Learning \& Reasoning with Soft Interventions

Elias Bareinboim
Causal Artificial Intelligence Lab
Columbia University
(@eliasbareinboim)

Workshop on Learning from Interventions Simons Institute, February, 2022

Do() versus Soft-Do() Interventions

- For practical purposes, one may care about the effects of interventions that are not constant but soft, which depend on other variables or have randomness.

Do-like Intervention

Make sure no one smokes

Provide treatment to all patients
Move a robotic arm exactly to coordinates (X, Y, Z)

Make all applicants male
Make a cell to express some gene at some specific level

More Realistic Intervention

Reduce tabaco consumption to 20\% of current consumption

Administer the treatment if and only if patient is in a critical condition

Move arm to (X, Y, Z) w/ normally dist. error (considering physical constraints)

Flip the gender of applicants on paper
Shift the expression of a gene within $\sim 10 \%$ of its baseline.

Tasks with Soft Interventions

Task 1. Learning from soft-interventional data \& across environments
Causal Discovery from Soft Interventions with Unknown Targets: Characterization \& Learning. A. Jaber, M. Kocaoglu, K. Shanmugam, E. Bareinboim. Proc. of NeurIPS 2020.

Task 2. Identifiability of policy interventions from observations \& experiments

A Calculus For Stochastic Interventions: Causal Effect Identification and Surrogate Experiments. J. Correa, E. Bareinboim. Proc. of the AAAI, 2019.

Task 3. Transportability across environments \& changing conditions

General Transportability of Soft Interventions: Completeness Results. J. Correa, E. Bareinboim. Proc. of NeurIPS 2020.

From Statistical Transportability to Estimating the Effect of Stochastic Interventions. J. Correa, E. Bareinboim. Proc. of IJCAI-19.

Tasks with Soft Interventions

Task 1. Learning from soft-interventional data \& across environments

Causal Discovery from Soft Interventions with Unknown Targets: Characterization \& Learning. A. Jaber, M. Kocaoglu, K. Shanmugam, E. Bareinboim. Proc. of NeurIPS 2020.

Task 2. Identifiability of policy interventions from observations \& experiments

A Calculus For Stochastic Interventions: Causal Effect Identification and Surrogate Experiments. J. Correa, E. Bareinboim. Proc. of the AAAI, 2019.

Task 3. Transportability across environments \&

General Transportability of Soft Interventions: Completeness J. Correa, E. Bareinboim. Proc. of NeurlPS 2020.

From Statistical Transportability to Estimating the Effect of Stc J. Correa, E. Bareinboim. Proc. of IJCAI-19.
J. Correa, E. Bareinboim. Proc. of IJCAL-19.

Al-Application of Soft Interventions:
Causal Reinforcement Learning https://crl.causalai.net/

General Transportability of Soft Interventions

- Motivation \& Examples
- Structural Causal Models \& Soft-Interventions
- The Transportability/Generalizability Task
- Symbolic solution
- Algorithmic solution
- Conclusions

Motivation

- Establishing the effect of new interventions/policies from data is a pervasive task across the empirical sciences.
- Controlled experimentation is considered the gold standard to learn such causal effects in many settings. However, experiments rarely generalize to domains outside where they were originally performed.
Many significant problems in the empirical sciences are instances of this task. (Banerjee et al. 07, Duflo et al. 07, Bertrand et al. 10).
- This problem has been studied in the causal inference literature under the rubric of transportability theory (Bareinboim-Pearl 2011, 2012, 2013, Bareinboim et al. 2013). There are sufficient and necessary conditions that solve transportability of atomic interventions.
- In this talk, we discuss the task of generalizing policies (or soft interventions) from a collection of heterogenous data, including observations and experiments.

Example tasks/applications

- Predict the impact of public policies for a country using data from other similar, but somewhat different countries.
- Adapt a classifier to a new, target domain while using minimal amount of data in this domain, while leveraging data from the source domain.
- Recover the results from an experimental study carried out on a population that is known to misrepresent the general target population.
- Combine the results of A / B (or Multivariable) experiments in advertisement to predict the effect of a new (not-tested) strategy, over a new niche.

Soft Interventions

Soft Interventions (Motivation)

In decision making scenarios, even if the effect of a do() intervention is identifiable ...

- Available resources may be insufficient to implement the corresponding policy.
- There are not enough teachers to cover all the hours of tutoring needed for every single student in a school.
- Effectiveness of the intervention cannot be guaranteed:
- Patients assigned treatment may not follow it.

Example - Tutoring Program

- For a group of students we observe their GPA at the beginning of the term, their motivation level (low, high), whether they get tutoring or not, and their GPA at the end of the semester.
- Using machine learning, and with enough observational data, a student's GPA can be predicted with small error given other features, i.e., $P(y \mid w, z, x)$.
- This data reflects the current/natural regime, yet we aim to assess the impact of a new unobserved policy (intervention) on the students GPA.

Consider a Soft Intervention

- Resources are limited so we want to focus on students that need tutoring the most.
- From now on, students with low GPA have to get be available to them. That is: $P^{*}(X=1 \mid W=0)$

Regime node used to encode the fact that X has been intervened on.

[^0]
Some Canonical types of Interventions

[Dawid 02, Eberhardt\&Scheines 07, Tian 08]

- Hard/atomic: $\sigma_{X}=d o(X=x)$ set variable X to a constant value x. (Do-calculus original treatment considered mostly this type of intervention.)
- Every student gets tutoring.
- Conditional: $\sigma_{X}=g(w)$ sets the variable X to output the result of a function g that depends on a set of observable variables W.
- Students get tutoring if and only if they have a low GPA.
- Stochastic: $\sigma_{X}=P^{*}(x \mid w)$ sets the variable X to follow a given probability distribution conditional on a set of variables W.
- Students with low GPA enter a raffle for 80% of the spots, other interested students enter for the remaining 20%.

Transportability

Observation: All data is not created equal...

- Datasets are collected heterogenous conditions, e.g.,
(1) under different experimental conditions, \longrightarrow Surrogate Experiments
(2) come from different underlying populations,
 Transportability
(3) suffer from non-random sampling mechanisms, \rightarrow Sample Selection Bias
(4) measure different sets of variables. \qquad

Transportability (TR)

- Suppose data comes from different domains $\pi^{*}, \pi^{1}, \pi^{2}, \ldots$, where π^{*} represents the target domain in which the causal effect is to be identified.
- Use experiments on mice to assess the effect of a treatment on humans
- Use data from a study carried out in Los Angeles to estimate the impact of a new policy in New York City

Selection Diagram

- Each source and target domains have an underlying SCM Mi. A selection diagram G represents the commonalities and disparities across these different domains, and can be thought as the overlapping between these diagrams.

For instance, a square node pointing to variable Z encodes the assumption that:

- $f_{Z} \neq f_{Z}^{*}$, or
- $P\left(U_{z}\right) \neq P^{*}\left(U_{z}\right)$

Transportability Formula

When transportable, the effect of interest can be written in terms of available distributions. For instance:

$$
P^{*}\left(y ; \sigma_{X}=g(z)\right)=\sum_{z, x} P(y \mid d o(x), z) P\left(x \mid z ; \sigma_{X}=g(z)\right) P^{*}(z)
$$

The Soft Transportability Task

1 Target Query
e.g., $Q=P^{*}\left(\mathbf{y} \mid \mathbf{z} ; \sigma_{\mathbf{x}}\right)$

Inference Engine

Another Example - Extrapolation of Sequential Plans

- Query: The effect of an stochastic policy $\sigma^{*}=\left\{\sigma_{X_{1}}=\hat{P}\left(X_{1}\right), \sigma_{X_{2}}=\hat{P}\left(X_{2} \mid X_{1}, Z\right)\right\}$ on Y in a target domain π^{*}, namely, $P^{*}\left(y ; \sigma^{*}\right)$
- Available data:
- Controlled trial in domain π^{1} :

$$
P^{1}\left(\mathbf{V} ; \sigma_{X_{1}, X_{2}}=d o\left(x_{1}, x_{2}\right)\right)
$$

- Conditional experiment in π^{2} :

$$
P^{2}\left(\mathbf{V} ; \sigma_{X_{2}}=d o\left(x_{2}=g\left(X_{1}, Z\right)\right)\right)
$$

- Selection diagram

Different Diagrams for Different Distributions

$$
P^{*}\left(y ; \sigma^{*}\right)
$$

$\left(\pi^{*}\right)$
$P^{1}\left(\mathbf{V} ; \sigma_{X_{1}, X_{2}}=\operatorname{do}\left(x_{1}, x_{2}\right)\right)$
$\left(\pi^{1}\right)$

$P^{2}\left(\mathbf{V} ; \sigma_{X_{2}}=\operatorname{do}\left(x_{2}=g\left(X_{1}, Z\right)\right)\right)$
$\left(\pi^{2}\right)$

Symbolic Solution

Symbolic Solution: σ-calculus

Theorem. Let \mathscr{G} be a causal diagram, with endogenous variables \mathbf{V}. For any disjoint subsets $\mathbf{X}, \mathbf{Y}, \mathbf{Z} \subseteq \mathbf{V}$, two disjoint subsets $\mathbf{T}, \mathbf{W} \subseteq \mathbf{V} \backslash(\mathbf{Z} \cup \mathbf{Y})$ (i.e., possibly including elements in \mathbf{X}), the following rules are valid for any intervention strategies $\sigma_{\mathbf{X}}, \sigma_{\mathbf{Z}}$:

Rule 1 (Insertion/Deletion of observations):

$$
P\left(\mathbf{y} \mid \mathbf{w}, \mathbf{t} ; \sigma_{\mathbf{X}}\right)=P\left(\mathbf{y} \mid \mathbf{w} ; \sigma_{\mathbf{X}}\right) \quad \text { if }(\mathbf{Y} \perp \mathbf{T} \mid \mathbf{W}) \quad \text { in } \quad \mathscr{G}_{\sigma_{\mathbf{X}}}
$$

Rule 2 (Change of regimes under observation):

$$
P\left(\mathbf{y} \mid \mathbf{x}, \mathbf{w} ; \sigma_{\mathbf{X}}\right)=P(\mathbf{y} \mid \mathbf{x}, \mathbf{w}) \quad \text { if }(\mathbf{Y} \perp \mathbf{X} \mid \mathbf{W}) \text { in } \quad \mathscr{G}_{\sigma_{\mathrm{X}} \underline{\mathbf{X}}} \text { and } \mathscr{G}_{\underline{\mathbf{x}}}
$$

Rule 3 (Change of regimes without observation):

$$
P\left(\mathbf{y} \mid \mathbf{w} ; \sigma_{\mathbf{X}}\right)=P(\mathbf{y} \mid \mathbf{w}) \quad \text { if }(\mathbf{Y} \perp \mathbf{X} \mid \mathbf{W}) \quad \text { in } \quad \mathscr{G}_{\sigma_{\mathbf{X}} \overline{\mathbf{X}(\mathbf{W})}} \text { and } \mathscr{G}_{\overline{\mathbf{X}(\mathbf{W})}}
$$

Solving the instance with σ-calculus

$$
P^{*}\left(y ; \sigma^{*}\right)=\sum_{x_{1}, z, x_{2}} P^{*}\left(y \mid x_{1}, z, x_{2} ; \sigma^{*}\right) P^{*}\left(x_{2} \mid z, x_{1} ; \sigma^{*}\right) P^{*}\left(z \mid x_{1} ; \sigma^{*}\right) P^{*}\left(x_{1} ; \sigma^{*}\right)
$$

$P^{*}\left(x_{2} \mid z, x_{1} ; \sigma^{*}\right) P^{*}\left(x_{1} ; \sigma^{*}\right)=\hat{P}\left(x_{2} \mid z, x_{1}\right) \hat{P}\left(x_{1}\right) \quad$ by def. of σ^{*}

Solving the instance with σ-calculus

$$
P^{*}\left(y ; \sigma^{*}\right)=\sum_{x_{1}, z, x_{2}} P^{*}\left(y \mid x_{1}, z, x_{2} ; \sigma^{*}\right) P^{*}\left(x_{2} \mid z, x_{1} ; \sigma^{*}\right) P^{*}\left(z \mid x_{1} ; \sigma^{*}\right) P^{*}\left(x_{1} ; \sigma^{*}\right)
$$

$$
P^{*}\left(z \mid x_{1} ; \sigma^{*}\right)=P^{*}\left(z \mid x_{1} ; \sigma_{x_{1}}^{*}\right)
$$

$$
=P^{*}\left(z \mid x_{1} ; \sigma_{x_{1}}\right)
$$

$$
=P^{1}\left(z \mid x_{1} ; \sigma_{x_{1}}\right)
$$

by rule 3 remove intervention σ_{2}^{*} by rule 2 change to intervention σ_{1}
($Z \perp \square_{\pi_{1}} \mid X_{1}$) change domain

Solving the instance with σ-calculus

$$
P^{*}\left(y ; \sigma^{*}\right)=\sum_{x_{1}, z, x_{2}} P^{*}\left(y \mid x_{1}, z, x_{2} ; \sigma^{*}\right) P^{*}\left(x_{2} \mid z, x_{1} ; \sigma^{*}\right) P^{*}\left(z \mid x_{1} ; \sigma^{*}\right) P^{*}\left(x_{1} ; \sigma^{*}\right)
$$

$$
P^{*}\left(y \mid x_{1}, z, x_{2} ; \sigma^{*}\right)=P^{*}\left(y \mid x_{1}, x_{2} ; \sigma^{*}\right) \quad \text { by rule } 1 \text { remove observation on } Z
$$

$$
=P^{*}\left(y \mid x_{1}, x_{2} ; \sigma_{X_{2}}\right) \quad \text { by rule } 2 \text { change to intervention } \sigma_{2}
$$

$$
=P^{2}\left(y \mid x_{1}, x_{2} ; \sigma_{X_{2}}\right) \quad\left(Z \perp \square_{\pi_{2}} \mid X_{1}, X_{2}\right) \text { in } \mathscr{G}_{\sigma_{X_{2}}} \text { change domain }
$$

Solving the instance with σ-calculus

$$
\begin{aligned}
P^{*}\left(y ; \sigma^{*}\right) & =\sum_{x_{1}, z x_{2}} P^{*}\left(y \mid x_{1}, z, x_{2} ; \sigma^{*}\right) P^{*}\left(x_{2} \mid z, x_{1} ; \sigma^{*}\right) P^{*}\left(z \mid x_{1} ; \sigma^{*}\right) P^{*}\left(x_{1} ; \sigma^{*}\right) \\
& =\sum_{x_{1}, z, x_{2}} P^{2}\left(y \mid x_{1}, x_{2} ; \sigma_{X_{2}}\right) \hat{P}\left(x_{2} \mid z, x_{1}\right) P^{1}\left(z \mid x_{1} ; \sigma_{X_{1}, x_{2}} \hat{P}\left(x_{1}\right)\right.
\end{aligned}
$$

Each term is estimable from one of the domains π^{1}, π^{2}, or defined by the target intervention σ^{*}.

Theorem: σ-calculus and basic probability axioms are sound and complete for the σ-TR task.

Algorithmic Solution

Factorization in the Presence of Latents: Confounded Factors

- In the absence of bidirected edges, a query or input distribution always decomposes into factors of the for $P\left(v_{i} \mid p a_{i}\right)$.
- With latent confounding, we can define coarser factors taking the hidden variables into account, called c-factors (confounded factors, Tian\&Pearl01).
- Let $\mathbf{C} \subseteq \mathbf{V}$, then the c-factor associated with \mathbf{C} is given by the following function:
$Q[\mathbf{C}]\left(\mathbf{c}, p a_{\mathbf{c}}\right)=\sum_{u(\mathbf{C})} P(u(\mathbf{C})) \prod_{V_{i} \in \mathbf{C}} P\left(v_{i} \mid p a_{i}, u_{i}\right)$, where $U(\mathbf{C})=\bigcup_{V_{i} \in \mathbf{C}} \mathbf{U}_{i}$.
For simplicity, $Q[\mathbf{C}]\left(\mathbf{c}, \mathbf{p a}_{\mathbf{c}}\right)$ is often written as $Q[\mathbf{C}]$.
Also, notice that $Q[\mathbf{V}]=P(\mathbf{v})$.

Confounded Components (C-Components)

[Tian\&Pearl02]

- Definition (c-component). Two variables are in the same c-component if and only if they are connected by a bidirected path, a path composed entirely of bidirected edges.

- V_{1}, V_{3} and V_{5} are in the same c-component.
- V_{2} and V_{4} are in the same c-component.

Solving the instance with σ-TR (algorithm)

- Target c-factors:

$$
\begin{aligned}
& P^{*}\left(y ; \sigma^{*}\right)=\sum_{x_{1}, z, x_{2}} P^{*}\left(\mathbf{v} ; \sigma^{*}\right) \\
& \quad=\sum_{x_{1}, z, x_{2}} Q^{*}\left[\mathbf{V} ; \sigma^{*}\right] \\
& \quad=\sum_{x_{1}, z, x_{2}} Q^{*}\left[Y ; \sigma^{*}\right] Q^{*}\left[Z ; \sigma^{*}\right] Q^{*}\left[X_{2} ; \sigma^{*}\right] Q^{*}\left[X_{1} ; \sigma^{*}\right] \\
& \begin{array}{cc}
\text { We try to get these c- } \\
\text { factors from the available } & \text { Given by the intervention } \\
\sigma^{*} & \text { as } P\left(x_{2} \mid z, x_{1}\right) \hat{P}\left(x_{1}\right)
\end{array}
\end{aligned}
$$

Transportability of c-factor

- A c-factor $Q^{a}[\mathbf{C}]$ is transportable from domain π^{a} to domain π^{*} if no variable in \mathbf{C} is pointed by a square node corresponding to domain π^{a}.
- There is no need to use d-separation to determine transportability due to the canonical form of the c-factor.

In this example,

- $Q^{*}\left[Y ; \sigma^{*}\right]$ is transportable from π^{2}
- $Q^{*}\left[Z ; \sigma^{*}\right]$ is transportable from π^{1}

Still, we need to identify the corresponding $Q^{2}\left[Y ; \sigma^{*}\right]$ and $Q^{1}\left[Z ; \sigma^{*}\right]$ from the distributions available in those domains.

Identifying the c-factors in each domain

For this examples we can s Theorem: An effect $P^{*}\left(\mathbf{y} \mid \mathbf{w} ; \sigma_{\mathbf{x}}\right)$ is transportable from a

- $Q^{*}\left[Z ; \sigma^{*}\right]=Q^{1}\left[Z ; \sigma^{*}\right]$ combination of observations and experiments \mathbb{Z}, and a selection diagram \mathscr{G}^{Δ} if and only if σ-TR outputs an estimand for it. The
- $Q^{*}\left[Y ; \sigma^{*}\right]=Q^{2}\left[Y ; \sigma^{*}\right]$ algorithm takes $O\left(n^{2}(n+m) p\right)$ time to output an expression or fail, where $n=|\mathbf{V}|, m$ is the number of edges of \mathscr{G} and $p=|\mathbb{Z}|$ Then, the query can be exp

$$
\begin{aligned}
P^{*}\left(y ; \sigma^{*}\right) & =\sum_{x_{1}, z, x_{2}} Q^{*}\left[Y ; \sigma^{*}\right] Q^{*}\left[Z ; \sigma^{*}\right] Q^{*}\left[X_{2} ; \sigma^{*}\right] Q^{*}\left[X_{1} ; \sigma^{*}\right] \\
& =\sum_{x_{1}, z, x_{2}} P^{2}\left(y \mid x_{1}, x_{2}, z ; \sigma_{X_{2}}\right) P^{1}\left(z \mid x_{1} ; \sigma_{X_{1}, X_{2}}\right) \hat{P}\left(x_{2} \mid z, x_{1}\right) \hat{P}\left(x_{1}\right)
\end{aligned}
$$

Conclusions

- The problem of assessing the effect of a policy in a target domain, using a combination of observational and experimental data from multiple domains can be solved non-parametrically with the help of a selection diagram encoding the assumptions about the disparities and commonalities across domains.
- We provide a necessary and sufficient graphical condition that characterizes the existence of an unbiased estimator for the effect of a target policy (possibly stochastic) given assumption in the form of a diagram and heterogeneous datasets.
- We develop a sound and complete algorithm (σ-TR) to efficiently determine whether the transport formula exists, and output an unbiased estimator of the corresponding transport formula (whenever it exists).
- We prove that σ-calculus is complete for this task.
- Reasoning and learning about soft interventions is an important step towards more general Al (e.g., causal RL) that is causally valid, sample efficient, and human friendly.

References

- General Transportability of Soft Interventions: Completeness Results.
J. Correa, E. Bareinboim.

In Proceedings of the 34th Annual Conference on Neural Information Processing Systems (NeurIPS), 2020.
https://causalai.net/r68.pdf

- Causal Discovery from Soft Interventions with Unknown Targets: Characterization \& Learning.
A. Jaber, M. Kocaoglu, K. Shanmugam, E. Bareinboim.

In Proceedings of the 34th Annual Conference on Neural Information Processing Systems (NeurIPS), 2020.
https://causalai.net/r67.pdf

- A Calculus For Stochastic Interventions: Causal Effect Identification and Surrogate Experiments
J. Correa, E. Bareinboim.

In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI), 2019.
https://causalai.net/r55.pdf

- From Statistical Transportability to Estimating the Effect of Stochastic Interventions.
J. Correa, E. Bareinboim.

In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI), 2019.
https://causalai.net/r45.pdf

- Characterization and Learning of Causal Graphs with Latent Variables from Soft Interventions.
M. Kocaoglu, A. Jaber, K. Shanmugam, E. Bareinboim.

In Proceedings of the 33rd Annual Conference on Neural Information Processing Systems (NeurIPS), 2019.
https://causalai.net/r47.pdf

[^0]: $\mathscr{C}_{\sigma_{X}}$ Intervened (hypothesized) Regime

