

"Instead of trying to produce a programme to simulate the adult mind, why not rather try to produce one which simulates the child's?" Alan Turing, 1950.

# AI Learning

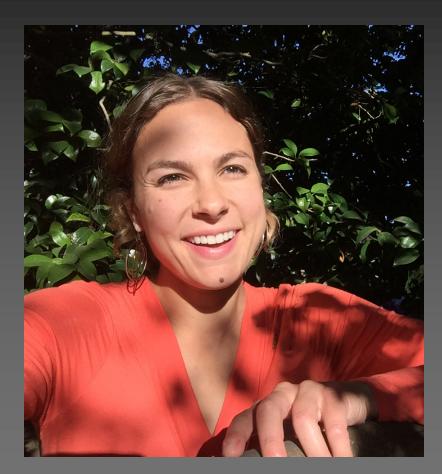
- Deep learning, reinforcement learning, Supervised learning
- Needs lots of data
- Not much (or right) generalization
- Computationally tractable

# 2-year-olds' learning

- Very little data
- Excellent generalizations
- Search and sampling
- Computationally intractable

DARPA Machine Common Sense: MESS Model-building, exploratory, social learning systems

- Abstract causal models from statistical evidence
- Active learning through exploratory play
- Social learning through imitation and testimony


# Probabilistic Causal Models in Children (Pearl, 2000, Spirtes et al. 2001, Gopnik & Wellman, 2012, Gopnik 2020)

Four-year-olds (and younger) can rationally

- Infer complex causal structure (chains versus common effects vs common causes) from conditional probabilities (Schulz et al. 2007)
- Integrate and override prior causal knowledge in the face of new evidence (Kushnir & Gopnik, 2007, Griffiths et al. 2011)
- Infer unobserved causal structure (Gopnik et al. 2004)
- Infer causal theories of the physical, biological, psychological and social domains (Schulz & Gopnik, 2004, Kushnir et al. 2010, Seiver et al. 2013, Vasilyeva et al. 2018)
- Infer and use counterfactuals (Buchsbaum et al. 2012)
- Infer abstract over-hypotheses (Lucas et al. 2014, Gopnik et al. 2017)

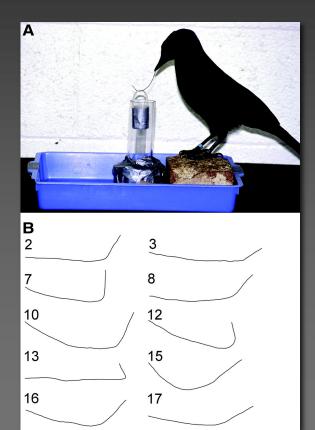
#### Variable Selection and Analogical Reasoning

- M. Goddu, & A. Gopnik. (2020) Learning what to change: Young children use 'difference-making' to identify causally relevant variables. *Developmental Psychology, 56, 2, 275* DOI: 10.1037/dev0000872
- M. Goddu, T. Lombrozo, & A. Gopnik. (2020). Transformations and transfer: Preschool children understand abstract relations and reason analogically in a causal task. *Child Development. 91, 6, 1898-1915, DOI: 10.1111/cdev.13412*



# Intervention, Exploration and Active Learning

- Schulz et al. 2007
- Schulz & Bonawitz, 2007
- Bonawitz et al. 2012
- Ruggieri et al. 2015, 2019





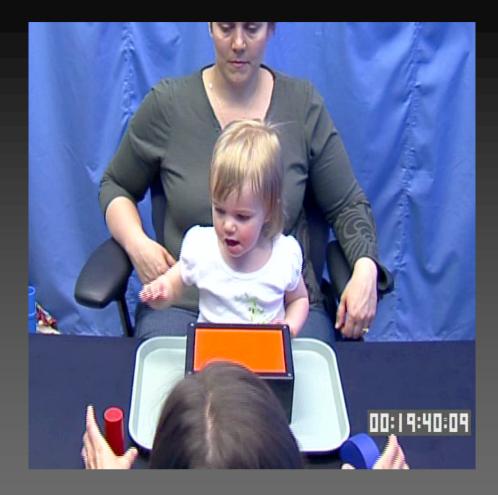



#### The Explore-Exploit Problem

#### Longer Childhood, Larger Brain, Smarter Animal



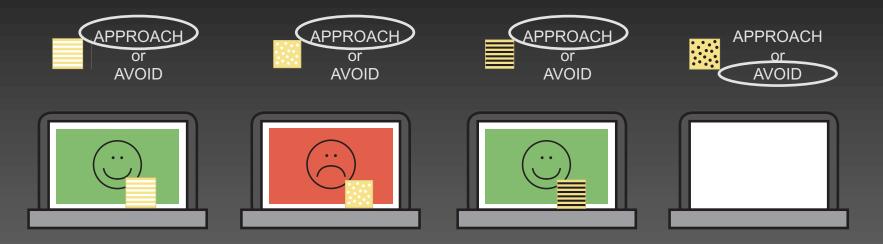



# Hypothesis

Childhood is evolution's way of resolving explore/exploit trade-offs and performing simulated annealing.

Gopnik et al. 2017, PNAS, Gopnik, Philosophical Transactions of the Royal Society B, 2020

# Explore Features, Exploit Bugs


- Noisiness, variability, randomness
- Risk-taking
- Impulsivity
- Play
- Curiosity



### The Blicket Detector

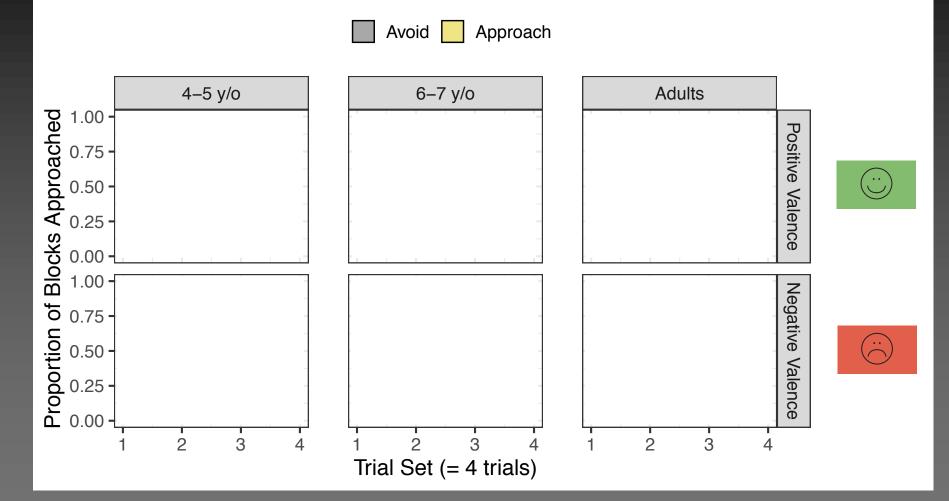
Liquin & Gopnik: Children are more exploratory and learn more than adults in an approach-avoid task. *Cognition*, <u>Volume</u> <u>218</u>, January 2022, 104940 Cognition 2021





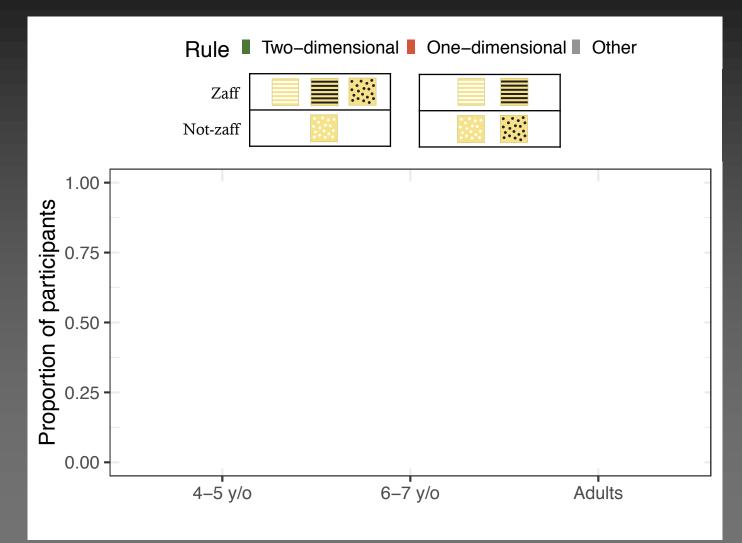
#### Actual Outcome:




<u>Stickers:</u>

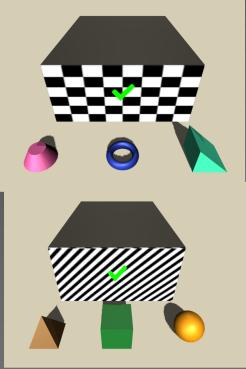
☆ ☆ ☆ ☆






#### Approach/Avoid Decisions




Positive Blocks: Age Group F(2,106) = 28.41, *p* < .001\*\*\* Negative Blocks: Age Group F(2,105) = 14.05, *p* < .001\*\*\*

# Is this reflected in learning?



 $\chi^2(2) = 17.33, p < .001***$ 

#### EXP outline:



GIVEN HYPOTHESIS SPACE

HYPOTHESIS SPACE

CONJUNCTIVE

DISJUNCTIVE

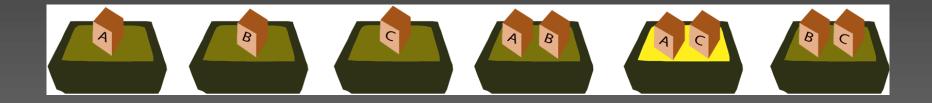
| A3: Blocks DEF<br>Blickets are D&E N: 22<br>Turns on: DE, DEF                                                                                                                                                               | A4: Blocks DEF<br>Blickets are D'or'E N: 23<br>Turns on:                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Does not turn on: D,E,F,DF, EF<br>Predictions: kids will try objects 1 by 1<br>until they see that non make it go, then<br>do they switch to try combinations of<br>blocks, might do it here since we gave<br>them evidence | D,DE,DEF,E,EF,DF<br>Does not turn on:F<br>Predictions: they try objects 1 by 1,<br>see it works, stop there |
| B3: Blocks DEF N:20<br>Blickets are D&E                                                                                                                                                                                     | B4: Blocks DEF N:20<br>Blickets are D 'or' E                                                                |
| Turns on: DE,DEF                                                                                                                                                                                                            |                                                                                                             |
| Does not turn on: D,E,F,DF,EF                                                                                                                                                                                               |                                                                                                             |
| Predictions: kids will try objects 1 by 1<br>until they see that non make it go, then<br>do they switch to try combinations of<br>blocks, might do it here since we gave<br>them evidence                                   |                                                                                                             |

# When Younger Learners are More Exploratory

- A. Gopnik, T. Griffiths, & C. Lucas (2015). *Current Directions in Psychological Science*, 24 (2), 87-92
- C. Lucas, S. Bridgers, T. Griffiths, & A. Gopnik (2014). *Cognition*. 131, 2, 284–299.
- A. Gopnik, S. O'Grady, C. Lucas, T. Griffiths A. Wente, S. Bridgers, R. Aboody, H. Fung, R. E. Dahl, (2017). *PNAS*.








### Which objects are blickets?



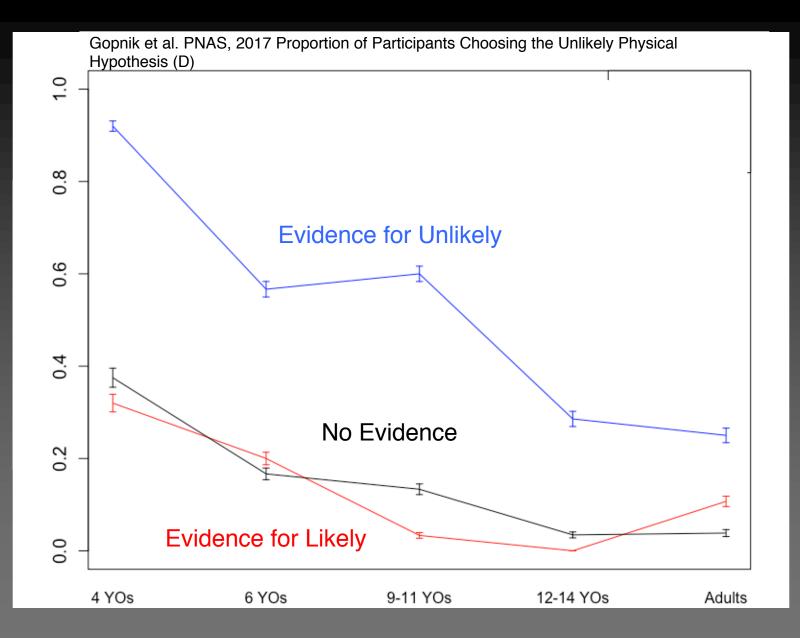
Is D a blicket? Is E a blicket? Is F a blicket?

# What if you also saw these events?





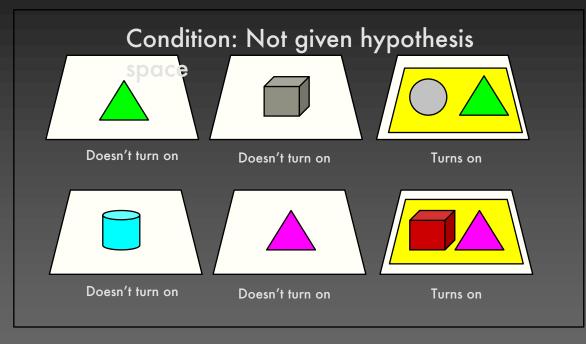
Disjunctive Training



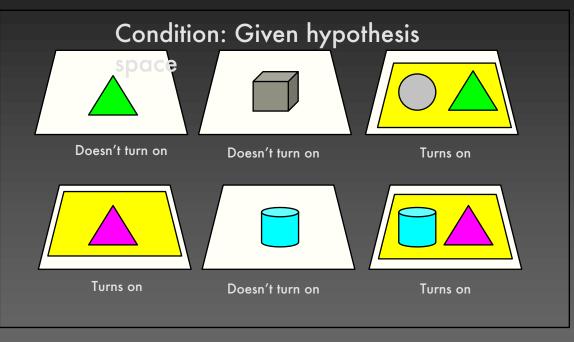

Conjunctive Training



Test







# Exploration of Causal Structure

- Learning Casual Overhypotheses through Exploration in Children and Computational Models,
- Rosemary Ke, Eliza Kosoy, Jessica Hamrick, Jasmine Collins, David Chan, Sandy Huang, Adrian Lu





#### Visualizations for paper:



### Visualizations for paper:

# Collaborators and Support

Tom Griffiths Clark Glymour Chris Lucas Rosemary Ke

Emily Liquin Caren Walker Daphna Buchsbaum Elizabeth Bonawitz Mariel Goddu Eliza Kosoy Azzyra Ruggieri

NSF

- The McDonnell Foundation Causal Learning Collaborative
- The Bezos Foundation
- DARPA MCS