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• Causal system consists of  “irrelevant” modules (Pearl, 2000; Spirtes et 
al., 1993) 

• Independent and minimal changes 

• Changes in values of  measured variables or hidden variables 

• A “minimal change” representation explains the CI relations and 
changeability of  the distribution with a minimal number of  changing 
conditional distributions (Ghassami et al., 2018; Huang et al., 2020) 

• Causal representation learning: find modular & minimal changes 
from observational data with identifiability guarantees

Causality and Modular Changes

- Huang, Zhang, Zhang, Ramsey, Sanchez-Romero, Glymour, Schölkopf, "Causal Discovery from Heterogeneous/
Nonstationary Data," JMLR, 2020 

- Ghassami, Huang, Kiyavash, Zhang, “Multi-Domain Causal Structure Learning in Linear Systems,” NeurIPS 2018 
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• Causal discovery or causal representation learning: finding causal 
structure or hidden causal variables of  interest from observational 
data 

• Let’s consider three possible dimensions of  the problem

Outline

i.i.d. data? Parametric 
constraint?

Latent 
confounders

?Yes No No
No Yes Yes



• PC provides asymptotically correct results if  there doesn’t exist 
latent confounders (Spirtes et al., 1993) 

• FCI gives asymptotically correct results even if  there are latent 
confounders (Spirtes et al., 1993) 

• Outputs equivalence class; might not be informative enough 

• Edge minimality: Minimal ways to change the conditional 
distribution to produce the data dependence

Constraint-Based Causal Discovery
i.i.d. data? Parametric 

constraint?
Latent 

confounders?
Yes No No
No Yes Yes

- Spirtes, Glymour, and Scheines. Causation, Prediction, and Search. 1993.



• Linear non-Gaussian model (Shimizu et al., 2006): 
Y = aX + E 

• Post-nonlinear causal model (Zhang & Chan, 2006): 

• Additive noise model (Hoyer et al, 2009)
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Linear regression Y = aX + EY
Linear regression X = bY + EX

Y = f(X) +E

Y = f2 ( f1(X) +E )

Functional Causal Model-Based Causal 
Discovery

“Independent changes” renders causal direction 
identifiable

i.i.d. data? Parametric 
constraint?

Latent 
confounders?

Yes No No
No Yes Yes



• Overcomplete ICA-based approach assumes independent 
confounders (Hoyer et al., 2008) 

• Vanishing “Tetrad” condition-based approach (Silva et al., 2006) 

• Requires >= 3 pure measured variables for each confounder 

• Outputs equivalence class over latent confounders 

• Generalized independent noise (GIN) in the linear, non-Gaussian case
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In the Presence of  Latent Confounders
i.i.d. data? Parametric 

constraint?
Latent 

confounders?
Yes No No
No Yes Yes

- Hoyer et al., Estimation of causal effects using linear nonGaussian causal models with hidden variables. IJAR, 2008
- Salehkaleybar, Ghassami, Kiyavash, Zhang, Learning Linear Non-Gaussian Causal Models in the Presence of Latent 

Variables, JMLR, 2020
- R. Silva et al. (2006). Learning the structure of linear latent variable models, 7:191– 246, 2006



GIN for Estimating Linear, Non-
Gaussian LV Modeli.i.d. data? Parametric 

constraint?
Latent 

confounders?
Yes No No
No Yes Yes

• Linear, non-Gaussian latent variable causal model 

• GIN condition 

• (Y, Z) satisfies GIN iff  ∃w ≠ 0 such that 
w⊺Y is independent from Z 

• Graphical interpretation: exogenous set of  
parents of  Y d-separate Y and Z 

• Step 1: find causal clusters 

• Step 2: find causal order of  the latent variables

L1

L2

L3

L4

X1 X2 X3 X4

X5

X6

X7

X8

Figure 1: A causal structure involving 4 latent variables and 8 observed variables, where each pair of
observed variables in {X1, X2, X3, X4} are affected by two latent variables.
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Cluster 1

Cluster 2

Cluster 3

Latent variables &  
their causal structure

- Xie, Cai, Huang, Glymour, Hao, Zhang, "Generalized Independent Noise Condition for Estimating Linear Non-
Gaussian Latent Variable Causal Graphs," NeurIPS 2020 

- Cai, Xie, Glymour, Hao, Zhang, “Triad Constraints for Learning Causal Structure of Latent Variables,“ NeurIPS 
2019



Application to Teacher’s Burnout Data

• Contains 28 measured variables 

• Discovered clusters and causal 
order of  the latent variables: 

• Consistent with the hypothesized 
model

Ref [Byrne, 2010](from root to leaf)

Hypothesized model by experts
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L1

L2 L3 L4

X10 L5 L6 L7 L8 L9 X11

X1 X2 X3 X4 X5 X6 X7 X8 X9

Figure 1: A hierarchical causal structure involving 9 latent variables (shaded nodes) and 11 observed
variables (unshaded nodes).

latent variables as children (e.g., hierarchical latent structure). For instance, consider Figure ??,38

a hierachical latent model, where Li are latent variables and Xi are observed ones. One may not39

discover the latent L1 and L3 using the above methods.40

There exist work in the literature that tried to learn the hierarchical latent structure other than41

measurement model. For instance, Zhang [2004] generalized the classic latent cluster models and42

proposed hierarchical latent class models (also known as latent tree models) for discrete variables.43

Poon et al. [2010] extend this model and proposed Pouch Latent Tree Models, which allow each leaf44

node consist of one or more continuous observed variables. Later, Choi et al. [2011]) proposed the45

more general latent variables tree models for both discrete and Gaussian random variables, and given46

two efficient estimation algorithms: recursive grouping (RG) and CLGrouping. Work along this line,47

many interesting work have already been proposed [Mourad et al., 2013, Zhang and Poon, 2017].48

Although these methods shave been used in a range of fields, they usually assume the tree-structured49

graphical assumption is met, i.e., there only one path between each pair of variables in the system. In50

many setting, it is often violated, e.g., the structure in Figure 1.51

In this paper, we will make an attempt to study the problem of inferring the latent variables and52

their influences when some latent variables have no observed variables as children. To do so, we53

first introduce a graphical constraint condition which we refer to as the minimal latent hierarchical54

structure. This condition ensures that the structure among latent variables does not include any55

redundant latent nodes. In this condition, unlike the well-known minimal latent tree condition, we56

introduce the latent variable set and allow the causal relationship between them. In addition, we show57

that the Linear Non-Gaussian Latent Hierarchical Model (LiNG-LHM) is (almost) identifiable under58

this minimal minimal latent hierarchical structure and non-Gaussian condition. We further develop59

an practical algorithm for learning the LiNG-LHM by making use of Generalized Independent Noise60

(GIN) conditions, including the number of the latent variable sets and the casual structure among61

latent variable set.62

2 Problem Definition63

2.1 Notation64

In a directed acyclic graph (DAG) G(V = X [ L) with observed variables X = {X1, X2, ...Xm}65

and latent variables L = {L1, L2, ...Ln}. Here, we use “variable” and “node” interchangeably. We66

denote the set of all parents of node Vi as Pa(Vi) and the set of all common latent parents of the67

set Y as L(Y). we use Li to refer to the i-th latent set (in which their neighbors are independent68

of each other given Li) in the graph G. We let |Li| denote the number of elements of Li. We say a69

set Si is a cluster if all nodes in Si share the same latent parent set. In addition, we say a cluster Si70

is pure if there are no same observed descendant node among the nodes of Si. Otherwise, Si is an71

impure cluster 1. Furthermore, we say that a node (which can be either hidden or observed) is active72

if is currently selected. In Figure 1, the parents of L8 is {L1, L4}, i.e., Pa(L8) = {L1, L4}, and the73

common parents of {L5, L6, L7} is {L2, L3}, i.e., L({L5, L6, L7}) = {L2, L3}. There are 7 latent74

sets, such as {L1} and {L2, L3}. |{L1}| = 1 and |{L5, L6}| = 2. {X1, X2, X3} and {X4, X5} are75

two pure clusters but {L4, L8} is an impure cluster.76

1The definitions of the cluster and pure were given in [Silva et al., 2006]. Here, we modify it slightly to
better characterize a set Si that may contain latent nodes.
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Estimating Latent Hierarchical 
Structure with GIN

- Easy to estimate 
- Linearity! :-( 
- Minimality has to be 

assumed

- Transitivity of  linear 
causal influences 

- GIN on measured 
variables

i.i.d. data? Parametric 
constraint?

Latent 
confounders?

Yes No No
No Yes Yes

- Xie, Huang Chen, He, Geng, Zhang, “Estimation of Linear Non-Gaussian Latent Hierarchical Structure,” arxiv 2022



Necessary and Sufficient Conditions 
on the Structure

- Allow a large number of  
latent variables 

- Minimality has to be 
assumed 

- Estimation is generally 
difficult

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

(ix) (x) (xi) (xii)

(xiii) (xiv) (xv) (xvi)

(xvii) (xviii) (xix) (xx)

(xxi) (xxii)

Identifiable g
raphs w

ith only 3 measured
 va

riables

- Adams, Hansen, Zhang, “Identification of Partially Observed Linear Causal Models: Graphical Conditions for the 
Non-Gaussian and Heterogeneous Cases,” NeurIPS 2021

i.i.d. data? Parametric 
constraint?

Latent 
confounders?

Yes No No
No Yes Yes



Estimating Fixed Time-Delayed Causal 
Modeli.i.d. data? Parametric 

constraint?
Latent 

confounders?
Yes No No
No Yes Yes

• Granger causality: Conditional independence-based approach + 
temporal constraints 

• Further with instantaneous causal relations 

• Conditional independence-based approach for instantaneous 
relations (Swanson & Granger, 1997) 

• With linear, non-Gaussian model (Hyvärinen et al, 2010)

- Swanson, Granger. Impulse response functions based on a causal approach to residual orthogonalization in 
vector autoregression. J. of the Americal Statistical Association, 1997

- Hyvärinen, Zhang, Shimizu, Hoyer, "Estimation of a structural vector autoregression model using non-
Gaussianity," JMLR, 2010



Learning Latent Causal Dynamics

- Yao, Chen, Zhang, “Learning Latent Causal Dynamics,”  arXiv 2022
- Yao, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,” arxiv 2021

i.i.d. data? Parametric 
constraint?

Latent 
confounders?

Yes No No
No Yes Yes

LEAP: Latent tEmporally cAusal Processes Estimation 
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Time-series Inputs !! !"#$

Figure 1: Represent latent causal mechanisms from temporal data. By assuming the noise are spatially-temporally independent, we embed 
the conditional independence condition within functional causal model (FCM) in latent space,. Non-stationarity in noise distribution and 
functional or distributional form assumptions are exploited to identify latent causal graphs from temporal observation data.

Inference Module Learnable Causal Prior

Exploiting Nonstationarity OR Functional Form
• Nonparametric + Nonstationary condition

z%& = f'( PA%& , E&% )
• Linear + Laplacian Noise

z%& = A PA%& + E&%
• PNL + Gaussian Noise

z%& = f((f'( PA%& + E&%))

Temporal VAE with Causal Prior

Causal 
Skeleton 
Recovery

Unsupervised 
Representation 

Learning

xt = g(zt)
Latent processes

Recovered latent 
processes

Temporal VAE with causal prior

Latent processes zit follow 
temporal causal model with 

- completely nonparametric 
model; or furthermore, 

- non-stationary noise; or  
- non-stationary causal 

influence, or  
- Parametric constraints 

LEAP: Latent tEmporally cAusal Processes Estimation 
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Time-series Inputs !! !"#$

Figure 1: Represent latent causal mechanisms from temporal data. By assuming the noise are spatially-temporally independent, we embed 
the conditional independence condition within functional causal model (FCM) in latent space,. Non-stationarity in noise distribution and 
functional or distributional form assumptions are exploited to identify latent causal graphs from temporal observation data.

Inference Module Learnable Causal Prior

Exploiting Nonstationarity OR Functional Form
• Nonparametric + Nonstationary condition

z%& = f'( PA%& , E&% )
• Linear + Laplacian Noise

z%& = A PA%& + E&%
• PNL + Gaussian Noise

z%& = f((f'( PA%& + E&%))

Temporal VAE with Causal Prior

Causal 
Skeleton 
Recovery

Unsupervised 
Representation 

Learning

“Time-delayed” influence generally renders latent 
processes & their relations identifiable

Z1t  Z1,t+1

Z2t  Z2,t+1

… Z’1t  Z’1,t+1

Z’2t  Z’2,t+1

…• Why? for Z’t=h(Zt):



Independent but Not Identically Distributed 
Data

i.i.d. data? Parametric 
constraint?

Latent 
confounders?

Yes No No
No Yes Yes

• Estimation of  instantaneous causal relations from heterogeneous/ 
nonstationary data (Huang et al., 2020) 

• Directly benefit from minimal & independent changes   

• Statistically more efficient approaches under the linearity 
assumption (Ghassami et al., 2018; Huang et al., 2019)

- Huang, Zhang, Zhang, Ramsey, Sanchez-Romero, Glymour, Schölkopf, "Causal Discovery from Heterogeneous/
Nonstationary Data," JMLR, 2020 

- Zhang, Huang, Glymour, Schölkopf, Discovery and visualization of nonstationary causal models, arxiv 2015
- Ghassami, Huang, Kiyavash, Zhang, “Multi-Domain Causal Structure Learning in Linear Systems,” NeurIPS 2018 
- Huang, Zhang, Gong, Glymour, “Causal Discovery and Forecasting in Nonstationary Environments with State-Space 

Models,” ICML 2019



Causal Discovery from Nonstationary/
Heterogeneous Data

• Determine changing causal modules & 
estimate skeleton 

• Causal orientation determination benefits 
from independent changes in P(cause) and 
P(effect | cause), including invariant 
mechanism/ cause as special cases 

• Visualization of  changing modules over time/ 
across data sets?
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Causal Discovery from Nonstationary Data

to reveal the correct causal structure when the data distri-
bution shifts. If the changes in some variables are related,
one can imagine that there exists some unobservable quan-
tity which influences all those variables and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Similarly, suppose a
variable Vi was generated from its direct causes with a cer-
tain functional causal model (e.g., the linear, non-Gaussian
model (Shimizu et al., 2006)) whose parameters change at
some point. Then if one fits a fixed functional causal model
from the directed causes to Vi, the noise term is usually not
independent from the causes any more, and accordingly it
fails to distinguish the correct causal structure from other
candidates. There exist some methods aiming to detect
the changes (Talih & Hengartner, 2005; Adams & Mackay,
2007; Kummerfeld & Danks, 2013) or directly model time-
varying causal relations (see, e.g., (Huang et al., 2015)) in a
dynamic manner. They usually focus on the linear case, in-
volve high computational load, and cannot quickly locate
changing causal relations. This motivated the following
questions, which are to be answered in this paper.

a) The conditional independence relationships in the data
between the given variables may be changed by shifted
causal models. However, can we find the correct skeleton
of the true causal model efficiently?

b) Can we efficiently identify the variables whose generat-
ing processes (i.e., causal models) change?

c) Compared to the situation with data from a fixed distri-
bution, can the distribution shift phenomenon provide some
benefit in causal discovery, especially in causal direction
determination?

This paper is organized as follows. In Section 2 we give
the problem definition and review related work. Section 3
proposes an enhanced constraint-based approach to robust
and specific causal skeleton discovery, which is able to re-
cover the skeleton of the causal structure underlying the
observed variables and identify those variables whose gen-
erating processes are nonstationary. The remaining prob-
lem is how to determine the direction of the causal con-
nections, which is addressed in Section 4: we show that
the nonstionarity of the distribution usually provides addi-
tional benefit in causal direction determination. Section 5
reports simulations results to test the performance of the
proposed causal discovery approach when the ground truth
is known. Finally, we apply the proposed approach to do
causal discovery from fMRI data and to find the causal re-
lations among a set of stocks from their daily returns in 2.

2. Problem Definition and Related Work

We aim at recovering the causal structure from data when
the causal influences associated with some causal relations

change over time or across domains. In this paper we
assume that the underlying causal structure is a directed
acyclic graph (DAG) and that the causal structure is fixed,
with changing causal models.

V1 V2 V3 V4

g(C)

V1 V2 V3 V4

(a) (b)

Figure 1. An illustration on how ignoring changes in the causal
model may lead to spurious connections by the constraint-based
method. (a) The true causal graph (including confounder g(C)).
(b) The estimated conditional independence graph on the ob-
served data in the asymptotic case.

Let us decompose the joint probability distribution of the
given variable set V = {Vi}ni=1 according to the DAG as

P (V) =
nY

i=1

P (Vi |PAi), (1)

where PAi denotes the set of parents (or direct causes)
of variable Vi in the causal DAG. Here we call each
P (Vi |PAi) a causal module. Clearly, in the presence of
distribution shifts, there must be changes in certain causal
modules P (Vk |PAk), k 2 N , to generate the change of
the data distribution. We call those causal modules non-
stationary causal modules. Their changes may be caused
by the change of the involved functional models, causal
strengths, noise levels, etc. We assume that the changes
in those quantities can be written as functions of the time
or domain index, and denote by C such an index.

If the changes in some modules are related, one can
imagine that there exist some unobservable quantity (con-
founder) which influences those modules and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Therefore, the original
constraint-based approach, like PC (Spirtes et al., 2001;
Pearl, 2000), may not be able to reveal the true causal struc-
ture. This is especially the case for the causal network in
the brain: the causal influences in different causal modules
in the brain may change with stimuli, tasks, states, the at-
tention of the subject, etc. As an illustration, suppose that
the observed data were generated according to Fig. 1(a),
where g(C), a function of C, is involved in the generating
processes in both V2 and V4; the conditional independence
graph on the observed data then contains spurious connec-
tions V1 � V4 and V2 � V4, because there is only one con-
ditional independence relationship, V3 ?? V1 |V2, as shown
in 1(b). Moreover, when one fits a fixed functional causal
model (e.g., the linear, non-Gaussian model (Shimizu et al.,
2006)) on the data with changing causal influences, the
estimated noise may not be independent from the cause

Kernel nonstationary 
driving force estimation

• Task:

- Huang, Zhang, Zhang, Ramsey, Sanchez-Romero, Glymour, Schölkopf, "Causal Discovery from Heterogeneous/
Nonstationary Data," JMLR, 2020

i.i.d. data? Parametric 
constraint?

Latent 
confounders?

Yes No No
No Yes Yes



Nonlinear ICA with Multiple Domains
i.i.d. data? Parametric 

constraint?
Latent 

confounders?
Yes No No
No Yes Yes

• Nonlinear ICA: observed variables follow X = g(Z), in which the 
components of  Z, Zi, are mutually independent  

• Solutions to nonlinear ICA high non-unique 

• If  the distributions of  Zi change across multiple domains, generally 
their are identifiable (up to component-wise transformations) 

• Why?

- Hyvarinen, Sasaki, Turner, “Nonlinear ICA using auxiliary variables and generalized contrastive learning,” In The 22nd 
International Conference on Artificial Intelligence and Statistics, 2019.

𝜃1  Z1

𝜃2  Z2
for Z’=h(Z):

X1

X2
g

𝜃1  Z’1

𝜃2  Z’2

X1

X2
gg’



With Changing Causal Relations 
among Latent Variables

i.i.d. data? Parametric 
constraint?

Latent 
confounders?

Yes No No
No Yes Yes

• Measured variables follow X = g(Z), in which the components of  Z, 
Zi, are causally related and some causal relations change 

• Fixed causal relations and the the involved variables are not 
identifiable 

• What if  some causal relations (over latent variables) change?

- Zhang, Yao “Causal Disentanglement with Minimal Changes from Multiple Distributions,” available upon request

 Z1

 Z2

X1

X2

 E1

 E2

X1

X2

True structure: Alternative structure:

g g’
Z1 = E1, 
Z2 = f(Z1,E2)



With Changing Causal Relations among 
Latent Variables: Partial Identifiability

i.i.d. data? Parametric 
constraint?

Latent 
confounders?

Yes No No
No Yes Yes

• Canonical representation: 

• Invariant part Ei are identifiable up to its subspace (estimated Ei do 
not receive contribution from Z2 or Z3) 

• Variables involved in changing causal influence, Z2 and Z3, are 
identifiable up to their transformations 

• Z2 is further identifiable in the linear-Gaussian case

 Z1

𝜃2
 Z2

 Z3

 Z4

X1

X2
g

X1

X2

g

 E1

𝜃2
 Z2

 Z3

 E4

X1

X2
g

X1

X2

g’

From to



• Causal representation learning: identifiable structure/
variables under modular/minimal changes in the data 

• Different levels of  changes 

• Changes in values of  variables 

• Changes in hidden variables/ parameters 

• Latent variables and their relations involved in changing 
influences are generally identifiable

Summary



Summary
i.i.d. data? Parametric 

constraint?
Latent 

confounders? What can we get?

Yes

No
No

(Different types of) 
equivalence classYes

Yes
No Unique identifiability 

(under structural 
conditions)Yes

Non-I, but I.D. No/Yes
No (Extended) regression

Yes Latent temporal causal 
processes identifiable!

I., but non-I.D.

No
No

More informative than 
MEC (CD-NOD)

Yes May have unique 
identifiability

No
Yes

Changing subspace 
identifiable

Yes Variables in changing 
relations identifiable


