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Causality and Modular Changes

® (lausal system consists of “irrelevant” modules (Pearl, 2000; Spirtes et
al., 1993)
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® [ndependent and minimal changes
® (hanges in values of measured variables or hidden variables

® A “minimal change” representation explains the Cl relations and
changeability ot the distribution with a minimal number of changing
conditional distributions (Ghassami et al., 2018; Huang et al., 2020)

® (Gausal representation learning: find modular & minimal changes
from observational data with identifiability guarantees

Huang, Zhang, Zhang, Ramsey, Sanchez-Romero, Glymour, Scholkopf, "Causal Discovery from Heterogeneous/
Nonstationary Data," IMLR, 2020
Ghassami, Huang, Kiyavash, Zhang, “Multi-Domain Causal Structure Learning in Linear Systems,” NeurlPS 2018



Outline

® (Gausal discovery or causal representation learning: finding causal
structure or hidden causal variables of interest from observational

data

® [.et’s consider three possible dimensions of the problem

| i i d. data? Parame_trlc Latent
constraint? confounders
Yes NO NoO

| No Yes Yes




Constraint-Based Causal Discovery

| . . Parametric Latent
i.i.d. data? g
| constraint? confounders?
Yes No No
| No Yes Yes

® PC provides asymptotically correct results it there doesn’t exist
latent confounders (Spirtes et al., 1993)

o ['Cl gives asymptotically correct results even 1f there are latent
confounders (Spirtes et al., 1993)

® QOutputs equivalence class; might not be informative enough

® lidge mimimality: Minimal ways to change the conditional
distribution to produce the data dependence

- Spirtes, Glymour, and Scheines. Causation, Prediction, and Search. 1993.



Functional Causal Model-Based Causal
Parametric Latent DiSCOV@I‘Y

constraint? confounders?

I.I.d. data?

“Independent changes” renders causal direction

NGO identifiable

® Linear non-Gaussian model (Shimizu et al., 2006):

Y=aX+ E Y A

Uniform case

® Post-nonlinear causal model (Zhang & Chan, 2006): "-,,,.3'
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e Additive noise model (Hoyer et al, 2009) S5
Y=/X)+E AR



In the Presence of Latent Confounders

. . Parametric Latent
i.i.d. data? i
constraint? confounders?

No No

o e e

® Overcomplete IGA-based approach assumes independent
confounders (Hoyer et al., 2008)

® Vanishing “letrad” condition-based approach (Silva et al., 2006)
® Requires >= 3 pure measured variables for each confounder

® (Qutputs equivalence class over latent confounders

® (eneralized independent noise (GIN) in the linear, non-Gaussian case

- Hoyer et al,, Estimation of causal effects using linear nonGaussian causal models with hidden variables. IJAR, 2008

- Salehkaleybar, Ghassami, Kiyavash, Zhang, Learning Linear Non-Gaussian Causal Models in the Presence of Latent
Variables, IMLR, 2020

- R Silva et al. (2006). Learning the structure of linear latent variable models, 7:19 1— 246, 2006
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GIN for Estimating Linear, Non-
Parametric Latent GaUSSian LV MOdel

constraint? confounders?
NoO NoO

-
Latent variables &

® Linear, non-Gaussian latent variable causal model their causal structure ., 9

i.i.d. data?

® GIN condition

o (Y, Z) satisfies GIN iff 3w # 0 such that
w'Y 1s independent from Z

® Graphical interpretation: exogenous set of

parents of Y d-separate Y and Z

® Step l: find causal clusters

® Step 2: find causal order of the latent variables

- Xie, Cai, Huang, Glymour, Hao, Zhang, "Generalized Independent Noise Condition for Estimating Linear Non-
Gaussian Latent Variable Causal Graphs," NeurlPS 2020

Cai, Xie, Glymour, Hao, Zhang, “Triad Constraints for Learning Causal Structure of Latent Variables,” NeurlP$S
2019



Application to lTeacher’s Burnout Data

® (Contains 28 measured variables

® Discovered clusters and causal Hypothesized model by experts

order of the latent variables:

[wo1] [rc2] [Rc1]
r

I L e
| E;t:fazé i_é
Causal Clusters Observed variables o7z
S, (1) RC,. RC5,, WO,, WO., | \
DM, DM,
S, (1) CCh, CC, 005,00,
S5 (1) PS,, PS,
Sy (1) ELC,, ELCy,ELC3,ELCY,
ELC,
S; (2) SE,.SE,, SE;. EE,.
1‘:1‘:2. I':I':;;. I)l)l. 1).'1;;
3(3(3) 1)1)-_3. 1).‘11. 1).'\2

L(S) > L(Sy) » L(Ss) > L(S5) > L(Sy) > L(Ss).

(from root to leaf)

® (lonsistent with the hypothesized
model



Estimating Latent Hierarchical
i i d. data? Parametric Latent SthCtUI‘@ With GIN

constraint? confounders?
Yes NoO NO

| No Yes Yes

-~ Transitivity of linear
J causal influences

@ - GIN on measured
variables
X 10@ @ X117 - FEasytoestmate
- Linearty! :~(
M f / X, l \ \\ - Minimality has to be

X1 X9 X3 X4 X5 Xg X7 Xs Xg assumed

- Xie, Huang Chen, He, Geng, Zhang, “Estimation of Linear Non-Gaussian Latent Hierarchical Structure,” arxiv 2022
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Necessary and Sufhcient Gonditions
. Parametric Latent On the StrUCture
l.i.d. data?

constraint? confounders? S

No
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- Adams, Hansen, Zhang, “Identification of Partially Observed Linear Causal Models: Graphical Conditions for the
Non-Gaussian and Heterogeneous Cases,” NeurlPS 202 1



Estimating Fixed Tume-Delayed Causal
Parametric ~ Latent Model

i.1.d. data? i

l constraint? confounders?
Yes No No

‘ No Yes Yes

® Granger causality: Conditional independence-based approach +
temporal constraints

® Fkurther with instantaneous causal relations

® (onditional independence-based approach tfor instantaneous
relations (Swanson & Granger, 1997)

® With linear, non-Gaussian model (Hyvarinen et al, 2010)

Swanson, Granger. Impulse response functions based on a causal approach to residual orthogonalization in

vector autoregression. J. of the Americal Statistical Association, 1997
- Hyvdrinen, Zhang, Shimizu, Hoyer, "Estimation of a structural vector autoregression model using non-

Gaussianity," IMLR, 2010



Learning Latent Causal Dynamics

. Parametric Latent
I.i.d. data? :
constraint? confounders?
Yes No No “lime-delayed™ influence generally renders latent
NGO Ves processes & their relations identifiable

Temporal VAE with causal prior

Representation
Learning

Causal
Skeleton

. completely nonparametric [JaEY l {

 odes g l' il model; or furthermore,
j { gg\ % fgﬁ\ﬁ non-stationary noise; or
b X, = :

non-stationary causal

Time-series Inputs {x;}]_, influence, or
Latent processes Parametric constraints
e Whyv? Al L1t+1 AT ATy
Y o o 0 for Z,t:h(Zt): . o o , :
224 22141 Z 2 4+1

- Yao, Chen, Zhang, “Learning Latent Causal Dynamics,” arXiv 2022
- Yao, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,” arxiv 202 |

temporal causal model with
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Independent but Not Identically Duistributed

Data

. . Parametric Latent
i.i.d. data? i
constraint? confounders?
Yes No No
No Yes Yes

® Listimation of wstantaneous causal relations from heterogeneous/
nonstationary data (Huang et al., 2020)

® Directly benefit from minimal & independent changes

e Statistically more efhicient approaches under the hinearity
assumption (Ghassami et al., 2018; Huang et al., 2019)

- Huang, Zhang, Zhang, Ramsey, Sanchez-Romero, Glymour, Schélkopf, "Causal Discovery from Heterogeneous/
Nonstationary Data," IMLR, 2020

- Zhang, Huang, Glymour, Scholkopf, Discovery and visualization of nonstationary causal models, arxiv 2015

- Ghassami, Huang, Kiyavash, Zhang, “Multi-Domain Causal Structure Learning in Linear Systems,” NeurlPS 2018

- Huang, Zhang, Gong, Glymour, “Causal Discovery and Forecasting in Nonstationary Environments with State-Space
Models,” ICML 2019



Causal Discovery from Nonstationary/
Heterogeneous Data

. . Parametric Latent
i.i.d. data?
l constraint? confounders?
Yes NoO No
‘ No Yes Yes
o Jask:

® Determine changing causal modules &
estimate skeleton

® (lausal orientation determination benefits
from independent changes in P(cause) and
Pleftect | cause), including invariant
mechanism/ cause as special cases

® Visualization of changing modules over time/ Kernel nonstationary
across data sets? driving force estimation

- Huang, Zhang, Zhang, Ramsey, Sanchez-Romero, Glymour, Scholkopf, "Causal Discovery from Heterogeneous/
Nonstationary Data," JMLR, 2020



Nonlinear ICA with Multiple Domains

. . Parametric Latent
i.i.d. data? i
| constraint? confounders?
Yes No No
‘ No Yes Yes

® Nonlinear ICA: observed variables follow X = g(Z), in which the

components of Z, Z;, are mutually independent

® Solutions to nonlinear IGA high non-unique

® [f the distributions of Z; change across multiple domains, generally
their are 1dentifiable (up to component-wise transtormations)

® Wh p ¢ JLLLLLLE » 7/ X 0; preenes Z_ ~ X
y S oz TR
2

- Hyvarinen, Sasaki, Turner,“Nonlinear ICA using auxiliary variables and generalized contrastive learning,” In The 22nd
International Conference on Artificial Intelligence and Statistics, 2019.



With Changing Causal Relations

among Latent Variables

. . Parametric Latent
i.i.d. data? i
constraint? confounders?
Yes No NoO
NoO Yes Yes

® Measured variables follow X = g(Z), in which the components of Z,
Zi, are causally related and some causal relations change

® lixed causal relations and the the involved variables are not

1dentifiable

Alternative structure:
E; X
E> X>

True structure:
/] X
/) X>

® What if some causal relations (over latent variables) change?

- Zhang,Yao “Causal Disentanglement with Minimal Changes from Multiple Distributions,” available upon request



With Changing Gausal Relations among
Latent Variables: Partial Identifiability

| . . Parametric Latent
i.i.d. data? i
constraint? confounders?
Yes NoO NoO
NoO Yes Yes

® (lanonical representation:

® Invariant part £; are identifiable up to its subspace (estitmated £; do
not receive contribution from 22 or Z3)

® Varables involved in changing causal influence, Z> and Z3, are
1dentifiable up to their transtformations

® />is further identifiable in the inear-Gaussian case



Summary

® (Gausal representation learning: identifiable structure/
variables under modular/minimal changes in the data

® Different levels of changes
® (hanges in values of variables
® (hanges in hidden variables/ parameters

® [.atent variables and their relations involved in changing
influences are generally identifiable



Summary

I.I.d. data?

Yes

Non-|, but I.D.

|., but non-|.D.

Parametric Latent

9
constraint?  confounders? ' natcan we get:

No
NG (Different types of)
equivalence class
Yes
No Unique identifiability
Yes (under structural
Yes conditions)
No (Extended) regression
No/Yes 1 | |
Viars atent temporal causa

processes identifiable!

No More informative than
MEC (CD-NOD)

No May h i
ay have unique
Yes identifiability
N Changing subspace
o , O
identifiable
Yes . : :
Vos Variables in changing

relations identifiable




