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Do() versus Soft-Do() Interventions
• For practical purposes, one may care about the effects of interventions that are 

not constant but soft, which depend on other variables or have randomness.
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Do-like Intervention  More Realistic Intervention
Make sure no one smokes Reduce tabaco consumption to 20%  

of current consumption

Provide treatment to all patients Administer the treatment if and only if patient  
is in a critical condition

Move a robotic arm exactly to coordinates 
 (X, Y, Z)

Move arm to (X, Y, Z) w/ normally dist. error  
(considering physical constraints)

Make all applicants male Flip the gender of applicants on paper

Make a cell to express some gene  
at some specific level

Shift the expression of a gene  
within ~10% of its baseline.



Tasks with Soft Interventions 
Task 1. Learning from soft-interventional data & across environments  
 

Causal Discovery from Soft Interventions with Unknown Targets: Characterization & Learning.  
 A. Jaber, M. Kocaoglu, K. Shanmugam, E. Bareinboim. Proc. of NeurIPS 2020.
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Task 2. Identifiability of policy interventions from observations & experiments 
 
 A Calculus For Stochastic Interventions: Causal Effect Identification and Surrogate Experiments.  
  J. Correa, E. Bareinboim. Proc. of the AAAI, 2019. 

Task 3. Transportability across environments & changing conditions 
  General Transportability of Soft Interventions: Completeness Results. 
  J. Correa, E. Bareinboim.  Proc. of NeurIPS 2020. 
 
  From Statistical Transportability to Estimating the Effect of Stochastic Interventions.   
  J. Correa, E. Bareinboim. Proc. of IJCAI-19.

Ⲯ-Markov,  
Ⲯ-Equiv. Class,


Ⲯ-FCI, …
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https://crl.causalai.net/


General Transportability of Soft Interventions
• Motivation  & Examples 


• Structural Causal Models & Soft-Interventions


• The Transportability/Generalizability Task 


• Symbolic solution


• Algorithmic solution


• Conclusions
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Motivation
• Establishing the effect of new interventions/policies from data is a pervasive task 

across the empirical sciences.


• Controlled experimentation is considered the gold standard to learn such causal 
effects in many settings. However, experiments rarely generalize to domains outside 
where they were originally performed.  
Many significant problems in the empirical sciences are instances of this task.  
(Banerjee et al. 07, Duflo et al. 07, Bertrand et al. 10). 


• This problem has been studied in the causal inference literature under the rubric of 
transportability theory (Bareinboim-Pearl 2011, 2012, 2013, Bareinboim et al. 2013). There are 
sufficient and necessary conditions that solve transportability of atomic interventions.


• In this talk, we discuss the task of generalizing policies (or soft interventions) from a 
collection of heterogenous data, including observations and experiments.
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Example tasks/applications
• Predict the impact of public policies for a country using data from other 

similar, but somewhat different countries.


• Adapt a classifier to a new, target domain while using minimal amount of 
data in this domain, while leveraging data from the source domain. 


• Recover the results from an experimental study carried out on a 
population that is known to misrepresent the general target population.


• Combine the results of A/B (or Multivariable) experiments in 
advertisement to predict the effect of a new (not-tested) strategy,  
over a new niche.
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Soft Interventions



Soft Interventions (Motivation)
In decision making scenarios, even if the effect of a do() intervention is 
identifiable …


• Available resources may be insufficient to implement the corresponding 
policy. 


• There are not enough teachers to cover all the hours of tutoring needed for 
every single student in a school.


• Effectiveness of the intervention cannot be guaranteed:


• Patients assigned treatment may not follow it.
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Example - Tutoring Program
• For a group of students we observe their GPA at the beginning of the term, 

their motivation level (low, high), whether they get tutoring or not, and their 
GPA at the end of the semester.
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X Y

W

(tutoring) (GPA)

(previous GPA)

Z(motivation)

Natural (current) Regime𝒢

• Using machine learning, and with enough 
observational data, a student’s GPA can be 
predicted with small error given other 
features, i.e., .


• This data reflects the current/natural regime, 
yet we aim to assess the impact of a new 
unobserved policy (intervention) on the 
students GPA.

P(y |w, z, x)



Consider a Soft Intervention
• Resources are limited so we want to focus on students that need tutoring the most.


• From now on, students with low GPA have to get tutoring and the service will only 
be available to them. That is: , .P*(X = 1 |W = 0) = 1 P*(X = 1 |W = 1) = 0
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Intervention 
σX = 1[W = 0]

Assign tutoring only 
to students with a 

low GPA.
X Y

W

(tutoring) (GPA)

(previous GPA)

Z(motivation)

Natural (current) Regime𝒢

X Y

W

(tutoring) (GPA)

(previous GPA)

Z(motivation)

Intervened (hypothesized) Regime𝒢σX

σX

P(y; σX)

Regime node used to encode the fact 
that  has been intervened on.X



Some Canonical types of Interventions
• Hard/atomic:  set variable  to a constant value .   

 (Do-calculus original treatment considered mostly this type of intervention. )

• Every student gets tutoring.


• Conditional:  sets the variable  to output the result of a function  
that depends on a set of observable variables .

• Students get tutoring if and only if they have a low GPA.


• Stochastic:  sets the variable  to follow a given probability 
distribution conditional on a set of variables .

• Students with low GPA enter a raffle for 80% of the spots, other interested 

students enter for the remaining 20%.

σX = do(X = x) X x

σX = g(w) X g
W

σX = P*(x |w) X
W
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[Dawid 02, Eberhardt&Scheines 07, Tian 08]



Transportability



Observation: All data is not created equal…

• Datasets are collected heterogenous conditions, e.g.,


(1) under different experimental conditions,


(2) come from different underlying populations, 


(3) suffer from non-random sampling mechanisms, 


(4) measure different sets of variables. 
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Surrogate Experiments

Transportability

Sample Selection Bias

Partial Observability

[Bareinboim&Pearl , PNAS’16]



Transportability (TR)
• Suppose data comes from different domains , where  

represents the target domain in which the causal effect is to be identified.

• Use experiments on mice to assess the effect of a treatment on humans

• Use data from a study carried out in Los Angeles to estimate the impact of 

a new policy in New York City

π*, π1, π2, … π*
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X Y

Z

 
LA 

 

π

P(v)
P(v; σX = do(x))

 
NYC 

 

π*

P*(v)

P*(y; σX = g(z))

square node (     ) 
indicates that the 
mechanism behind 

 differs between 
domains  and 
Z

π π*

domain

data

query

[Bareinboim&Pearl 14]



For instance, a square node pointing to variable  
encodes the assumption that:


• , or


•

Z

fZ ≠ f*Z
P(Uz) ≠ P*(Uz)

Selection Diagram
• Each source and target domains have an underlying SCM Mi.  

A selection diagram G represents the commonalities and disparities  
across these different domains, and can be thought as the overlapping 
between these diagrams. 
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X Y

Z

[Bareinboim+Pearl 11, 12]



Transportability Formula

When transportable, the effect of interest can be written in terms of available 
distributions. For instance: 


 P*(y; σX = g(z)) = ∑
z,x

P(y ∣ do(x), z)P(x ∣ z; σX = g(z))P*(z)

16

X Y

Z

 
LA 

 

π

P(v)
P(v; σX = do(x))

 
NYC 

 

π*

P*(v)

P*(y; σX = g(z))

domain

data

query



The Soft Transportability Task
Target Query1

Selection Diagram2

Data3

Inference 
Engine

e.g., Q = P*(y ∣ z; σx)

Yes

No

Q = f(G; P1, …, Pk)
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π*

P*(V)

π1

P1(V; σ1
Z)

π2

P1(V; σ2
W)

X
Y

R

Z

W

π1

π2



Another Example - Extrapolation of Sequential Plans 
• Query: The effect of an stochastic policy 

 on  in a 
target domain , namely, 


• Available data:


• Controlled trial in domain :  
        


• Conditional experiment in :  
       


• Selection diagram

σ* = {σX1
= ̂P(X1), σX2

= ̂P(X2 |X1, Z)} Y
π* P*(y; σ*)

π1

P1(V; σX1,X2
= do(x1, x2))

π2

P2(V; σX2
= do(x2 = g(X1, Z)))
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X1

Y

Z

X2

π2

π1

Instance of a Sequential Plan

modified from [Pearl & Robins, 1995] 



Different Diagrams for Different Distributions
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X1

Y

Z

X2

σ*

σ*
X1

Y

Z

X2

π1

σX1

σX2

X1

Y

Z

X2

π2

σX2




( )

P*(y; σ*)

π*




( )

P1(V; σX1,X2
= do(x1, x2))

π1




( )

P2(V; σX2
= do(x2 = g(X1, Z)))

π2



Symbolic Solution



Symbolic Solution: -calculusσ
Theorem. Let  be a causal diagram, with endogenous variables . For any disjoint 
subsets , two disjoint subsets  (i.e., possibly including 
elements in ), the following rules are valid for any intervention strategies , :


Rule 1 (Insertion/Deletion of observations):

        if       in    


Rule 2 (Change of regimes under observation): 

          if      in      and  


Rule 3 (Change of regimes without observation): 

                  if      in      and  

𝒢 V
X, Y, Z ⊆ V T, W ⊆ V∖(Z ∪ Y)

X σX σZ

P(y ∣ w, t; σX) = P(y ∣ w; σX) (Y ⊥ T ∣ W) 𝒢σX

P(y ∣ x, w; σX) = P(y ∣ x, w) (Y ⊥ X ∣ W) 𝒢σXX 𝒢X

P(y ∣ w; σX) = P(y ∣ w) (Y ⊥ X ∣ W) 𝒢σXX(W) 𝒢X(W)
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[Correa & Bareinboim, 20]



Solving the instance with -calculusσ



         by def. of 

P*(y; σ*) = ∑
x1,z,x2

P*(y ∣ x1, z, x2; σ*)P*(x2 ∣ z, x1; σ*)P*(z ∣ x1; σ*)P*(x1; σ*)

P*(x2 ∣ z, x1; σ*)P*(x1; σ*) = ̂P(x2 ∣ z, x1) ̂P(x1) σ*
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X1

Y

Z

X2

π2

π1



Solving the instance with -calculusσ



              by rule 3 remove intervention 

                                     by rule 2 change to intervention 

                                      change domain

P*(y; σ*) = ∑
x1,z,x2

P*(y ∣ x1, z, x2; σ*)P*(x2 ∣ z, x1; σ*)P*(z ∣ x1; σ*)P*(x1; σ*)

P*(z ∣ x1; σ*) = P*(z ∣ x1; σ*x1
) σ*2

= P*(z ∣ x1; σx1
) σ1

= P1(z ∣ x1; σx1
) (Z ⊥ □π1

|X1)
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X1

Y

Z

X2

π2

π1

X1

Y

Z

X2

σ*

σ*
X1

Y

Z

X2

π1

σX1

σX2



Solving the instance with -calculusσ



     by rule 1 remove observation on 

                                    by rule 2 change to intervention 


                                     in change domain

P*(y; σ*) = ∑
x1,z,x2

P*(y ∣ x1, z, x2; σ*)P*(x2 ∣ z, x1; σ*)P*(z ∣ x1; σ*)P*(x1; σ*)

P*(y ∣ x1, z, x2; σ*) = P*(y ∣ x1, x2; σ*) Z
= P*(y ∣ x1, x2; σX2

) σ2

= P2(y ∣ x1, x2; σX2
) (Z ⊥ □π2

|X1, X2) 𝒢σX2

24

X1

Y

Z

X2

π2

π1

X1

Y

Z

X2

σ*

σ*
X1

Y

Z

X2

π2

σX2



Solving the instance with -calculusσ



               


Each term is estimable from one of the domains , , or defined by the target 
intervention . 

P*(y; σ*) = ∑
x1,z,x2

P*(y ∣ x1, z, x2; σ*)P*(x2 ∣ z, x1; σ*)P*(z ∣ x1; σ*)P*(x1; σ*)

= ∑
x1,z,x2

P2(y ∣ x1, x2; σX2
) ̂P(x2 ∣ z, x1)P1(z ∣ x1; σX1,X2

) ̂P(x1)

π1 π2

σ*
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Theorem: -calculus and basic 
probability axioms are sound and 

complete for the -TR task.

σ

σ



Algorithmic Solution



Factorization in the Presence of Latents: Confounded Factors

• In the absence of bidirected edges, a query or input distribution always 
decomposes into factors of the for .


• With latent confounding, we can define coarser factors taking the hidden 
variables into account, called c-factors (confounded factors, Tian&Pearl01).


• Let , then the c-factor associated with  is given by the following 
function:


,   where .


For simplicity,  is often written as .  
 Also, notice that .

P(vi ∣ pai)

C ⊆ V C

Q[C](c, pac) = ∑
u(C)

P(u(C)) ∏
Vi∈C

P(vi |pai, ui) U(C) = ⋃
Vi∈C

Ui

Q[C](c, pac) Q[C]
Q[V] = P(v)
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Confounded Components (C-Components)

•Definition (c-component). Two variables are in the same c-component if and 
only if they are connected by a bidirected path, a path composed entirely of 
bidirected edges.
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V1 V2 V3 V4 V5

U1 U2

U3

•  and  are in the same c-component.


•  and  are in the same c-component.

V1, V3 V5

V2 V4

[Tian&Pearl02]



Solving the instance with -TR (algorithm)σ
• Target c-factors:





    


    

P*(y; σ*) = ∑
x1,z,x2

P*(v; σ*)

= ∑
x1,z,x2

Q*[V; σ*]

= ∑
x1,z,x2

Q*[Y; σ*]Q*[Z; σ*]Q*[X2; σ*]Q*[X1; σ*]
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X1

Y

Z

X2

σ*

σ*

Given by the intervention 
 as σ* ̂P(x2 ∣ z, x1) ̂P(x1)

We try to get these c-
factors from the available 

data



Transportability of c-factor
• A c-factor  is transportable from domain  to domain  if no variable 

in  is pointed by a square node corresponding to domain . 


• There is no need to use d-separation to determine transportability due to the 
canonical form of the c-factor.

Qa[C] πa π*
C πa
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X1

Y

Z

X2

π2

π1

In this example,


•  is transportable from 


•  is transportable from 


Still, we need to identify the corresponding  and 
 from the distributions available in those domains.

Q*[Y; σ*] π2

Q*[Z; σ*] π1

Q2[Y; σ*]
Q1[Z; σ*]



Identifying the c-factors in each domain
For this examples we can show that


• 


• 


Then, the query can be expressed as





        

Q*[Z; σ*] = Q1[Z; σ*] = Q1[Z; σX1,X2
] = P1(z ∣ x1; σX1,X2

)

Q*[Y; σ*] = Q2[Y; σ*] = Q2[Y; σX2
] = P2(y ∣ x1, x2, z; σX2

)

P*(y; σ*) = ∑
x1,z,x2

Q*[Y; σ*]Q*[Z; σ*]Q*[X2; σ*]Q*[X1; σ*]

= ∑
x1,z,x2

P2(y ∣ x1, x2, z; σX2
)P1(z ∣ x1; σX1,X2

) ̂P(x2 ∣ z, x1) ̂P(x1)
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Theorem: An effect  is transportable from a 
combination of observations and experiments , and a selection 
diagram  if and only if -TR outputs an estimand for it.  The 
algorithm takes  time to output an expression or 

fail, where ,  is the number of edges of  and 

P*(y ∣ w; σX)
ℤ

𝒢Δ σ
O(n2(n + m)p)

n = |V | m 𝒢 p = |ℤ |



Conclusions
• The problem of assessing the effect of a policy in a target domain, using a combination of 

observational and experimental data from multiple domains can be solved non-parametrically with 
the help of a selection diagram encoding the assumptions about the disparities and commonalities 
across domains. 


• We provide a necessary and sufficient graphical condition that characterizes the existence of an 
unbiased estimator for the effect of a target policy (possibly stochastic) given assumption in the 
form of a diagram and heterogeneous datasets.


• We develop a sound and complete algorithm ( -TR) to efficiently determine whether the transport 
formula exists, and output an unbiased estimator of the corresponding transport formula (whenever 
it exists).


• We prove that -calculus is complete for this task.


• Reasoning and learning about soft interventions is an important step towards more general AI  
(e.g., causal RL) that is causally valid, sample efficient, and human friendly.

σ

σ

32Thank you!
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