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Motivation

* Consider tasks like autonomous '~

driving, robotics, or perhaps in T
the future medical treatment |

* Many actions, long-term
dependencies, high-dim
state-spaces

* Learning online is crucial

* Causally “optimal”

* But learning online is expensive!

* Can (massive) offline data help? &

e Save money / interactions /
mistakes?



Motivation

e Consider tasks like autonomous f;i;] |

driving, robotics, or perhaps in x@
the future medical treatment f,‘, i~

q’@

* Assumption: we have accessto |
large offline data
* Logs from driving
* Human demonstrations of robotic

tasks
* Challenges:

* Confounding
 Partial observability
* Distribution shifts



Learning to act (intervene) with offline data

Obvious baselines

1. Don’t use offline data at all
* Most of the bandit and RL literature

2. Don’t use online data at all
e Off-policy RL
* Vulnerable to hidden confounding and distribution shifts

* Proxies might help (Tennenholtz 2020, Nair & Jiang 2021, Kallus et al. 2021, Shi
et al. 2021)

* This talk: how to use merge offline & online in
challenging scenarios

* We are not the first, see e.g. Bareinboim & Pearl 2013, Zhang &
Bareinboim 2017, Kallus et al. 2018 and more



Talk outline

How to act online with the help
of offline data?

e Part |: Contextual bandits with
confounded offline data

* Part Il: Online imitation and
reinforcemnt learning with
offline data from a possibly
different distribution




Talk outline “Bandits with partially

observable confounded data”,
Tennenholtz, S, Mannor, Efroni

How to act online with the help
UAI 2021

of offline data?

e Part I: Contextual bandits with
confounded offline data

 Part II: Online imitation and
reinforcemnt learning with
offline data from a possibly
different distribution




Algorithm A Linear Bandit Interaction Model

fort=1,2,.,,,do
Observe x; ~ ux(-)
Take action a;(x;) where a € [1, .., A]
Receive noisy feedback r; = (x¢, w}.) + €;
Suffer immediate regret max,(x:, w}) — (X, wj,)

end for

Goal: Minimize cumulative regret

> max(xe, w3) — (xe, w},)
t



Linear bandits

* Optimal action is
context dependent

* No state

* Classic explore - exploit
tradeoffs

e Goal is sub-linear

regret, usually (5(@
where T is number or

interactions /
interventions / actions

Algorithm A Linear Bandit Interaction Model

fort=1,2,.,,,do
Observe x; ~ ux(-)
Take action a;(x;) where a € [1,.., A|
Receive noisy feedback r; = (x¢, w}.) + €;
Suffer immediate regret max,(x;, w}) — (x¢, wj,)

end for

Goal: Minimize cumulative regret

> max(xe, w;) — (x;, w;,)
t



Linear bandits

* Goal is sub-linear regret, usually 5(\/T ) where T is number or
interactions / interventions / actions

e Assume we have triplets of historic (context, action, reward) data

* If fully observed: can use learning from logged bandit feedback
(e.g. Dudik et al. 2011, Swaminathan & Joachims 2015) to
initalize online bandit

* What if the context in historic offline data is partially observed?
E.g.:
e Actions taken by humans
* Not fully recorded
* Privacy
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Learning with Partially Observable Data

* Access to partially observable offline data
e Context: x = (x°,x™)

e x° € RE x" € RL denote the observed
and unobserved features of the context

* Offline data was generated by an
unknown, fixed behavior policy mj, (a|x)

* When online we act using the full x

* Without further assumptions the offline
data might be almost useless

* E.g. all of the important information might
be in xj

-
}d—L

Offline Data

?
Algorithm t

L, T



Online
Interaction

{(z,a,r)}

Partially
Observable
Confounded Data

Bandits
[Auer 2002]
(f‘ ..... 1 DnnA:*:}
Online
Interaction
LA r
{(@,a,r)} Bandits with
Linear

Constraints

Linear Constraints

Mawa = ba

Our
approach

Online
Interaction

{(z,a,7)}

w
J

I

Partially
Observable @ —>
Confounded Data |

| Approximate Linear\

!

Constraints -

J/\Zawa = b, ”

Bandits with
Linear
Constraints




Observable consequences

Let the least-square estimator of {r,}"V_; be

~1
bLS(a)=<,\1,a > X,?(XS)T) (,\1,3 > Xﬁrn)-

ie{n:a,=a}



Observable consequences

Let the least-square estimator of {r,}"V_; be

~1
bLS(a)=(,\1,a > X,?(XS)T) (,\1,3 > X,f,’rn)-

ie{n:a,=a} ne{n:ap,=a}

Define the following correlation matrices
Roo(3) = Elx?(x?) T|a, ms], and Ro,p(a) = E[x?(x}) 7 |a, ms).



Observable consequences

Let the least-square estimator of {r,}"V_; be

~1
b3 (a) = (/\lla Z xr‘,’(x’f")T) (/\1/a Z xr‘,’rn) .

ie{n:a,=a} ne{n:ap,=a}

Define the following correlation matrices
Ro.o(a) = EIxP(x?)T[a,ms], and Ros(a) = E[x?(x)T|a, ms). In
the limit N — oo and assuming Amin(Ro.0(a)) > 0

b'>(a) = (Ixt Ro,0(a) 1Ro p(a)) wi



Observable consequences: linear constraints

* For every action a we have
bt (a) = M(a)w,

* M(@) = (Ix. R55(@)Ron(a))
* Denote by M(a)T the
pseudo-inverse of M (a)

* At every online round, project
current w, to M(a)T b, s(a)
* We prove we can reduce regret from

0(dVAT) to O((d — L)VAT)




This is still not enough

* For every action a we have b*®(a) = Mw,
*M(a) = (Ix. Ro5(@)Ron(a))
* Denote by M(a)T the pseudo-inverse of M(a)
* At every online round, project current w, to
M(a)" by s(a)
* From offline data we have:
- b5 (a), Ry 3 (a)
* Still missing R, p,(a) = E [xo(xh)T | a, nb]

* The covariance of hidden and observed features in offline data



Need some way to approximate
.I.
M@ = (Ixt R55(@)Ron(@))

* We prove a result under general approximations of
Ro,h(a)

* We further explore a specific assumption allowing
approximation:
during online operation we are allowed to query m,

* Similar to Zhang and Bareinboim (2016) notion of “intuition”

» Approximating pseudo-inverse M(a)T only possible due
to special structure of M(a)



Assume for every t > 0 we can sample a ~ mwp(x). Then there
exists a tractable algorithm such that for any T > 0, with
probability at least 1 — 0, achieves regret

Regret(T) < O ((1 + fg,)(d — L)\/ﬁ) .

. f81 is a factor indicating how hard it is to estimate the linear constraints

* Relates to how well-spread m; is and how well conditioned and correlated
are Ropand R,

* Worst case dependence: fp, < 0 ((L(d — L))1/4)

ed— L~ 0(d),Regret(T) < d3/*\[AT, worse than discarding the data
ed — L ~ 0(1),Regret(T) < d'/*+/AT, improved performance



Theorem

Assume for every t > 0 we can sample a ~ mwp(x). Then there
exists a tractable algorithm such that for any T > 0, with
probability at least 1 — 0, achieves regret

Regret(T) < O ((1 + fg,)(d — L)\/ﬁ) .

* As usual, some assumptions about “unobservables” must be made

* Here:
access to knowledge of behavorial policy 2
partially observed offline data can help make online learning faster



Talk outline

How to act online with the help
of offline data?

e Part I: Contextual bandits with
confounded offline data

 Part II: Online imitation and
reinforcemnt learning with
offline data from a possibly
different distribution




Talk outline

How to act online with the help
of offline data?

e Part |: Contextual bandits with
confounded offline data

* Part II: Online imitation and
reinforcemnt learning with
offline data from a possibly
different distribution

“On Covariate Shift of Latent
Confounders in Imitation and
Reinforcement Learning”,
Tennenholtz, Hallak, Dalal,
Mannor, Chechik, S
ICLR 2022




Imitation Learning Background

Real Human Demos Generated Robot Translations




Imitation Learning Background

Pure imitation achieved state of the art performance in StarCraft 2
and reached 70% of final alpha-star performance (“Diamond league”)
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Imitation Learning Background

Reinforcement

Supervised Learning (Offline) Learning (Online)

Behavior Cloning (Michie, Bain, & Hayes-Michie, 1990) Ho & Ermon (2016), Fu et al. (2017),
Offline RL (2005-today) Kostrikov et al. (2019), Brantley et al. (2019),



Imitation Learning + Partial Observability

Some information was not collected in the expert dataset

ZEBRA CROSSING ZEBRA




Imitation Learning + Partial Observability

Privacy constrains (e.g., medical)




Imitation Learning + Partial Observability

Information added with new releases

of product, e.g., recommender systems




Setup

Online Simulator of a Contextual MDP

X — context space  po(x) — initial context distribution
S — state space v(so|x) — initial state distribution
A — state space

P(s'|s,a, ) — transition function

r(s,a,x) — reward function

~v — discount factor
7 (s, ) — policy



Contextual MDP
causal graph




Imitation learning with partial observability

* As usual in imitation learning, we don’t see the expert’s reward
* We assume the expert performs the optimal policy T (s, x)

* However, we don’t see the context x the expert saw, only the
state and actions

* Further, we might have p,(x) # p,(x), i.e. covariate shift
between the expert setup and the online setup



Setup

v(m) =E |(1—7) thr(staataﬂf)\l‘ ~ po, S0 ~ V(- | 2), ar ~ (¢, x4t))
t=0
Optimal Policy
v* = maxv(w), " € argmax v(m).
T 7/9

I\, = arg max v ()



Setup

Expert Data

Assume expert data of a policy 7*

{%3076%7817@17 - °7SH7aH)}Z’:1

v

{(sh,ab, st,al, ..., s%, azﬁ)}i:l

[ P* (80,00, 81,01,- -+, SH,AH) = Zﬁi.(.f)V(Solx) (H P(Si+118¢>az’7ﬂf)> <H7T*(az'|5u$)>}

1=0




State-Action Frequency Distribution

* The state-action frequency distribution of policy  given context x is

d"(s,alr) = (1 —7) thPW(st = s,a; = alx, so ~ v(-|r))
t=0

* The mean-context state-action frequency distribution is given by

d; (s,a) = Egnp,|d"(s,a | x)] (environment),

d, (s,a) = Egnp, [d7(s,a | z)] (expert data).



No Covariate Shift ( po(z) = pe(x))

Definition 1 (Ambiguity Set). For a policy w € 11, we define
the set of all deterministic policies that match the context-
free stationary distributions of m by

T, = {7r’ € Iget : dg;(s,a) =d} (s,a),s € S,a € A}.

dgo(s, a)
d;. (s,a)

oY
K

z~p, [ (8,a | )]  (environment),
z~po [A7 (8,0 | )] (expert data).



No Covariate Shift ( po(z) = pe(x))

4 N
Theorem 1. [Sufficiency of Y -] Assume p. = p,. Let * € II'\, and let mo € Y, «. Then,
Yo« = Y, and, if 1y # w*, there exists ro such that my € Hj\/lo but ™™ ¢ Hj‘wo, where
MO — (S,A,X,P,To,po,V,’}/).

g J

In Layman’s Terms:
Any policy in T ;+is a candidate optimal policy, and none of

them can be ruled out using state-action frequency
distributions. Some might be suboptimal.




Algorithm 1 Confounded Imitation

1: input: Expert data with missing context D* (dg: ), A > 0.

2: init: T =)

3: forn=1,...do

4: L* (7'('; gO) = Es,awdgo (s,a) [90<37 CL)] T Es,awdg: (s,a) [90(87 a’)]

3: L’L(ﬂ-vgz) = Exrvpo,s,awd“(s,am)[gi(saaax)] - E:cwpo,s,arvd”i (s,alx) [gi<87a7$)] i 2> 1
6:  Compute 7, by solving

min max {L* (75 g0(s,a)) — Amin L;(m; g;(s, a, x))}
TE€aet [go|<3,]9:1<3 t

7. ifm, € Y then
2?2_11 dﬂi (37&737)

8: Terminate and return 7(a|s,z) = Sl s (s, 2)
9: else

10: T="TU{m}

11:  endif

12: end for




With Covariate Shift ( po(x) # pe(z))

* Result 1: Context Free Transition = Impossibility of Imitation

r )
Theorem 2. [Catastrophic Imitation] Assume |X| > |A| and P(s'|s,a,x) = P(s'|s,a,x") for all
x,x’ € X. Then there exist T.1,Te 2 S.t. {Te1,Te 2} are non-identifiable, catastrophic expert

policies.
. 4

In Layman’s Terms:
If the transition is independent of the context, then the
worst-case policy cannot be ruled out.

(observed states and actions act as proxies for context)



With Covariate Shift ( po(x) # pe(z))

* Result 2: Context Free Rewards = Possibility of Imitation

Theorem 3. [Sufficiency of Context-Free Reward] Assume r(s,a,x) = r(s,a,x’) forall x,x’ € X.
Then Y - C 1T} ;.

In Layman’s Terms:

If the reward is independent of the context, then standard
imitation techniques suffice (even if the transition function
depends on the context).




Hardness of Confounded Imitation

Feasible

Biased

Highly Biased

Impossible

v

Context-free
reward

Context-dependent reward
Context-dependent transition

-,

Context-free
transition




Expert Data as Side Information

* Now we further assume we have access to the true reward signal (online)
* First try:

max Enpo,s,amd(s,alz)[7($, @, )] — AD¢(dg (s, a)HdW: (s,a))

* This is biased + we don’t know p,,
* We show a more involved optimization problem is unbiased

glgﬁ( g:SI>I<l¢ié{lt—>R E$NPO,S,aNd”(3,a|iB) [T(S7 a, w) + )‘g(87 CL)] o )‘Es,awdg: (s,a) [f* (9(87 CL))]

Ps

Dy is an f-divergence (e.g. KL-divergence, TV-distance, x2-divergence)

* We propose:
1. A provably convergent but slow algorithm based on Follow The Leader
2. A more efficient gradient-based method over the non-convex objective




Corrective Trajectory Sampling (CTS)

Algorithm 3 Reinforcement Learning using Confounded Expert Data (Online Gradient Descent)

1. input: Expert data with missing context, A\, B, N > 0, policy optimization algorithm ALG-RL.
2: init: Policy 7, bonus network gy

3: fork=1,...do

4 ps < argmin, Dy(dp, ™" (s, a)lld} (s, a)).

5 fore=1,... Ndo

6: Sample batch {s;, ai}f:l ~ dp*" (s, a).

7 Sample batch {s¢ a¢}f;1 ~ dg: (s,a).

8

: Update gy according to VoL(0) = % Zf;l Volgo(si,a;) — f*(ge(ss,af))].
9: end for
10: 7" « ALG-RL(7(s,a,x) — Ago(s,a)).
11: end for




Assistive-Gym Experiments

* Assistive autonomous robots as versatile caregivers
* Assistive-Gym environment [Erickson et al. 2020]

* Tasks include: Feeding, Dressing, Bathing, Drinking, etc.

* Context: weight, height, gender, disability (mobility, shaking), preferences
* State: Robot state

* Action space: Joint forces

» Reward: Success in task + specific user preferences

* Expert: trained on dense reward

* Online: sparse reward

* Shifted context distribution sampled w.p. 3




Experiments (Feeding)
B € [0,1] indicates strength of shift

FeedingSawyer
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Experiments

FeedingSawyer DressingSawyer
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Experiments (Dressing)

No Sample Correction With Sample Correction



summary

e Offline data can make online learning more efficient

* Yet offline data often does not match online data

* Map failure modes and necessary conditions for success

* We examined partial observability and distribution shifts

* In linear bandits: offline data + sampling from offline policy
sometimes allows us to accelare online learning

* |n imitation-learning on contextual MDPs: ”it depends"

* In RL with expert data, can empirically accelearet convergence
under distribution shifts

Feasible | Biased | HighlyBiased | Impossible
Context-free Context-dependent reward Context-free

reward Context-dependent transition transition

Offline Data

,Iﬂy orithm ‘




Thank you

* Guy Tennenholtz (Technion)

e Shie Mannor (Technion, NVIDIA)

* Yonatan Efroni (Technion)

e Assaf Hallak (NVIDIA)

e Gal Dalal (NVIDIA)

* Gal Chechik (NVIDIA, Bar-llan University)



