
 Policy Learning
 POMDPs

 0000000
 000000
 000
 000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00

More Regularity (Asymptotic Normality)

▶ Suppose
$$\Theta \subset \mathbb{R}^b$$
 compact

(Covering assumption holds trivially)

• { $\mathbb{E}[\frac{\partial}{\partial \theta_i}\rho(O;\theta_0) \mid Z]: i = 1, ..., b$ } are *b* linearly independent functions $\mathcal{Z} \to \mathbb{R}^m$

Asvmp	totic	Normalit	V			
Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	00000	0000€0	000	000000	00000	0000

▶ Set *H* as any smooth universal kernel (*e.g.*, Gaussian)

• Set
$$\alpha_n = o(1), \ \alpha_n = \omega(n^{-p})$$

Theorem

Kernel VMM with $\mathcal{F}_n = \mathcal{H}$ is asymptotically linear $(\hat{\theta}_n = \mathbb{E}_n[\psi(O)] + o_p(n^{-1/2}))$ and asymptotically normal:

 $\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow \mathcal{N}(0, V_{\tilde{\theta}})$

0000000	00000	000000	000	000000	00000	0000				
Asymptotic Normality										

▶ Set *H* as any smooth universal kernel (*e.g.*, Gaussian)

• Set
$$\alpha_n = o(1), \ \alpha_n = \omega(n^{-p})$$

Theorem

Kernel VMM with $\mathcal{F}_n = \mathcal{H}$ is asymptotically linear $(\hat{\theta}_n = \mathbb{E}_n[\psi(O)] + o_p(n^{-1/2}))$ and asymptotically normal:

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow \mathcal{N}(0, V_{\tilde{\theta}})$$

Corollary

Same for neural VMM with fully connected net with width and depth at least a certain amount (in paper) and with kernel regularizer given by \mathcal{H}

 Intro
 VMM
 Guarantees
 Inference
 Experiments
 Policy Learning
 POMDPs

 00000000
 00000
 000
 00000
 00000
 00000
 00000

Semiparametric Efficiency

Theorem

 V_{θ_0} (i.e., the asymptotic covariance of VMM when $\tilde{\theta}_n \rightarrow_p \theta_0$) is the semiparametric efficiency bound for θ_0 in the model consisting of all distributions satisfying $\mathbb{E}[\rho(O; \theta_0) \mid Z] = 0$
 Intro
 VMM
 Guarantees
 Inference
 Experiments
 Policy Learning
 POMDPs

 00000000
 00000
 000
 00000
 00000
 00000
 00000

Semiparametric Efficiency

Theorem

 V_{θ_0} (i.e., the asymptotic covariance of VMM when $\tilde{\theta}_n \rightarrow_p \theta_0$) is the semiparametric efficiency bound for θ_0 in the model consisting of all distributions satisfying $\mathbb{E}[\rho(O; \theta_0) \mid Z] = 0$

Corollary

k-stage kernel/neural VMM ($k \ge 2$) using a smooth universal kernel and $\alpha_n = o(1)$, $\alpha_n = \omega(1/\sqrt{n})$ is semiparametrically efficient in the conditional moment problem

In particular: minimum asymptotic MSE for $\beta^{\top}\theta_0$ for any β (either among regular estimators or locally minimax among all estimators)

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	00000	000000	●00	000000	00000	0000

This talk

- 1 Introduction
- 2 VMM
- 3 Guarantees
- 4 Inference
- 5 Experiments
- 6 Application: Policy Learning Efficient Policy Learning from Surrogate-Loss Classification Reductions

7 Application: Evaluation in Confounded POMDPs

Proximal Reinforcement Learning

 Intro
 VMM
 Guarantees
 Inference
 Experiments
 Policy Learning
 POMDPs

 0000000
 00000
 0000
 00000
 00000
 00000
 00000

Variational Reformulation of the Efficiency Bound

Theorem

Let V_{θ_0} be the efficiency bound. Then

$$\beta^{\top} V_{\theta_0} \beta = \sup_{\gamma \in \mathbb{R}^b} \inf_{f \in \mathcal{F}} \gamma^{\top} \beta - \frac{1}{4} \mathbb{E}[f(Z)^{\top} \nabla_{\theta} \rho(X; \theta_0) \gamma] + \frac{1}{16} \mathbb{E}[(f(Z)^{\top} \rho(X; \theta_0))^2]$$

We estimate this variance using VMM-style minimax

$$\hat{v}_n^2(\beta) = \sup_{\gamma \in \mathbb{R}^b} \inf_{f \in \mathcal{H}} \gamma^\top \beta - \frac{1}{4} \mathbb{E}_n[f(Z)^\top \nabla_\theta \rho(X; \hat{\theta}_n) \gamma] \\ + \frac{1}{16} \mathbb{E}_n[(f(Z)^\top \rho(X; \hat{\theta}_n))^2] - R_n(f)$$

Kanal	<u>хихихи</u>	1				
Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	00000	000000	○○●	000000	00000	0000

Kernel VMM Inference

▶ Set *H* any smooth universal kernel (*e.g.*, Gaussian)

• Set
$$\alpha_n = o(1), \ \alpha_n = \omega(n^{-p})$$

• Set $\hat{\theta}_n$ to k-stage kernel/neural VMM ($k \ge 2$)

Theorem

Kernel VMM standard error estimate with $\mathcal{F}_n = \mathcal{H}$ has

$$\hat{v}_n^2(\beta) \to_p \beta^\top V_{\theta_0} \beta$$

Hence: $\mathbb{P}(\psi(\theta_0) \in [\psi(\hat{\theta}_n) \pm 1.96\hat{v}_n(\nabla\psi(\hat{\theta}_n))]) \to 0.95$

▶ $\hat{v}_n(\beta)$ has a closed form in terms of kernel Gram matrices

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	00000	000000	000	●00000	00000	0000

This talk

- 1 Introduction
- 2 VMM
- 3 Guarantees
- 4 Inference
- 5 Experiments
- 6 Application: Policy Learning Efficient Policy Learning from Surrogate-Loss Classification Reductions

Application: Evaluation in Confounded POMDPs

Proximal Reinforcement Learning

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
				00000		

MSE in Simple IV scenario

Method				η	ı		
		200	500	1,000	2,000	5,000	10,000
	0	> 100	8.8 ± 42.7	> 100	$.67 \pm 1.2$	$.23 \pm .29$	$.14 \pm .16$
Σ	10^{-8}	5.1 ± 7.0	2.8 ± 3.0	2.6 ± 5.3	3.2 ± 16.5	$.25 \pm .32$	$.17 \pm .23$
Σı	10^{-6}	5.5 ± 7.0	2.5 ± 2.7	1.7 ± 3.0	$.78 \pm 1.3$	$.24 \pm .33$	$.14 \pm .16$
> "	10^{-4}	5.5 ± 7.6	2.5 ± 3.2	1.8 ± 2.9	$.72 \pm 1.3$	$.25 \pm .32$	$.14 \pm .16$
Χđ	10^{-2}	6.0 ± 8.3	2.7 ± 3.1	1.7 ± 2.4	$.72 \pm 1.2$	$.26 \pm .34$	$.14 \pm .17$
	1	11 ± 21	4.1 ± 6.6	2.1 ± 2.8	$.75 \pm 1.1$	$.34 \pm .41$	$.16 \pm .21$
5		2.5 ± 2.0	1.6 ± 1.9	$.93 \pm 1.2$	$.42 \pm .65$	$.1\overline{6} \pm .2\overline{1}$	$10 \pm .14$
Σı	10^{-4}	2.8 ± 2.7	1.8 ± 2.0	$.81 \pm 1.1$	$.39 \pm .62$	$.18 \pm .25$	$.11 \pm .14$
> "	10^{-2}	2.2 ± 1.9	2.1 ± 2.6	$.74 \pm .99$	$.42 \pm .66$	$.17 \pm .23$	$.10 \pm .12$
z <	1	2.1 ± 2.0	2.1 ± 2.1	$.94 \pm 1.2$	$.39 \pm .65$	$.18 \pm .26$	$.11 \pm .12$
		4.2 ± 6.5	2.5 ± 3.6	1.8 ± 3.0	$\overline{68}\pm1.\overline{0}$	$.2\overline{4} \pm .\overline{3}1$	$15 \pm .19$
.iev	Hom	4.2 ± 6.5	2.5 ± 3.6	1.8 ± 3.0	$.68 \pm 1.0$	$.24 \pm .32$	$.15 \pm .19$
S	Het	4.3 ± 5.7	2.4 ± 3.3	1.7 ± 2.6	$.66 \pm 1.0$	$.24 \pm .31$	$.15 \pm .18$
MMR		17 ± 28	5.6 ± 9.2	$\bar{2.8} \pm 3.7$	83 ± 1.1	$\overline{.37\pm.45}$	$17 \pm .23$
Naïve		6.2 ± 1.3	$6.0 \pm .71$	$5.8 \pm .45$	$5.8 \pm .47$	$\overline{5.8} \pm .25$	$5.8 \pm .20$

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
				00000		

MSE in Complex IV scenario

Method				n			
		200	500	1,000	2,000	5,000	10,000
	0	> 100	3.8 ± 5.5	> 100	$.63 \pm 1.4$	$.24 \pm .29$	$.09 \pm .18$
Σ	10^{-8}	> 100	> 100	1.3 ± 2.2	$.63 \pm 2.0$	$.21 \pm .23$	$.06 \pm .05$
Σı	10^{-6}	8.7 ± 22.9	2.0 ± 2.6	$.78\pm.98$	$.35 \pm .50$	$.22 \pm .27$	$.06 \pm .05$
> "	10^{-4}	9.9 ± 27.6	1.9 ± 2.2	$.79\pm.96$	$.35 \pm .45$	$.21 \pm .26$	$.05 \pm .05$
×σ	10^{-2}	9.1 ± 19.7	2.6 ± 3.6	1.1 ± 1.3	$.40 \pm .49$	$.21 \pm .23$	$.06 \pm .06$
	1	10.1 ± 15.5	5.2 ± 7.0	3.5 ± 5.8	2.5 ± 4.7	1.6 ± 1.5	1.4 ± 1.5
5		-9.3 ± 3.7	5.3 ± 2.8	$\overline{2.8} \pm \overline{1.6}$	1.9 ± 1.3	$\overline{1.2 \pm .84}$	$.\overline{68} \pm .6\overline{4}$
Σ	10^{-4}	8.2 ± 4.0	5.4 ± 2.5	2.9 ± 1.7	1.7 ± 1.3	$1.1 \pm .80$	$.71\pm.68$
> "	10^{-2}	8.8 ± 4.1	5.6 ± 2.5	2.8 ± 2.0	1.8 ± 1.3	$1.1 \pm .83$	$.72 \pm .65$
2 <	1	7.3 ± 2.7	4.9 ± 2.1	2.7 ± 1.9	2.0 ± 1.3	$1.1 \pm .84$	$.67 \pm .68$
- – – –	Id	$-5\overline{100}$ -7	> 100	$^{-} = \bar{1}0\bar{0}$	> 100	$\bar{} > \bar{1}0\bar{0}$	> 100
iev	Hom	> 100	> 100	> 100	> 100	> 100	> 100
S	Het	> 100	> 100	> 100	> 100	> 100	> 100
MMR		10.3 ± 1.9	10.2 ± 1.2	$9.7 \pm \overline{1.2}$	$9.8 \pm .85$	$\overline{9.7} \pm .70^{-1}$	$9.6 \pm .60$
Naïve		-9.1 ± 6.7	8.8 ± 5.1	$\overline{7.6} \pm \overline{3.0}$	7.9 ± 2.4	$\overline{7.7} \pm \overline{1.2}$	$7.4 \pm .89$

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
				00000		

L_2 error in Complex IV scenario

Met	hod	200	500	1,000	2,000	5,000	10,000			
	0	> 100	$.92 \pm 1.8$	2.1 ± 13.1	$.16 \pm .34$	$.06 \pm .05$	$.03 \pm .07$			
Σ	10^{-8}	14.0 ± 59.8	> 100	$.36 \pm .69$	$.15 \pm .31$	$.05 \pm .04$	$.02 \pm .01$			
Σı	10^{-6}	1.4 ± 1.3	$.44 \pm .37$	$.19 \pm .14$	$.09 \pm .07$	$.05 \pm .04$	$.02 \pm .01$			
> "	10^{-4}	1.4 ± 1.4	$.40 \pm .33$	$.18 \pm .13$	$.09 \pm .07$	$.05 \pm .04$	$.02 \pm .01$			
Σď	10^{-2}	1.5 ± 1.5	$.49 \pm .47$	$.21 \pm .17$	$.09 \pm .07$	$.05 \pm .03$	$.02 \pm .01$			
	1	1.7 ± 1.6	$.87 \pm .79$	$.52 \pm .64$	$.35 \pm .49$	$.22 \pm .18$	$.19 \pm .19$			
5		5.2 ± 2.7	$\overline{1.5\pm.74}$	$55 \pm .29$	$\overline{32} \pm .2\overline{0}$	$\overline{.16} \pm .\overline{10}$	$09 \pm .07$			
Σı	10^{-4}	5.0 ± 3.0	$1.5 \pm .73$	$.58 \pm .32$	$.30 \pm .18$	$.15 \pm .09$	$.09 \pm .08$			
> "	10^{-2}	4.8 ± 2.7	$1.5 \pm .71$	$.55 \pm .33$	$.31 \pm .19$	$.15 \pm .09$	$.09 \pm .08$			
z <	1	3.7 ± 1.8	$1.4 \pm .58$	$.54 \pm .29$	$.32 \pm .18$	$.15 \pm .10$	$.09 \pm .08$			
	Īd	-4.4 ± 2.9	$\overline{4.4} \pm \overline{4.0}$	$\bar{3.3} \pm \bar{3.8}$	2.7 ± 3.1	$\overline{2.5}\pm\overline{2.9}$	3.7 ± 4.0			
iev.	Hom	4.3 ± 3.1	3.4 ± 5.8	3.3 ± 4.9	3.7 ± 3.9	3.6 ± 3.3	3.2 ± 3.1			
S	Het	4.8 ± 3.4	3.5 ± 4.0	3.4 ± 3.7	2.4 ± 2.9	3.2 ± 3.1	2.7 ± 3.3			
MMR		$-2.1 \pm .81$	$\overline{1.7}\pm.44$	$\bar{1}.5 \pm .29$	$1.4 \pm .31$	$\overline{1.3} \pm .\overline{24}^-$	$1.3 \pm .17$			
Naïve		-5.9 ± 1.3	$\overline{5.7}\pm.\overline{67}$	$\bar{5}.5\pm.63$	$^{-}5.6 \pm .53$	$\overline{5.6} \pm .\overline{28}^-$	$5.5 \pm .22$			

VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
			00000		

Coverage for 95% CIs

n	N	lethod	Simple IV	Complex IV
		$\alpha_n = 0$	83.0	84.5
		$\alpha_n = 10^{-8}$	83.0	83.5
	Kaunal	$\alpha_n = 10^{-6}$	83.0	87.5
	Kerner	$\alpha_n = 10^{-4}$	84.5	91.5
200		$\alpha_n = 10^{-2}$	86.5	95.0
200		$\alpha_n = 1$	91.0	100
		$\lambda_n = \overline{0}$	82.0	70.5
	Neural	$\lambda_n = 10^{-4}$	81.5	71.5
		$\lambda_n = 10^{-2}$	83.5	69.5
		$\lambda_n = 1$	82.5	70.0
		$\alpha_n = 0$	91.5	95.5
		$\alpha_n = 10^{-8}$	92.0	95.5
	Kornol	$\alpha_n = 10^{-6}$	92.5	95.5
	Neme	$\alpha_n = 10^{-4}$	92.5	96.0
2000		$\alpha_n = 10^{-2}$	95.0	97.5
2000		$\alpha_n = 1$	100.0	100
		$\lambda_n = \overline{0}$	90.0	95.5
	Neural	$\lambda_n = 10^{-4}$	90.5	95.5
	Neurai	$\lambda_n = 10^{-2}$	90.0	95.5
		$\lambda_n = 1$	90.0	95.5

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	00000	000000	000	000000	00000	0000
Beyonc	l effici	iency				

- \blacktriangleright We proved VMM consistent for general θ
- But efficiency and inference only made sense for *finite-dim* θ
 - What about general nonparametric θ ?
- Dikkala et al. (2020) provide nonparametric finite-sample guarantees for unweighted minimax method
 - But we know plain minimax not efficient need weighting
 - At the same time, efficiency is not a story about rates, but about leading constants on first-order terms
 - Hard to characterize the effect of optimal weighting in terms of finite-sample guarantees?
 - TBD
- But does seem to help in practice

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
				000000		

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	00000	000000	000	000000	●0000	0000

This talk

- 1 Introduction
- 2 VMM
- 3 Guarantees
- 4 Inference
- 5 Experiments

6 Application: Policy Learning

Efficient Policy Learning from Surrogate-Loss Classification Reductions

7 Application: Evaluation in Confounded POMDPs

Proximal Reinforcement Learning

• Covariates X, potential losses $Y^*(+1), Y^*(-1)$

▶ For $g : \mathcal{X} \to \mathbb{R}$ define

$$J(g) = \mathbb{E}[\text{sign}(g(X))(Y^{*}(+1) - Y^{*}(-1))]$$

▶ Equal to (twice) the value of the policy sign(g(X)) minus the value of the completely randomized policy (±1 equiprobably)

Covariates X, potential losses Y*(+1), Y*(-1)
 For a : X → ℝ define

$$J(g) = \mathbb{E}[\text{sign}(g(X))(Y^{*}(+1) - Y^{*}(-1))]$$

Equal to (twice) the value of the policy sign(g(X)) minus the value of the completely randomized policy (±1 equiprobably)
 Observe O = (X, A, Y) where Y = Y*(A), A ⊥ Y*(±1) | X

$$J(g) = \mathbb{E}[\psi(O)\operatorname{sign}(g(X))]$$

 $\psi(O) = \mu(X, +1) - \mu(X, -1) + \frac{Y - \mu(X, A)}{\frac{1}{2}(A - 1) + e(X)},$ $\mu(X, A) = \mathbb{E}[Y \mid X, A], \ e(X) = \mathbb{P}(A = 1 \mid X)$

• $\mathbb{E}_n[\psi(O)\operatorname{sign}(g(X))]$ semiparametrically efficient for J(g)

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	00000	000000	000	000000	00●00	0000

Reduction to Cost-Sensitive Classification

$$\blacktriangleright J(g) = \mathbb{E}[\psi(O)\operatorname{sign}(g(X))] = \mathbb{E}[W\ell_{0-1}(g(X), S)]$$

 $\blacktriangleright W = |\psi(O)|, S = \operatorname{sign}(\psi(O)), \ell_{0-1}(v, s) = \operatorname{sign}(v)s$

For a classification calibrated loss ℓ (Bartlett et al., 2006):
 g ∈ argmin E[Wℓ₀₋₁(g(X), S)]
 ⇔ g ∈ argmin E[Wℓ(g(X), S)]

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	00000	000000	000	000000	00●00	0000

Reduction to Cost-Sensitive Classification

 $\blacktriangleright \ J(g) = \mathbb{E}[\psi(O)\operatorname{sign}(g(X))] = \mathbb{E}[W\ell_{0-1}(g(X), S)]$

 $\blacktriangleright W = |\psi(O)|, S = \operatorname{sign}(\psi(O)), \ \ell_{\texttt{0-1}}(v,s) = \operatorname{sign}(v)s$

For a classification calibrated loss ℓ (Bartlett et al., 2006):
 g ∈ argmin E[Wℓ₀₋₁(g(X), S)]
 ⇔ g ∈ argmin E[Wℓ(g(X), S)]

▶ May restrict $g \in \mathcal{G}$ if $\mathcal{G} \cap \operatorname{argmin} \mathbb{E}[W\ell_{0-1}(g(X), S)] \neq 0$

Intro VMM Guarantees Inference Experiments Policy Learning POMDPs 0000000 00000 00000 000 00000 00000 00000

Reduction to Cost-Sensitive Classification

- $\blacktriangleright \ J(g) = \mathbb{E}[\psi(O)\operatorname{sign}(g(X))] = \mathbb{E}[W\ell_{0-1}(g(X), S)]$
 - $\blacktriangleright W = |\psi(O)|, S = \operatorname{sign}(\psi(O)), \ \ell_{\texttt{0-1}}(v,s) = \operatorname{sign}(v)s$
- For a classification calibrated loss ℓ (Bartlett et al., 2006):
 g ∈ argmin E[Wℓ₀₋₁(g(X), S)]
 ⇒ g ∈ argmin E[Wℓ(g(X), S)]
 - ▶ May restrict $g \in \mathcal{G}$ if $\mathcal{G} \cap \operatorname{argmin} \mathbb{E}[W\ell_{0-1}(g(X), S)] \neq 0$
- Suggests to use surrogate-loss classification

$$\hat{g}_n \in \operatorname*{argmin}_{g \in \mathcal{G}} \mathbb{E}_n[W\ell(g(X), S)]$$

E.g., hinge (Zhou & Kosorok, '17), logistic (Jiang et al., '19)
 For logistic can even do *M*-estimation inference

 Intro
 VMM
 Guarantees
 Inference
 Experiments
 Policy Learning
 POMDPs

 0000000
 00000
 000
 00000
 00000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000</td

A Conditional Moment Problem

$\blacktriangleright \ g \in \operatorname{argmin} \mathbb{E}[W\ell(g(X),S)] \iff \mathbb{E}[W\ell'(g(X),S) \mid X] = 0$

 Intro
 VMM
 Guarantees
 Inference
 Experiments
 Policy Learning
 POMDPs

 00000000
 000000
 000000
 000000
 000000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

- $\blacktriangleright \ g \in \operatorname{argmin} \mathbb{E}[W\ell(g(X),S)] \iff \mathbb{E}[W\ell'(g(X),S) \mid X] = 0$
 - Consider $\mathcal{G} = \{g_{\theta}(x) = \theta^{\top}x : \theta \in \mathbb{R}^d\}$

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	00000	000000	000	000000	000●0	0000

- $g \in \operatorname{argmin} \mathbb{E}[W\ell(g(X), S)] \iff \mathbb{E}[W\ell'(g(X), S) \mid X] = 0$
 - Consider $\mathcal{G} = \{g_{\theta}(x) = \theta^{\top}x : \theta \in \mathbb{R}^d\}$
 - ▶ Classic MLE theory: linear logistic regression *is* efficient in the model on (X, S) satisfying $\mathbb{E}[\ell'(g(X), S) \mid X] = 0$

 Intro
 VMM
 Guarantees
 Inference
 Experiments
 Policy Learning
 POMDPs

 00000000
 000000
 000000
 000000
 000000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

- $\blacktriangleright \ g \in \operatorname{argmin} \mathbb{E}[W\ell(g(X),S)] \iff \mathbb{E}[W\ell'(g(X),S) \mid X] = 0$
 - Consider $\mathcal{G} = \{g_{\theta}(x) = \theta^{\top}x : \theta \in \mathbb{R}^d\}$
 - ▶ Classic MLE theory: linear logistic regression *is* efficient in the model on (X, S) satisfying $\mathbb{E}[\ell'(g(X), S) \mid X] = 0$
 - Surprisingly, weighted logistic regression $\hat{\theta}_n \in \operatorname{argmin}_{g \in \mathcal{G}} \mathbb{E}_n[W\ell(g_{\theta}(X), S)]$ is *not* efficient for θ_0 in the above policy learning setting

 Intro
 VMM
 Guarantees
 Inference
 Experiments
 Policy Learning
 POMDPs

 00000000
 00000
 000
 00000
 00000
 00000
 0000

- $\blacktriangleright \ g \in \operatorname{argmin} \mathbb{E}[W\ell(g(X),S)] \iff \mathbb{E}[W\ell'(g(X),S) \mid X] = 0$
 - Consider $\mathcal{G} = \{g_{\theta}(x) = \theta^{\top}x : \theta \in \mathbb{R}^d\}$
 - ▶ Classic MLE theory: linear logistic regression *is* efficient in the model on (X, S) satisfying $\mathbb{E}[\ell'(g(X), S) \mid X] = 0$
 - Surprisingly, weighted logistic regression $\hat{\theta}_n \in \operatorname{argmin}_{g \in \mathcal{G}} \mathbb{E}_n[W\ell(g_{\theta}(X), S)]$ is *not* efficient for θ_0 in the above policy learning setting
- Can use VMM to get efficient learner
 - Efficiency has optimal regret implications

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	00000	000000	000	000000		0000
Numer	rics					

$$\blacktriangleright \text{ RMRR} = \left(1 - \frac{\mathbb{E}[J(\hat{g}^{\mathsf{VMM}})] - \inf_g J(g)}{\mathbb{E}[J(\hat{g}^{\mathsf{ERM}})] - \inf_g J(g)}\right) \times 100\%$$

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	00000	000000	000	000000		0000
Numer	rics					

$$\blacktriangleright \text{ RMRR} = \left(1 - \frac{\mathbb{E}[J(\hat{g}^{\mathsf{VMM}})] - \inf_g J(g)}{\mathbb{E}[J(\hat{g}^{\mathsf{ERM}})] - \inf_g J(g)}\right) \times 100\%$$

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs			
00000000	00000	000000	000	000000		0000			
Numerics									

$$\blacktriangleright \text{ RMRR} = \left(1 - \frac{\mathbb{E}[J(\hat{g}^{\mathsf{VMM}})] - \inf_g J(g)}{\mathbb{E}[J(\hat{g}^{\mathsf{ERM}})] - \inf_g J(g)}\right) \times 100\%$$

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs			
00000000	00000	000000	000	000000		0000			
Numerics									

$$\blacktriangleright \text{ RMRR} = \left(1 - \frac{\mathbb{E}[J(\hat{g}^{\mathsf{VMM}})] - \inf_g J(g)}{\mathbb{E}[J(\hat{g}^{\mathsf{ERM}})] - \inf_g J(g)}\right) \times 100\%$$

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	00000	000000	000	000000	00000	●000

This talk

- 1 Introduction
- 2 VMM
- 3 Guarantees
- 4 Inference
- **5** Experiments
- 6 Application: Policy Learning Efficient Policy Learning from Surrogate-Loss Classification Reductions

7 Application: Evaluation in Confounded POMDPs

Proximal Reinforcement Learning

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	00000	000000	000	000000	00000	o●oo
Model						

OPE in Confounded POMDP

- Reduces to a sequence of nested proximal causal inference problems
- Subject to certain completeness assumptions analogous to proximal causal inference, can do OPE
- Need to fit value bridge function and action bridge function
 - Analogous to q-function and density ratio
 - Given by conditional moment equations
 - Solve using VMM

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	00000	000000	000	000000	00000	000●

Experiments

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	00000	000000	000	000000	00000	ooo●

Experiments

Intro	VMM	Guarantees	Inference	Experiments	Policy Learning	POMDPs
00000000	00000	000000	000	000000	00000	000●

Experiments

Conclusions

Conditional moment model can be used for many problems

- Workhorse of economics
- Important in offline RL
- Especially confounded settings
- Can even be used to do cost-sensitive classification

 \blacktriangleright Sieves are unwieldy \longrightarrow more ML-ish minimax approaches

Loses the efficiency and inference of OWGMM 0

- Developed VMM by more directly generalizing OWGMM to minimax setting with general function classes
 - Asymptotically normal
 - Semiparametrically efficient
 - Can be applied to itself to estimate standard errors
- Works well in practice
 - \blacktriangleright ... even beyond finite dim θ

Thank you!