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Randomized experiments and covariate adjustment

I Gold standard for unbiased estimation of treatment effects

I simple OLS works: Yi ∼ Zi with outcome Y and treatment Z

I A large literature on covariate adjustment to improve efficiency

I Fisher (1935): Yi ∼ Zi + xi with covariates x

I Lin (2013): Yi ∼ Zi + xi + Zixi with centered covariates

I Lin (2013) is generally better than Fisher (1935) asymptotically

I EHW robust SE is a convenient approximation to the true SE

I Design-based theory (Neyman 1923, 1934; Freedman 2008; Lin 2013)

I parameter: τ = n−1
∑n

i=1{Yi (1)− Yi (0)}
I Zi ’s are random permutation of 1s and 0s

I conditional on all potential outcomes and covariates

I no outcome modeling assumption
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Theory is nice but practice can be complicated...

I Proper covariate adjustment promises asymptotic efficiency gain

I Practitioners may not want to use it or can often misuse it

I for many reasons

I This talk focuses on a major complication

missingness in covariates
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Is missingness in covariates a real problem?

I Duflo et al (2011 AER) field experiment in Western Kenya

I Effect of free delivery of fertilizer on fertilizer use

I 204 received treatment and 673 received control

I 27 covariates: education, previous fertilizer use, gender, income, etc

I 7 covariates have missing values

I ≈ 20% units have some missing covariates
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Missingness patterns in Duflo et al (2011 AER)
only for the 7 covariates subject to missingness: 1 for missing and 0 for observed

missingness pattern sample size

0000000 716

0000100 59

0001000 1

0010011 2

0100000 19

0100100 1

1000000 1

1011111 71

1111111 7
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The current default covariate adjustment

I With missing x , default OLS functions in R and Stata drop units

I Called the complete-case (cc) analysis

I Yi ∼ Zi uses all units

I Yi ∼ Zi + xi or Yi ∼ Zi + xi + Zixi drops units with any missingness

I Question: Is covariate adjustment based on the cc analysis really

better than the simple difference in means?
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How to deal with missing x in randomized experiments?

I Modeling x? impute x? multiple imputation? or even fancier

methods? (Little and Rubin 2002 book on missing data)

I Goal of this talk:

I adjust for x but do not want to use complicated methods

I recommend easy-to-implement methods: better to still use OLS

I stronger guarantees than naive methods, without modeling assumptions

I Before going to technical details, state our final recommendation:

I missingness-indicator method (mim)

I impute missing covariate values all by 0

I augment imputed covariates by the associated missingness indicators

I use the augmented covariates in Fisher (1935) or Lin (2013)

I report the EHW robust SE
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Start from a simple yet reasonable scenario

I Let Mi be the missingness indicator vector corresponding to xi

I Assume

Mi (1) = Mi (0) (i = 1, . . . , n)

I M is not affected by the treatment

I Reasonable in experiments with x collected before treatment

I M is effectively a covariate vector: this is key for later discussion

I M can be related to x and even Y (1), Y (0)

I Allows for missing not at random in the sense of Rubin (1976)
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Method 1: complete-case (cc) analysis

I Default if run OLS or other statistical models

I Loss of efficiency if many units miss at least some covariate values

I Problematic because the complete cases may not represent all units

I Default OLS Yi ∼ Zi + xi or Yi ∼ Zi + xi + Zixi can be biased

I A good reason to avoid covariate adjustment due to this complexity

I Although cc analysis is widely used, we strongly discourage using it!
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Method 2: complete-covariate (ccov) analysis

I Dropping units seems inferior as in cc analysis

I Adjust only for covariates that are completely observed for all units

I Always ensures efficiency gain with at least one predictive covariate

I Theory for ccov analysis is very simple: follows from Fisher and Lin

I Use ccov analysis as a benchmark in our discussion

I Reduces to unadjusted estimator if all covariates have missing values

I Can be inferior in efficiency if most covariates have missing values
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Method 3: single imputation (imp)

I Impute missing values of xij by cj (j = 1, . . . , p)

I cj ’s can be fixed numbers, e.g., 0’s

I cj ’s can even be data-dependent, e.g., mean of observed xij ’s

I theory only requires cj ’s have finite limits

I can view the imputed covariates x imp
i (c) as “pseudo covariates”

I Use x imp
i (c) in covariate adjustment

I Asymptotically better than ccov analysis in efficiency

I Theory depends on cj ’s; can optimize over them

I Do not discuss complex imputation schemes: generally suboptimal

I Multiple imputation seems overkill since EHW robust SE works
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Method 4: missingness-indicator method (mim)

I Impute the missing covariates all by 0’s: imputed covariates x imp
i

I View x imp
i as well as Mi as “pseudo covariates”

I Use (x imp
i ,Mi ) in covariate adjustment

I Report the EHW robust SE

I The choice of 0 for the imputation is not restrictive

I point estimator and SE are invariant to choice of cj ’s (numeric fact)

I true for both Fisher and Lin

I true only if the missingness indicators are included in OLS
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Our recommendation: mim

I Uses all covariates and all units

I Always improves efficiency over unadjusted, ccov, and imp analyses

I No dependence on the imputed values for the missing covariates

I Very easy to implement via OLS + EHW robust SE

I No need to model the missing data mechanism and covariates

I Works even if the missing mechanism depends on missing covariates

I Works even if the linear outcome model is wrong
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The mim is not new at all!

I An old yet not so popular literature: e.g. Cohen and Cohen (1975)

I Used a lot in observational studies, especially for matching:

Rosenbaum and Rubin (1984, Appendix B), Rosenbaum (2009, page

241), Hainmueller and Hangartner (2013), Fogarty et al (2016), etc

I Problematic in non-randomized studies: Greenland and Finkle (1995),

Doners et al (2006), Yang, Wang and Ding (2019), etc

I Randomization justifies mim though!

I Some versions recommended also by White and Thompson (2005),

Carpenter and Kenward (2007), and Gerber and Green (2012)

I We provide the design-based theory for mim
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Method 5: missingness-pattern (mp) method

I Missingness-pattern = combination of the missingness indicators

I Example with 2 missing covariates:

missingness pattern (Mi ) xi1 xi2 number of units

(0, 0) obs obs N(00)

(0, 1) obs mis N(01)

(1, 0) mis obs N(10)

(1, 1) mis mis N(11)
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Method 5: missingness-pattern (mp) method

I It is also an intuitive method: just use whatever covariates we have!

I Propose the mp method:

I stratify the units based on their covariates missingness patterns

I use all the available covariates within each missingness pattern

I weighted average of the estimators across missingness patterns

I The idea might not be entirely new either: Wilks (1932), Matthai

(1951), Rosenbaum and Rubin (1984 Appendix B)

I We have not seen its use in covariate adjustment in randomized

experiments with missing covariates
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Illustrating the mp method with 2 missing covariates

I Fit additive regression for each missingness pattern:

I regress Yi on (1,Zi , xi1, xi2) over {i : Mi = (0, 0)} to obtain τ̂F ,(0,0)
I regress Yi on (1,Zi , xi1) over {i : Mi = (0, 1)} to obtain τ̂F ,(0,1)
I regress Yi on (1,Zi , xi2) over {i : Mi = (1, 0)} to obtain τ̂F ,(1,0)
I regress Yi on (1,Zi , ∅) over {i : Mi = (1, 1)} to obtain τ̂F ,(1,1)

I Weighted average with ρ(0,0) = N(0,0)/N, etc:

τ̂mp
F = ρ(0,0)τ̂F ,(0,0) + ρ(0,1)τ̂F ,(0,1) + ρ(1,0)τ̂F ,(1,0) + ρ(1,1)τ̂F ,(1,1)

I Can also obtain τ̂mp
L analogously
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Comments on the mp method

I Somewhat more transparent, without explicit imputation

I Use all available covariate information for all units

I Much more demanding in sample size within each missingness pattern

I Not applicable in the motivating Duflo et al (2011 AER) example

I Potentially useful in other examples
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Properties of the mp method

I Post-stratification estimators with covariate adjustment within each

missingness pattern (Miratrix, Sekhon and Yu 2013) – conditional

I Effectively it uses x imp
i ,Mi1, . . . ,MiJ and their full interactions as

“pseudo covariates”, up to collinearity adjustment – unconditional

I Can be conveniently implemented by a single OLS

I EHW robust SE is a convenient approximation to the true SE

I Asymptotically more efficient than mim recommended before
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Summary of the methods

I Complete-case (cc) analysis: not recommended

I Complete-covariate (ccov) analysis: benchmark

I Single imputation (imp): OK; but not invariant, not efficient

I Missingness-indicator method (mim): recommended

I Missingness-pattern (mp) method: can improve mim with more data
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More comparisons

I Efficiency comparison based on Fisher (1935) is tricky with treatment

effect heterogeneity (Freedman 2008)

I Focus on covariate adjustment based on Lin (2013)

I Ordering by asymptotic efficiency:

mp > mim > imp > ccov > unadjusted

I The ordering is intuitive based on the amount of covariate

information in the adjustment: the more the better
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Discussion of other methods

I mp uses x imp
i ,Mi1, . . . ,MiJ and their full interactions

I mim uses x imp
i ,Mi1, . . . ,MiJ without any interactions

I Many intermediate choices of “pseudo covariates”

I Other methods use x imp
i (c), f (Mi1, . . . ,MiJ) as “pseudo covariates”

I lose the invariance with respect to c

I less demanding for sample size than mim

I Rummel (1970): “missingness count”
∑J

j=1(1−Mij) in factor analysis

I From unadjusted to mp estimators, there is a range of estimators

I future direction: data-dependent choice of model specifications, e.g.,

combined with lasso (Bloniarz et al. 2015)
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