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Spatial confounding: What does it mean?

Spatial statistics and causal inference have different views

Common thread: Confounding hides what we want to learn

Difference: The goal, what it is that we want to learn

Notation ↝

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Treatment or exposure Zi

Potential outcomes Yi(z)
Outcome Yi = Yi(Zi)
Measured covariates Ci
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Spatial confounding in spatial statistics

The goal: Learn the relationship Y ∣ Z,C

Spatial Model 1: Y ∼ Z +C
↝ Residuals are spatially correlated!

Spatial Model 2: Y ∼ Z +C +U
↝ U spatial random effect
↝ Reason for U : Inference, capture residual spatial dependence
↝ U is given a correlation structure (Exponential, Matérn, etc)

U is collinear with the exposure Z
↝ “Steals” from the exposure
↝ Confounding by the spatial U

Hodges and Reich (2010); Paciorek (2010); Hughes and Haran (2013); Hanks et al. (2015);

Vicente et al. (2020); Azevedo et al. (2020); Reich et al. (2020)
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Unmeasured spatial confounding in causal inference

The goal: Learn the relationship Y ∣ Z,L
where L such that Z ⊥⊥ Y (z) ∣ L
Here: L = (C, U), for U spatial

Spatial Model 1: Y ∼ Z +C
↝ does not include all confounders
↝ cannot be used to learn causal effects

Spatial Model 2: Y ∼ Z +C +U
↝ U spatial random effect
↝ U cannot “learn” the unmeasured variable (Paciorek, 2010; Schnell and

Papadogeorgou, 2020)

↝ cannot be used to learn causal effects
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Spatial confounding: What does it mean?

Spatial statistics

Want to learn the relationship between outcome and exposure given the
measured variables

Spatial adjustment is for inference

Collinearity of exposure and random effect “blurs” the results

Causal inference

Want to learn the relationship between outcome and exposure
conditioning on all confounders

Some confounders are spatial and unmeasured

Spatial models cannot adjust for unmeasured spatial confounders

Can we use unmeasured confounders’ structure to adjust for them?
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Question 1: Spatial causal inference in air pollution research

Regulations enforce stricter rules on emissions to reduce air pollution
↝ Power plants follow various strategies to comply to these regulations

Install SCR/SNCR systems for reducing NOx emissions
↝ NOx reacts with VOCs and carbon monoxide in the presence of sunlight to

create ozone

The scientific questions are causal
↝ SCR/SNCR systems VS alternatives
on ambient air pollution

The data are spatial
↝ Exposure, outcome, measured and
unmeasured covariates are spatially structured

↝ VOCs, sunlight spatial & unmeasured
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Question 2: Supermarket access and cardiovascular health

Access to supermarkets ↝ Healthy habits ↝ Cardiovascular health

Potential confounders: Income, demographics, regional culture,
personal vehicles, diet, local-level support for individuals with disabilities

Data

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Exposure Continuous ∈ (0,100)
Level Measured at counties

Confounders Unmeasured, hard to define
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Two approaches to unmeasured spatial confounding

1 “Causal” approach
Incorporating spatial information in propensity score methods
with Christine Choirat, Cory Zigler

2 “Spatial” approach
Bias correction in outcome regression
with Patrick Schnell
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Distance adjusted propensity score matching
for binary treatments
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Distance Adjusted Propensity Score Matching

Estimate the ATT = E[Y (1) − Y (0)∣Z = 1]

Propensity score model using measured variables C:

P (Zi = 1∣Ci) = expit (CT
i β)

For a treated unit i and a control unit j define

DAPSij = w∣PSi − PSj ∣ + (1 −w) ∗Distij , w ∈ [0,1]

where PS propensity score estimates, and Dist spatial proximity.

Small value DAPSij means:

Similar propensity scores

Points in close geographical distance (similar values of U !)
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Choosing w

w: relative importance of the observed and unobserved confounders

High values of w - priority to observed covariates

Low values of w - priority to spatial proximity

Navigate the tradeoff between:

1 Making matches as similar as possible with respect to C

2 Small distance of matched pairs to capture similarity in U
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Balance and distance
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Results
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Outcome regression with bias correction to mitigate
bias from unmeasured spatial variables
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Potential outcomes

We assume the following true model for the potential outcomes:

Yi(z) = η(z,C) + g(Wu) + εi(z)

W u are unmeasured variables

Additive model, Wu do not interact with Z and C

For ease of presentation, assume C empty, η(z) = β0 + β1z

Focus on β1 = E[Y (z + 1) − Y (z)]
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Bias of common estimators, and the affine estimator

If we could fit model Y ∼ Z +U , we could estimate β1 without bias.

Y ∼ Z → β̂

Bias = (X⊺X)−1X⊺E(U ∣Z)

Y ∼ Z + Spatial RE→ β̃

Bias = {X⊺(Var[Y ∣Z])−1X}−1X⊺(Var[Y ∣Z])−1E[U ∣Z]

where X = (1,Z)

Identify the bias term, and subtract it

sβ = {X⊺(Var[Y ∣Z])−1X}−1X⊺(Var[Y ∣Z])−1{Y −E[U ∣Z]}

Find a way to identify E[U ∣Z]!
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A Gaussian Markov random field construction of the joint distribution

1 (U ,Z) is mean 0 normal

(U
Z

) ∼ N
⎡⎢⎢⎢⎢⎣
(0
0
) ,(G Q

Q⊺ H
)
−1⎤⎥⎥⎥⎥⎦

2 Cross-Markov property: p(Zi∣Z−i,U) = p(Zi∣Z−i, Ui)
↝ Q is diagonal

3 Constant conditional correlation: Cor(Ui, Zi∣U−i,Z−i) = ρ
↝ qii = −ρ

√
giihii
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Calculating the affine estimator

Integrating U∣Z out

Z ∼ N[0, (H −Q⊺G−1Q)−1]
Y ∣Z ∼ N[Xβ−G−1QZ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
E[U ∣Z]

,G−1 +R−1],

where R−1 = Cov(ε)

The restricted likelihood is

RL∝ exp [−1
2
{(Y −BZ)⊺C2(Y −BZ) +Z⊺A−1Z}]

where A = (H −Q⊺G−1Q)−1, and B = −G−1Q

We can calculate sβ using the RL maximizers / Bayesian
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Learning the spatial parameters

(1) the unmeasured U is (a) spatial and (b) a confounder
(2) the dependencies can be depicted on a ring
↝ everything is identifiable based on (Z,Y )

U1

Un

Z1

Zn

. . .

. . . Ui+1 Zi+1
ρ

Ui

ϕ
U

Zi

Zi−1Ui−1

ϕ U

ρ

Conjecture: Similar results hold for graphs with “enough pairs” of
locations at varying lags

If U not spatial: Effect is not identifiable
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Effect of poor supermarket access on CVD deaths
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Conclusions

Spatial statistics VS causality: different goals, different tools

In causal inference with structured data it is possible to use the
structure information to alleviate unmeasured confounding bias

Identifiability is hinged on structure (spatial correlation)

Interplay between the scale of variation in the unmeasured variable and
the causal positivity assumption
↝ scale restriction in estimation

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Paper 1 Data, R package, PDF
gpapadogeorgou.netlify.app/publication/dapsm/

Paper 2 Data, Code, PDF
gpapadogeorgou.netlify.app/publication/spatial confounding2/
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