
Learning	and	Incentives

Nika	Haghtalab
UC	Berkeley

Learning	with	Strategic	Interactions

Nika	Haghtalab
UC	Berkeley

Learning	and	Learnability
One	of	the	goals	of	theory	of	ML:

An	example	of	concept:	“Familiar	object,	such	as	a	table”.	[Valiant	‘84]

Most	basic	learning	setting:	Distribution	over	objects	that	remain	the	same.

“What	concepts	can	be	learned	from	data,	and	with	
how	many	observations?”

Learnability	for	Today’s	World

Environment
Learning	
Algorithms	

Learnability
Q1.	What	concepts	can	be	learned	in	presence	of	strategic	and	adversarial	behavior?
à Lessons	for	todays	world	from	decade	of	efforts	for	understanding.

Q2.	How	to	design	learning	for	strategic	and	adversarial	environment?
àComputational	overheads
àPrincipals	on	how	to	use/not	use	data	in	strategic	environments.

Q3.	How	can	we	design	collaborative	environment	that	encourage	learner	participation?
à Incentives	of	learning	algorithms	and	data	providers
àDeliver	the	optimal	learning	algorithms	for	agents	and	the	society.

Q4.	Generally,	how	do	these	learning	paradigms	relate	to	one	another?

Tutorial	Overview
1. Adversarial	Interaction

• Offline,	Online	adversarial	learning,	and	Zero-sum	Games
• Beyond	the	worst-case	adversaries
• Computational	Challenges

2. General	Strategic	Interactions
• General-sum	games	and	Stackelberg	concept

• Learning	and	Stackelberg	equilibria
• Learning	in	presence	of	non-myopic	agents

3. Collaborative	Interactions
• Models	of	data	sharing	for	learning
• Average	vs.	Per-Agent	learning	guarantees
• Individual	Rationality	and	Equilibria

Wednesday	

Thursday

Offline	(Stochastic)	
Learning
Ad
ve
rs
ar
ia
l	I
nt
er
ac
tio
ns

Online	(Adversarial)	
Learning

Zero-Sum	Games	and	
Solution	Concepts

Nicer	than	worst-case	
adversaries

Computational	aspects

Offline	(Stochastic)	
Learning
Ad
ve
rs
ar
ia
l	I
nt
er
ac
tio
ns

Online	(Adversarial)	
Learning

Zero-Sum	Games	and	
Solution	Concepts

Nicer	than	worst-case	
adversaries

Computational	aspects

Stochastic	(Offline)	Settings
Usage	Example:	
Learning	to	detect	natural	phenomenon	or	
objects,	e.g.,	trees,	animals,	etc.

Distributions	of	the	images	and	concept	
remains	the	same	over	time.

No	reaction	from	the	object	or	environment!

Data	is	generated	stochastically	from	a	
fixed	distribution

Learner	learns	a	function	using	the	data

Successful	if	it	gets	good	performance	
over	the	underlying	distribution.

Not	concerned	with	robustness	or	what	
happens	if	the	world	were	to	change.

Stochastic	or	Offline

Unknown	distribution	𝐷 over	𝑋×𝑌 and	function	class	𝐻.
At	round	𝑡

Learner	observes	 𝑥! , 𝑦! and	makes	a	mistake	if	𝑓! 𝑥! ≠ 𝑦! .
Goal:	Get	regret	that	vanishes	as	𝑇 → ∞

As	𝑇 → ∞,	avg	number	of	mistakes	Alg makes	is	no	worst	than	the	best	predictor.		

Formal	Setup:	Stochastic	setting

Avg. REGRET =
1
𝑇
,
!"#

$

1 𝑓! 𝑥! ≠ 𝑦! − min
%∈'

1
𝑇
,
!"#

$

1 ℎ 𝑥! ≠ 𝑦!

Learner	picks	prediction	rule	𝑓! ∶ 𝑋 → 𝑌,	
not	necessarily	in	𝐻.	 The	world	picks	 𝑥! , 𝑦! ∼ 𝐷

Emphasis	on	i.i.d

Unknown	distribution	𝐷 over	𝑋×𝑌 and	function	class	𝐻.
At	round	𝑡

Learner	observes	 𝑥! , 𝑦! and	makes	a	mistake	if	𝑓! 𝑥! ≠ 𝑦! .

Alternative	Setup:	(Stochastic)	Offline	Learning

Avg. REGRET = Pr
(
𝑓 𝑥 ≠ 𝑦 − min

%∈'
Pr
(
ℎ 𝑥 ≠ 𝑦 ≤ 𝜖

Learner	observes	samples	and	picks	prediction	
rule	𝑓: 𝑋 → 𝑌,	not	necessarily	in	𝐻.	

Emphasis	on	i.i.d

Set	of	𝑇 i.i.d samples	 𝑥! , 𝑦! ∼ 𝐷

Goal:	How	fast	does	regret	vanish	as	a	function	of	𝑇.

Avg.	Regret	=	
A
B

Sample	complexity	=	
C
D!

Sample	Complexity	and	Regret

What	characterizes	offline	learnability?

𝑥# 𝑥) 𝑥* …
ℎ# -1 -1 1 -1
ℎ) 1 -1 -1 1
ℎ* -1 1 -1 1
ℎ+ 1 1 1 -1
⋮

𝑋𝐻

𝑥 ∈ 𝑋

ℎ ∈ 𝐻

Avg.	Regret	=	#Θ 𝑉𝐶𝐷(𝐻)/𝑇Sample	complexity	=	#Θ VCD(𝐻)/𝜖#
For	any	𝐻,	optimal	sample	complexity	(uniformly	over	all	𝐷)	is

Characterization	of	Offline	Learnability

VC	dimension:	largest 𝑑 where	there	is	a	submatrix	of	𝑑 columns	and	2$ unique	rows.

[Vapnik-Chervonenkis 71,	Blumer-Ehrenfeucht-Haussler-Warmuth 1989]

VC	Dimension	Example	

What	is VCDim(𝐻) for	thresholds	on	a	line?	1

𝐻 = ℎ% 𝑥 = 𝑠𝑖𝑔𝑛 𝑥 − 𝑎 | 𝑎 ∈ ℝ is	the	set	of	thresholds	on	a	line.
+-

𝑎

1. Example	of	a	set	of	size	1 that	can	be	labeled	in	all	2'
ways.

2. No	set	of	size	2 can	be	labeled	in	all	2# ways.
àCan’t	label	the	smaller	one	+ and	the	larger	one	−.		

𝑥

−
+

+ −

Why	VC	Dimension?

Why	VC	dimension	lower	bounds	sample	complexity?

Avg.	Regret	=	 𝑉𝐶𝐷(𝐻)/𝑇Sample	complexity	=	#Θ VCD(𝐻)/𝜖#
For	any	𝐻,	optimal	sample	complexity	(uniformly	over	all	𝐷)	is

Characterization	of	Offline	Learnability

𝑥"

Can	be	labeled	either	way
Pr[err]	=	1/2

𝑥# 𝑥$𝑥% 𝑥"&#

Sample	set

Hoeffding
Union	
bound

Why	VC	dimension	upper	bounds	sample	complexity?
• 𝐻 finite:	concentration	and	union	bound	gives

• 𝐻 infinite:	VC	dimension	determines	the	effective	size	of	the	hypothesis	class	on	𝑚 points	

Pr For at least one ℎ ∈ 𝐻
esimtated 𝑒𝑟𝑟 𝑜𝑓 ℎ − expected 𝑒𝑟𝑟 𝑜𝑓 ℎ > 𝜖 ≤ |𝐻| × 2 exp(−2𝑚𝜖%)

Offline	(Stochastic)	
Learning
Ad
ve
rs
ar
ia
l	I
nt
er
ac
tio
ns

Online	(Adversarial)	
Learning

Zero-Sum	Games	and	
Solution	Concepts

Nicer	than	worst-case	
adversaries

Computational	aspects

Stochastic	(Offline)	Settings
Usage	Examples:	
Quality	control	faces	adversarial	
manipulation	of	future	instances	and	
policies	must	be	updated.

Learning	in	games	(see	Costis and	Eva’s	
tutorials.)

No	distributions.	Observations	evolve	in	
unpredictable	or	adversarial	ways.	

Adversarial	reactions	by	the	object	or	
environment! Adversarial	Online

Data	is	generated	by	an	all-powerful	
adaptive	adversary,	who	knows	the	
algorithm	and	history.

Successful	if	it	gets	good	performance	
over	adversarially generated	data.

Robust	to	any	adversarial	reactions	to	
earlier	decisions.	

Offline	Learning:	Unknown	distribution	𝐷 over	𝑋×𝑌 and	function	class	𝐻.
At	round	𝑡

Algorithm	makes	a	mistake	if	𝑓! 𝑥! ≠ 𝑦! .
Goal:	Get	regret	that	is	vanishing	as	𝑇 → ∞.

As	𝑇 → ∞,	avg	number	of	mistakes	Alg makes	is	no	worst	than	the	best	predictor.		

Formal	Setup:	Online	vs	Stochastic	Setting

Avg. REGRET =
1
𝑇
,
!"#

$

1 𝑓! 𝑥! ≠ 𝑦! − min
%∈'

1
𝑇
,
!"#

$

1 ℎ 𝑥! ≠ 𝑦!

Learner	picks	prediction	rule	𝑓! ∶ 𝑋 → 𝑌,	
not	necessarily	deterministic.

The	world	picks	 𝑥! , 𝑦! ∼ 𝐷

Online	Learning

Adversary	picks	 𝑥! , 𝑦! ,	knowing	the	
history	for	1,… , 𝑡 − 1 and	the	algorithm

Take	𝐻 = ℎ' 𝑥 = 𝑠𝑖𝑔𝑛 𝑥 − 𝑎 | 𝑎 ∈ ℝ is	the	set	of	thresholds	on	a	line.
Algorithm	has	to predict	labels	of	adaptively	and	adversarially selected	points.

An	Online	Learning	Example

1/2

1/4 3/4

1/8 5/83/8 7/8

𝑦 = −1𝑦 = 1

1 −1

1

−11

1 1 1−1 −1 −1 −1

The	label	adversary	
claims	is	the	real	one	

Algorithm’s	prediction

Algorithm Adversary

Adversary

Consistent	threshold	h! ⋅

Algorithm

Algorithm	is	forced	to	err	at	every	round	à 𝑇 mistakes	over	𝑇 instances	à Avg	Regret	O(1).

Characterizing	Online	Learnability
Role	of	VC	dimension:
• Finite	VC	dimension	is	not	sufficient,	because	of	thresholds	on	a	line.
• VC	dimension	focuses	on	labeling	a	set.
• But	we	need	to	consider	labelings of	sequences.

Littlestone	Tree:	Full	decision	tree	with	nodes	in	
𝑋 and	paths	determined	by	+ and − sequences.	
For	every	path,	there	is	an	ℎ ∈ 𝐻 that’s	consistent	
with	the	labels.		

𝑥∅

𝑥#

𝑥## 𝑥# $ 𝑥$ # 𝑥$$

𝑥$

𝑦∅ = − 𝑦∅ = +

Littlestone Dimension:	Height	of	the	largest	
Littlestone tree.

𝑦$ = −

[Littlestone’87]

Recall:	Example	of	Littlestone Dimension

1/2

1/4 3/4

1/8 5/83/8 7/8

𝑦 = −1𝑦 = 1

1 −1

1

−11

1 1 1−1 −1 −1 −1

Consistent	threshold	h! ⋅

The	Littlestone dimension	of	𝐻 = ℎ' 𝑥 = 𝑠𝑖𝑔𝑛 𝑥 − 𝑎 | 𝑎 ∈ ℝ ,	the	set	of	thresholds	on	a	line,	
in	infinite.	

(Mirror	this	tree)

Two	other	Examples	of	Littlestone Dimension
Small	LDim
• Class	𝐻 where	each		ℎ ∈ 𝐻 assigns	+1	label	to	≤ 𝑑 points.
• Littlestone dimension	is	𝑑.

àWe	can	branch	right	at	most 𝑑 times.

Large	LDim
• Class	𝐻 = ℎ% 𝑥 = 1 𝑥 ∈ [𝑎, 2𝑎) | 𝑎 ∈ ℕ .
• Littlestone dimension	is	∞.

à For	any	𝑑,	the	𝐻 in	range	of	[2$, 2$D'] includes	the	set	of	all	thresholds.

2$ 2$D'

Characterization	of	Online	Learnability

Why	Littlestone dimension	lower	bounds	regret?
• Adversary	picks	sequence	 𝑥, 𝑦 s	for	a	uniformly	random	path.
• Learner	makes	a	mistake	with	prob	0.5 per	round.
• But	a	perfect	classifier	exists,	so	average	regret	is	0.5

More	formally,	

• Repeat	each	𝑥,	1
"
times	with	random	labels.	

• There	is	a	classifier	that	beats	the	standard	deviation,	but	alg gets	0.5.

UΘ
𝐿𝑑𝑖𝑚 𝐻

𝑇
For	any	𝐻,	the	optimal	bound	on	average	regret	is	

Characterization	of	Online	Learnability

𝑥∅

𝑥#

𝑥## 𝑥# $ 𝑥$ # 𝑥$$

𝑥$

[Ban-David,	Pal,	and	Shalev-Shwartz’09]

Algorithms	based	on	Littlestone Dimension
Littlestone	trees	result	in	an	inductive	algorithm.

Easy	case:	Say,	the	best	classifier	in	hindsight	has	error	0.
• Idea:	Keep	track	of	hypothesis	that	haven’t	made	a	mistake	so	far.
• Make	a	prediction,	so	that	if	it	were	wrong	the	prediction	complexity	of	the	remaining	set	
of	classifiers	is	small.

• What	is	prediction	complexity?	Littlestone dimension.

Standard	Optimal	Algorithm:

• 𝐻! is	the	set	of	classifiers	that	agree	with	 𝑥#, 𝑦# , … , (𝑥! , 𝑦!).
• On	𝑥!2# guess	label,	

Q𝑦ED' = max
F

𝐿𝐷𝑖𝑚 (Subset of 𝐻E 𝑡ℎ𝑎𝑡 𝑎𝑔𝑟𝑒𝑒𝑠 𝑤𝑖𝑡ℎ (𝑥ED', 𝑦))

[Littlestone’87,	Ban-David,	Pal,	and	Shalev-Shwartz’09]

Offline	(Stochastic)	
Learning
Ad
ve
rs
ar
ia
l	I
nt
er
ac
tio
ns

Online	(Adversarial)	
Learning

Zero-Sum	Games	and	
Solution	Concepts

Nicer	than	worst-case	
adversaries

Computational	aspects

(Zero-sum)	Games	
Actions	are	played	by	self-interested	
agents	in	a	win-lose	game.

Each	player	takes	some	actions.

Equilibrium,	if	neither	can	improve	
their	position.	

Equilibria

Usage	Examples:	
Most	two-player	board/card	games.	

Competition	between	two	rival	firms,	
splitting	the	market	share.

Two	player	Games

𝑢((𝑥, 𝑦)

𝑢#(𝑥, 𝑦)

𝑦

𝑥

𝟏

𝟐Players:	Player	1 and	2

Strategies:	Sets	of	actions	𝑋,	𝑌
Payoffs:	When	1 plays	𝑥 and	2 plays	𝑦.

1’s payoff	∶ 𝑢#(𝑥, 𝑦) 2’s payoff	∶ 𝑢%(𝑥, 𝑦)

Zero-sum	games: focus	of	this	section
−𝑢#(𝑥, 𝑦) = 𝑢% 𝑥, 𝑦

We’ll	call	one	of	the	loss	and	one	gain/utility
ℓ 𝑥, 𝑦 = −𝑢#(𝑥, 𝑦)			(in	this	section)

Solution	Concepts

𝑃, 𝑄 is	a	Nash	equilibrium	if									can’t	improve	their	utility	by	unilaterally	

changing	𝑃,	and can’t	improve	their	utility	by	changing	𝑄.

Mixed	Strategies: picks 𝑃 ∈ Δ(𝑋) and						 picks 𝑄 ∈ Δ 𝑌 . L(P, Q) is	expected	loss.	

𝟏

𝟐

𝟏 𝟐

MinMax value MaxMin value

min
I
max
J

L(P, Q) max
J

min
I
L(P, Q)

(player	1	goes	first) (player	2	goes	first)

MinMax	value	=	MaxMin value	(=	Mixed	Nash	Equilibrium	payoff)
Under	some	conditions,	e.g.,	Δ 𝑋 and	Δ 𝑌 compact,		

Von	Neumann’s	MinMax Theorm

Why	does	MinMax Theorem	hold?

min
"
max
#

L(P, Q) ≥ max
#

min
"

L(P, Q)

min
"
max
#

L(P, Q) ≤ max
#

min
"

L P, Q + 𝐴𝑣𝑔. 𝑅𝑒𝑔𝑟𝑒𝑡

1. Easy	to	see:	Whoever	goes	second	does	a	better	job	(minimizing	or	maximizing)

2.	Interesting:	One	player	plays	no-regret,	the	other	best	responds

𝟏 𝟐
1
𝑇
9𝐿 𝑃$, 𝑄$ −min

"

1
𝑇
9𝐿(𝑃, 𝑄$)

Online	learnability	andMinMax are	about	interactions	with	an	adversary.

𝑄$ = max
#

𝐿(𝑃$, 𝑄)

k𝑃 =
1
𝑇
l𝑃E k𝑄 =

1
𝑇
l𝑄E

MinMax through	online	learning [Freund-Schapire’96]

What	is	the	role	of	online/offline	
learnability	characterization	on	
equilibrium	definitions.

Question

The	Role	of	Littlestone Dimension
Is	online	learnability	a	sufficient	condition	for	MinMax to	hold?

Subtlety:
• Games	require	the	mixed	strategy	to	be	supported	on	the	predefined	action	set.
• Online	learning	doesn’t	necessarily	(can	be	“improper”).

Offline	Learning:	Unknown	distribution	𝐷 over	𝑋×𝑌 and	function	class	𝐻.
At	round	𝑡

Algorithm	makes	a	mistake	if	𝑓! 𝑥! ≠ 𝑦! .
Goal:	Get	regret	that	is	vanishing	as	𝑇 → ∞.

As	𝑇 → ∞,	avg	number	of	mistakes	Alg makes	is	no	worst	than	the	best	predictor.		

Formal	Setup:	Offline	and	Online	Learning

Avg. REGRET =
1
𝑇
l
EK'

L

1 𝑓E 𝑥E ≠ 𝑦E − min
M∈O

1
𝑇
l
EK'

L

1 ℎ 𝑥E ≠ 𝑦E

Learner	picks	prediction	rule	𝑓! ∶ 𝑋 → 𝑌,	
not	necessarily	deterministic.

The	world	picks	 𝑥! , 𝑦! ∼ 𝐷

Online	Learning

Adversary	picks	 𝑥! , 𝑦! ,	knowing	the	
history	for	1,… , 𝑡 − 1 and	the	algorithm

“Proper”	learning	algorithm	if	𝒇𝒕 ∈ 𝑯

The	Role	of	Littlestone Dimension
Is	online	learnability	a	sufficient	condition	for	MinMax to	hold?

Subtlety:
• Games	require	the	mixed	strategy	to	be	supported	on	the	predefined	actions.
• Online	learning	doesn’t	necessarily	(can	be	“improper”).

• If	“proper”,	then	a	randomized	learner's	choice	of	𝑋,	is	equivalent	to	mixed	strategy.		
• The	way	Standard	Optimal	Algorithm	(SOA)	was	defined,	“properness”	not	guaranteed.

Simple	Optimal	Algorithm	can	be	implemented	as	a	“proper”	learning	algorithm	and	finite	

support,	giving	regret	rΘ 3"45
1

.

Finite	𝐿𝑑𝑖𝑚 is	sufficient	for	MinMax to	hold.

Proper	Standard	Optimal	Algorithm

[Hanneke-Livni-Moran’21]

Is	finiteness	of	Littlestone Dimension	necessary?
Surprisingly	not!	Recall

Infinite	LDim
• Class	𝐻 = ℎ% 𝑥 = 1 𝑥 ∈ [𝑎, 2𝑎) | 𝑎 ∈ ℕ .

à For	any	𝑑,	the	𝐻 in	range	of	[2$, 2$D'] includes	the	set	of	all	thresholds.

2$ 2$D'

The	minmax	and	maxmin values	are	both	tending	to	0.	

Example	from	Steve	Hanneke

What	characterizes	MinMax?
Related	but	not	the	same	thing	as	finiteness	of	Littlestone dimension.

Subtlety:
• Littlestone dimension	may	be	infinite,	because	for	each	𝑑 there	is	a	Littlestone
tree	of	height	𝑑.	Even	if	no	single	tree	could	be	grown	infinitely.

• In	that	case,	no	single	triangular	subgame	of	infinite	size	might	exist.	

For	a	0/1	game	matrix,	minmax	theorem	holds	if	and	only	if	
the	game	has	no	infinite	subgame that	can	be	rearranged	
to	a	triangular	matrix.

Minmax	characterization

[Hanneke-Livni-Moran’21]

1 1 1 1

1 1 1

1 1

1

1 1 1

𝑦

𝑥

𝟏

𝟐

Important		Message
Learnability	is	very	sensitive	to	the		

adversarial		assumptions		

Offline	learning
rΘ VCDim(H) 𝑇

Online	Learning rΘ Ldim(H) 𝑇

Zero-sum	Games	
(Minmax	theorem) Largest	triangular	subgame

Real	Valued	Learning	and	Games
Real-valued	learning	problems	and	games:

Offline	and	online	learnability	characterizations	are	well-understood.	Rademacher	
complexity	[Bartlett and	Mendelson’03],	psuedo-dimension	[Pollard’84], sequential	
Rademacher	complexity	[Sridharan,	Rakhlin,	and	Tewari’15],,	etc.

For	Minmax,	sufficient	conditions	via	fat-shattering	[Daskalakis-Golowich 21].	A	
characterization	is	open.

Offline	(Stochastic)	
Learning
Ad
ve
rs
ar
ia
l	I
nt
er
ac
tio
ns

Online	(Adversarial)	
Learning

Zero-Sum	Games	and	
Solution	Concepts

Nicer	than	worst-case	
adversaries

Computational	aspects

Statistical	Guarantees
Data	is	generated	stochastically	from	a	
fixed	distribution

Learner	learns	a	function	using	the	data

Successful	if	it	gets	good	performance	
over	the	underlying	distribution.

Not	concerned	with	robustness	or	what	
happens	if	the	world	were	to	change.

Stochastic	or	Offline
Adversarial	Online

Data	is	generated	by	an	all-powerful	
adaptive	adversary,	who	knows	the	
algorithm	and	history.

Successful	if	it	gets	good	performance	
over	adversarially generated	data.

Robust	to	any	adversarial	reactions	to	
earlier	decisions.	

Instance is	generated	by	an	all-powerful	
adaptive	adversary,	who	knows	the	
algorithm	and	history.

Successful	if	it	can	find	a	good	solution	
even	for	the	worst-case	instance.

Algorithm	Design	and	Analysis
Instance is	generated	stochastically	
from	a	fixed	distribution

Algorithm computes	a	solution.

Successful	if	it	is	a	good	solution	in	
expectation	over	the	distribution.

Average-Case	Analysis Worst-Case	Analysis

Idea	[Spielman	&	Teng	01]:

• Adversary	chooses	an	instance,	then	nature	slightly	perturbs	it,	e.g.,	Gaussian.
• Goal:	For	any	instance,	perform	well	in	expectation/w.h.p over	the	perturbations.
Modern	perspective:	
• Adversary	chooses	a	distribution	over	instances.	The	distribution	has	to be	“sufficiently	
anti-concentrated”.	

• Goal:	For	any	“anti-concentrated”	distribution,	perform	well	in	expectation/w.h.p.
When	is	it	useful?	When	the	worst-case	instances	are	“brittle”

Ideally:
• We	can	get	essentially	same	performance	guarantees	as	in	the	average-case	for	the	
smoothed	adversaries.		

Smoothed	Analysis:	Basic	Idea

Average-Case	Analysis Worst-Case	AnalysisSmoothed	AnalysisAverage-Case	Analysis Worst-Case	AnalysisSmoothed	Analysis

Running	time	of	simplex	method	[Spielman	&	Teng	01,	Deshpande	&	Spielman	05,	…]

• Simplex	can	take	exponential	time	for	worst-case	instances

• Simplex	takes	polynomial	time	in	expectation	when	the	Gaussian	variance	is	≥ 1/𝑝𝑜𝑙𝑦(𝑛)

Running	time	of	local	search	methods:

• Lloyd	algorithm	for	k-means,	2-OPT	heuristic	for	TSP,	take	exponential	number	of	iteration	
in	worst	case,	but	polynomial	in	the	smoothed	case.

Machine	learning	(Information	+	Computation)

• Even	what	is	“learnable”	depends	on	the	model	of	the	adversary.

• Fundamental	application	of	smoothed	analysis

Smoothed	Analysis:	Past,	Present,	Future

There	is	a	function	class	𝐻 and	domain	𝑋 (𝑋 ⊆ 𝑅V has	finite	Lebesgue	measure)
At	round	𝑡

Smoothed	Analysis	of	Online	Learning

Learner	picks	prediction	rule	𝑓! ∶ 𝑋 → 𝑌 ,	
not	necessarily	deterministic.

Adversary	picks	a	𝜎-smooth	
distribution	𝐷! knowing	the	history	for	
1,… , 𝑡 − 1 and	the	algorithm

𝜎-smooth	distribution:	max	density	is	≤ '
W×uniform density on	𝑋

Adversary	picks	an	
instance	(𝑥̅% , [𝑦%).

(𝑥̅!, l𝑦!) randomly	perturbs	to	(𝑥*, 𝑦!)

Modern	perspective	on	smoothness	(more	general	for	finite	Lebesgue	measure	𝑋)
[Sridharan-Rakhlin-Tewari’11]

There	is	a	function	class	𝐻 and	domain	𝑋 (𝑋 ⊆ 𝑅V has	finite	Lebesgue	measure)
At	round	𝑡

Smoothed	Analysis	of	Online	Learning

Learner	picks	prediction	rule	𝑓! ∶ 𝑋 → 𝑌 ,	
not	necessarily	deterministic.

Adversary	picks	a	𝜎-smooth	
distribution	𝐷! knowing	the	history	for	
1,… , 𝑡 − 1 and	the	algorithm

𝜎-smooth	distribution:	max	density	is	≤ '
W×uniform density on	𝑋

Goal:	Vanishing	average	regret

Avg. REGRET =
1
𝑇
l
EK'

L

1 𝑓E 𝑥E ≠ 𝑦E − min
M∈O

1
𝑇
l
EK'

L

1 ℎ 𝑥E ≠ 𝑦E

Recall
Online	Learning	Regret Perturbation

Online	Learning	
(Worst-Case) #Θ Ldim(H) 𝑇 No	perturbation

𝝈 = 𝟎

Offline	learning	or	
Uniform	Case

#Θ VCDim(H) 𝑇 Maximum	perturbation
𝝈 = 𝟏

Interpreted	as	an	impossibility	result,	because	VCDim ≪ Ldim
à For	simple	classes,	Ldim = ∞ but	VCDim = 1.

In	presence	of	Adaptive	but	Smooth	Adversaries	the	regret	is	rO VCDim(H) 𝑇 ln 1/𝜎

Learnable	with	under	smoothed	analysis	if	and	only	learnable	on	a	uniform	distribution.

Smoothed	Analysis	for	online	learning

[H.,	Roughgarden,	Shetty’21]

We	could	approximate	H that’s	potentially	infinite,	with	a	finite	H′.
Why	did	the	Stochastic	Case	Work?

ℎ ℎ&'()*

𝜖

Approx Error

Alg for	worst-case	online	
learning	that	gets	for	 ℋ+𝐻 𝐻′

The	Net:	For	each	ℎ ∈ 𝐻 there	is	ℎ6789: ∈ 𝐻′,	where	𝔼 ℎ ΔℎcdefF ≤ 𝜖 is	small.

We	could	approximate	H that’s	potentially	infinite,	with	a	finite	H′.
Why	did	the	Stochastic	Case	Work?

ℎ ℎ&'()*

𝜖

Approx Error

Alg for	worst-case	online	
learning	that	gets	for	 ℋ+𝐻 𝐻′

The	Net:	For	each	ℎ ∈ 𝐻 there	is	ℎ6789: ∈ 𝐻′,	where	𝔼 ℎ ΔℎcdefF ≤ 𝜖 is	small.
Approx	Error	is	small:	Performance	of	every ℎ ∈ 𝐻 is	close	to	the	corresponding	ℎ6789: ∈ 𝐻′
Infinitely	many	ℎ Δℎ6789::	i.i.d instances	and	finite	VC	dimension	bounds	this.

Anti-Concentration:	
Not	too	many	points	fall	in	any	ℎ Δℎ&'()*

We	could	approximate	H that’s	potentially	infinite,	with	a	finite	H′.

ℎ ℎ&'()*

𝜖

Approx Error

Alg for	worst-case	online	
learning	that	gets	for	 ℋ+𝐻 𝐻′

The	Net:	For	each	ℎ ∈ 𝐻 there	is	ℎ6789: ∈ 𝐻′,	where	𝔼 ℎ ΔℎcdefF ≤ 𝜖 is	small.
Approx	Error	is	small:	Performance	of	every ℎ ∈ 𝐻 is	close	to	the	corresponding	ℎ6789: ∈ 𝐻′
Infinitely	many	ℎ Δℎ6789::	i.i.d instances	and	finite	VC	dimension	bounds	this.

The	adversary	can	concentrate	:	
too	many	points	fall	in	any	ℎ Δℎ&'()*

What	went	wrong	for	the	online	case?

How	do	we	preserve
anti-concentration when	a	
sequence	of	smooth	distributions	
are	adaptively	chosen?

Broad	Question

Each	𝜎-smooth	distribution	is	anti-
concentrated.

The	challenge	is	correlations	between	
these	smooth	distributions.

Challenge

Probability	Couplings:	Given	distributions	𝑋 and	𝑍.	
• A	joint	distribution	on	𝑋×𝑍,	such	that	there	is	a	“nice	property”	between	the	draws	(𝑥, 𝑧).
• Couple	a	sequence	of	smooth	distributions	with	draws	from	a	uniform	distribution.

Couple	Adaptive	Smoothness	with	Uniformity

Coupling	Theorem: For	any	adaptive	sequence	of	𝑇 distributions,	there	is	a	coupling	between:
1. (𝑋#, … , 𝑋1) ∼ (𝐷#, 𝐷%, … , 𝐷1)
2. 𝑍#… , 𝑍1; ∼ 𝑈𝑛𝑖𝑓 and	independent	and	𝑘 ≈ 1/𝜎.
3. Such	that	with	high	prob.	{𝑋#, … , 𝑋1} ⊆ {𝑍#… , 𝑍1;}

Uniform	distribution	is	not	“concentrated”.	So,	𝑋#, … , 𝑋1 ⊆ 𝑍#… , 𝑍1; aren’t	either.
• We	want	to	say	that	no	ℎ Δℎ6789: includes	too	many	𝑋#, … , 𝑋1 .
• Sufficient	to	say	no	ℎ Δℎ6789: includes	too	many	𝑍#… , 𝑍1; .
• 𝑍#… , 𝑍1; are	i.i.d and	guaranteed	to	be	scattered.

Adaptive	smoothed	adversaries	can’t	be	much	worst	than	stochastic	adversaries	(on	a	slightly	
longer	time	scale).

Overview	of	the	Main	Results
Theorem [H.,	Roughgarden,	Shetty	‘21]
In	presence	of	Adaptive	but	Smooth	Adversaries	the	regret	is	rΘ VCDim(H) 𝑇 ln 1/𝜎

Regret for ℋ ≤
Approx Error

+max# points in ℎ Δℎ&'()*

Alg for	worst-case	online	
learning	that	gets	

𝑂 𝑇log |ℋ+| regret
𝐻 𝐻′

Step	1:	Choose	H′ that	is	a	finite	approximation	of	H

How	do	we	select	H′?	
• Take	H′ that	such	that	𝑥 ∼ Unif ,	i.e.,	Pr< a point falls in ℎ Δℎ6789: ≤ 𝜖.
• Works	nicely	for	𝜎-smooth	distributions	too:

𝔼= #points in ℎ Δℎ6789: ≤ 𝑇𝜖/𝜎.

Overview	of	the	Main	Results

Regret for ℋ ≤
Approx Error

+max# points in ℎ Δℎ&'()*

Alg for	worst-case	online	
learning	that	gets	

𝑂 𝑇log |ℋ+| regret
𝐻 𝐻′

Step	2:	Apply	the	coupling

Step	1:	We	got	that	𝔼l #points in ℎ ΔℎcdefF ≤ 𝑇𝜖/𝜎.

Approx	Error

Approx Error
max
>∈@

points ∼ 𝐷#, …DA
fall in ℎ Δℎ6789:

≤
Approx Error

max
>∈@

points ∼ 𝑈𝑛𝑖𝑓
fall in ℎ Δℎ6789:

“Nice	Property”:	𝑋#, … , 𝑋$ drawn	from	𝐷#, 𝐷(, … , 𝐷$ are	a	subset	of	𝑍#, … , 𝐷+$ drawn	from	uniform	
distribution.

Overview	of	the	Main	Results

Regret for ℋ ≤
Approx Error

+max# points in ℎ Δℎ&'()*

Alg for	worst-case	online	
learning	that	gets	

𝑂 𝑇log |ℋ+| regret
𝐻 𝐻′

Approx Error
max
>∈@

points ∼ 𝐷#, …DA
fall in ℎ Δℎ6789:

≤
Approx Error

max
>∈@

points ∼ 𝑈𝑛𝑖𝑓
fall in ℎ Δℎ6789:

Step	3:	Bound	the	Approx Error	for	the	uniform	distribution.
No	concerns	about	the	adversary	and	robustness.	Just	the	classical	stuff!
VC	dimension	uses	i.i.d uniform	r.v. to	show	that	approx.	error	is	small.

Step	1:	We	got	that	𝔼l #points in ℎ ΔℎcdefF ≤ 𝑇𝜖/𝜎.

Step	2:	Apply	the	coupling

We	want	to	be	robust	over	T interactions	with	an	
adaptive	smooth	adversary.

Classical	algorithms	and	analysis	from	the	
stochastic	case	can	be	lifted	and	be	use	with	
smoothed	adaptive	adversaries

Main	Message

Smoothed	Analysis	of	Adaptive	Adversaries

Get	essentially	the	same	performance	guarantees	for	the	algorithm	against	an	
adversary,	as	you	could	in	the	stochastic	world.	

Ideal	Results

Reducing	interactions	with	smooth	adaptive	adversary	to	the	stochastic	world.
Getting	rid	of	the	worst	aspect	of	being	adversarial.

Recipe:	Smoothed	Analysis	with	Adaptive	
Adversaries	
1. Solve	the	problem	for	the	uniform	case.

1. Isolate	and	identify	the	the	steps	that	rely	on	anti-concentration.	Look	at	where	
randomness	comes	in	and	identify	concentration	property,	potential	functions,	or	
other	monotone	set	functions	that	implicitly	measure	concentration	of	some	measure.

2. Apply	the	coupling	lemma
1. Replace	𝑇 round	of	an	adaptive	smoothed	adversary	with	T/𝜎 uniform	R.Vs.
2. Update	the	dependence	of	step	1.1.	for	𝑇/𝜎 uniform	R.Vs.

àThe	property	𝑋#, … , 𝑋1 ⊆ 𝑍#… , 𝑍1/B can	only	increases	concentration,	potential	
functions,	or	other	monotone	set	functions.
à 𝑍#… , 𝑍1/B are	uniform,	so	only	moderate	increase	in	concentration,	etc.

3. Put	it	all	back	together,	use	the	original	algorithm	and	analysis	technique.

Applications	to	other	problems	where	Minmax	and	repeated	games	have	
influenced.	

• Online	Learning	(in	the	talk)	
• Online	Discrepancy	Minimization	
• Data	Driven	Algorithm	Design
• Differential	Privacy	(Using	slightly	simpler	techniques	H.,	Roughgarden,
and Shetty	20)

Applications

Important		Message

Learnability’s	sensitive	dependence	on	
adversarial	assumptions	is	partly	“brittle”	
and	won’t	be	observed	in	the	nature.

Beyond	worst-case	analysis	need	for	
reevaluating	statistical	characterization.

Offline	(Stochastic)	
Learning
Ad
ve
rs
ar
ia
l	I
nt
er
ac
tio
ns

Online	(Adversarial)	
Learning

Zero-Sum	Games	and	
Solution	Concepts

Nicer	than	worst-case	
adversaries

Computational	aspects

More	on	Computational	Aspects	Tomorrow
Up	to	now,	we	have	established	strict	ordering	between	the	statistical	difficulty	of	
learning	tasks.	

• Algorithmically,	is	computation	against	an	adaptive	adversary	strictly	harder	than	a	
stochastic	ones?	[also	discussed	in	Costis’s tutorial]
• How	sensitive	are	the	computational	result	on	the	specific	adversarial	assumptions,	
e.g.,	worst-case	versus	smoothed	analysis.
• Elegant	framework	of	game	value	relaxations	of Sridharan,	Shamir,	Rakhlin’12.

àDirect	connection	between	statistical	aspects	online	computation	and	algorithm	
design.

• What	are	combinatorial	structures	that	make	efficient	online	learning	possible?

𝑥%

There	is	an	algorithm	with	average	regret	𝑶 𝐥𝐨𝐠 𝓧
𝑻

and	runtime	𝐎 𝑻 𝓧 .

𝑦!

Learner	picks	a	strategy	𝑥!
from	𝒳 at	random Adversary	picks	a	

strategy	𝑦! from	𝒴.

#	learner’s	actions#	time	steps

Algorithms	for	Online	Learning

An	algorithm	for	online	learning

[Freund	&	Schapire’95]	

Algorithm	(Hedge):	Start	with	uniform	distribution	over	𝒳.	At	each	step,	adjust	
up/down	probability	of	each	𝑥 ∈ 𝒳 based	on	historical	performance.

Online	Computation	with	Offline	Oracles

Design	online	algorithms	for	adversarial	environments

Effective	tools	for	computing	optimal	offline	optimal	classifiers	
Oracle-efficient	Online	learning

Part	of	the	difficulty	comes	from	offline	computation:
• Even	minimization	(or	maximization) is	difficult	for	some	problem,	e.g.,	deep	
networks,	non-convex	objectives,	etc.

• What	part	of	the	difficulty	should	be	blamed	on	existence	of	adversaries?

• Offline	Oracle:	For	any	𝑦#, 𝑦%, … , 𝑦! ,	compute argmax
9∈𝒳

�
ST#

!

𝑢 𝑥, 𝑦S .

General	functions

linear	in	N	
dimensionDaskalakis-Syrgkanis’16:

• Regret	O |𝒴| 𝑇
• Runtime	poly |𝒴|, 𝑇

Kalai-Vempala’05:	
Runtime	poly(N)

Hazan-Koren ’16:	Ω |𝒳|

When	game	matrix	is	structured
DHLSSW’17

When |𝒴| is	small

Many	combinatorial	
problems,	games	and	auctions

Characterize	Online	Oracle-Efficient	Learnability

No	characterization!	But	sufficient	conditions	that	are	easy	to	find	in	practice.	

Also for	MinMax:	
Given	best-response	oracle	for	each	

agent,	we	still	can’t	compute	
MinMax in	0-sum	games	efficiently.

𝒳
𝒴There	exists	a	set	of	𝑑 adversary	pure	strategies	

that sufficiently*	distinguish	between	any	two	
learner	pure	strategies.

The	𝑑-Structure

All	green		rows	are	
still	different*Sufficiently	=	Gap	of	𝛿 between	distinct	utilities.

2. Many	problem	classes	have	small	d-structures,	e.g. most	auctions	d = poly(# bidders)

1. There	is	an	oracle-efficient	algorithm	with	regret	𝑂 𝑑 𝑇/𝛿 .

Combinatorial	Structure

[Dudik,	H.	,	Luo,	Schapire,	Syrgkanis,	Wortman	‘17]	

𝑢 𝑥, 𝑦(4) ≠ 𝑢 𝑥, 𝑦 4 for some 𝑖 ∈ [𝑑]

Smallest	𝑑,	for	which	there	is	𝑦 # …𝑦("),	s.t.,
for	all 𝑥 ∈ 𝒳

Oracle-efficient	Online	learning

In	many	auctions,	outcome	depends	on	a	few	parameters,	
e.g.,	winners,	second	place	in	line	to	winning,	and	their	

bid.

𝑏�, 𝑏�, 𝑏�, 𝑏�, 𝑏�, 𝑏�, 𝑏�… , 𝑏�

Auction	1 Auction	2≠

Winner	in	Auction1

𝑏�, 0 , 𝑏�, 0, 𝑏�, 0 , 0 … , 𝑏�

Winner	in	Auction	2

Bid	profiles	with	4	non-zero	bids	distinguish	between	any	two	such	auction.

There	are	𝑝𝑜𝑙𝑦(𝑁) bid	profiles	that distinguish	between	any	two	auctions.

For	many	N-bidder	auction	classes

Next	in	line	in	Auction	2

Next	in	line	in	Auction	1

Structure	of	Auctions

Beyond	this	tutorial
Using	offline	oracles	more	broadly	in	adversarial	settings:
• Approximate	oracles	and	approximate	regret:	Kakade Kalai Liggett’07,	Hazan	Li	
Li’18,	Garber’17,	Niazadeh Golrezaei Wang	Susan	Badanidiyuru’20,	etc.
• Beyond	worst-case	adversaries

• For	smoothed	analysis?
• Some	notions	of	predictable	sequences	[Sridharan	and	Rakhlin’13]
• Transductive learning	(where	future	instances,	but	not	labels,	are	known)	
[Kalai Kakade’06,	Cesa-Bianchi	Shamir’12]
• Better	regret	bounds	approaches	in	minmax	[Costis’s tutorial]

Tutorial	Overview
1. Adversarial	Interaction

• Offline,	Online	adversarial	learning,	and	Zero-sum	Games
• Beyond	the	worst-case	adversaries
• Computational	Challenges

2. General	Strategic	Interactions
• General-sum	games	and	Stackelberg	concept

• Learning	and	Stackelberg	equilibria
• Learning	in	presence	of	non-myopic	agents

3. Collaborative	Interactions
• Models	of	data	sharing	for	learning
• Average	vs.	Per-Agent	learning	guarantees
• Individual	Rationality	and	Equilibria

Wednesday	

Thursday

General-Sum	Games
Ad
ve
rs
ar
ia
l	I
nt
er
ac
tio
ns

Computing	Stackelberg	
equilibria

Learning	Stackelberg	
equilibria

Commitment	and	non-
myopic	agents

General-Sum	Games
Ad
ve
rs
ar
ia
l	I
nt
er
ac
tio
ns

Computing	Stackelberg	
equilibria

Learning	Stackelberg	
equilibria

Commitment	and	non-
myopic	agents

General-sum	Games
Actions	are	played	by	self-interested	
agents.

Agents	may	have	the	ability	to	commit	
to	strategies,	in	verifiable	ways.

What	are	the	optimal	or	stable	outcome	
for	the	agents?

Usage	Examples:	
Strategic	manipulations	
• In	ride-sharing	apps,	drivers	and	riders	
manipulate	supply	and	demand	achieve	better	
deals	shortly	after	the	manipulations.

• In	lending,	admission,	hiring,	search,	
applicants	strategic	manipulate	content	to	
receive	favorable	outcomes.

Environment	responds	to	the	decisions,	but	
strategic	manipulation	are	not	meant	to	hurt	
others	necessarily.

Recall:	Two	player	Games

𝑢((𝑥, 𝑦)

𝑢#(𝑥, 𝑦)

𝑦

𝑥

𝟏

𝟐Players:	Player	1 and	2

Strategies:	Sets	of	actions	𝑋,	𝑌
Payoffs:	When	1 plays	𝑥 and	2 plays	𝑦.

1’s payoff	∶ 𝑢#(𝑥, 𝑦) 2’s payoff	∶ 𝑢%(𝑥, 𝑦)

Zero-sum	games: focus	of	this	section
−𝑢#(𝑥, 𝑦) = 𝑢% 𝑥, 𝑦

MinMax	value	=	MaxMin value	(=	Mixed	Nash	Equilibrium	payoff)
Under	some	conditions,	e.g.,	𝑋 and	𝑌 size	or	Δ 𝑋 and	Δ 𝑌 compact,		

Von	Neumann’s	MinMax Theorm

It	Matters	Who	Goes	First
Mixed	Strategies: picks 𝑃 ∈ Δ(𝑋) and						 picks 𝑄 ∈ Δ 𝑌 .𝟏 𝟐

L R

U

D
𝟏

𝟐

What	is	the	Nash	Equilibrium?

𝟏What	if can	commit	in	a	verifiable	way? Sequential	game

Player	1:	Dominant	strategy	to	play	U.

Player	2:	Will	play	L as	response.

Player	1:	Say,	commits	to	playing	D.	

Player	2:	Will	play	R as	response.

(1,1) (3,0)

(0,1) (2,1)

Player	1:	+2

Player	1:	+1

von	Stengel	and	Zamir’	04

0.49

0.51

Stackelberg	Solution	Concept
(Mixed)	Stackelberg	Optimal	Solution
• Player	1	(leader)	commits	to	a	𝑃 ∈ Δ(𝑋)
• Player	2	(follower)	best-responds	to	𝑃,

à plays	BR(P) = argmaxF 𝑈# 𝑃, 𝑦

Leader	commits	to	best	𝑃 ∈ Δ(𝑋) accounting	
for	BR(P)

argmaxI∈�(�) 𝑈' 𝑃, 𝐵𝑅(𝑃)

In	any	general-sum	game,	leader’s	(mixed)	Stackelberg	optimal	solution	is	weakly	
advantageous	to	player	1’s	payoff	under	any	Nash	equilibrium.

There	are	games	where	the	inequality	is	strict.

Stackelberg	vs	Nash	Equilibrium

Pure	Stackelberg	Solution	Concept
(Pure)	Stackelberg	Optimal	Solution
• Player	1	(leader)	commits	to	a	𝑥 ∈ 𝑋
• Player	2	(follower)	best-responds	to	𝑥,

à plays	BR(𝑥) = argmaxF 𝑈# 𝑥, 𝑦

Leader	commits	to	best	𝑥 ∈ 𝑋 accounting	for	
BR(x)

argmaxf∈� 𝑈' 𝑥, 𝐵𝑅(𝑥)

In	any	general-sum	game,	leader’s	(mixed)	Stackelberg	optimal	solution	is	weakly	
advantageous	to	player	1’s	payoff	under	any	Nash	equilibrium.

There	are	games	where	the	inequality	is	strict.

Stackelberg	vs	Nash	Equilibrium

Pure	Stackelberg	Solution	Concept
(Pure)	Stackelberg	Optimal	Solution
• Player	1	(leader)	commits	to	a	𝑥 ∈ 𝑋
• Player	2	(follower)	best-responds	to	𝑥,

à plays	BR(𝑥) = argmaxF 𝑈# 𝑥, 𝑦

Leader	commits	to	best	𝑥 ∈ 𝑋 accounting	for	
BR(x)

argmaxf∈� 𝑈' 𝑥, 𝐵𝑅(𝑥)

In	many	applications
• 𝑋 and	𝑈' and	𝑈# are	highly	structured	(simplex,	convex,	concave)
• So	pure	Stackelberg	optimal	solution	is	still	advantageous	(and	easier	to	
compute)	than	a	mixed	Nash	equilibrium.	

Commitment	
(to	a	mixed	strategy)
is	good	for	you!

Important	Message

Application:	Security	Games
Security	Games:
• Sophisticated	attackers	target	the	weakest	point.	
• Protect	targets,	so	the	high	value	targets	are	not	
attacked.

Defender	(leader):
• 𝑋:	set	of	resources,	each	able	to	protect	some	targets.

Attacker	(follower)
• 𝑌: set	of	targets

𝑢# 𝑥, 𝑦 and 𝑢% 𝑥, 𝑦 utilities	only	depend	on	whether	𝑥
protects	𝑦.

Mixed	strategy:	Random	protection	schedules.

Tambe 2012

Application:	Strategic	Classification
Strategic	Classification:

• Decisions	based	on	observable	attributes	of	applicants.
• Applicants	can	attempt	to	change	this	to	improve	outcome.

Learner	(leader):
• 𝐻:	set	of	classifiers.

Distribution	of	Applicants	(distribution	of	follower)
• 𝑥: Initial	attributes.	Best-response	BR9(ℎ) is	the	
manipulated	attributed.

𝑢# ℎ, BR9(ℎ) captures accuracy of ℎ on	the	new	instance.	
𝑢% ℎ, BR9(ℎ) accounting	for	utility	of	“being	admitted”	and	
the	manipulation	costs.	

Pure	strategywith	a	parameterized	classifier	class.

E.g.,	Hardt	Megiddo,	Papadimitriou,	Wootters ‘15

General-Sum	Games
Ad
ve
rs
ar
ia
l	I
nt
er
ac
tio
ns

Computing	Stackelberg	
equilibria

Learning	Stackelberg	
equilibria

Commitment	and	non-
myopic	agents

The	Utility	Function
Need	to	compute

argmaxI∈� � 𝑈' 𝑃, 𝐵𝑅(𝑃) , where BR(𝑃) = argmaxF 𝑈# 𝑃, 𝑦

In	rare	cases	𝑈' 𝑃, 𝐵𝑅(𝑃) or	𝑈' 𝑥, 𝐵𝑅(𝑥) are	concave	or	Lipschitz	in	the	choice	of	
the	leader.

argmaxf∈� 𝑈' 𝑥, 𝐵𝑅(𝑥) , where BR(𝑥) = argmaxF 𝑈# 𝑥, 𝑦(Pure)	

(Mixed)	

E.g.,	Dong,	Roth,	Schutzman,	Waggoner,	Wu	‘18

Generally,	these	are	not	even	Lipschitz	and	at	best	have	piecewise	properties.

(mixed)	Stackelberg	in	Finite	Games	

For	finite	Stackelberg	Games,	there	is	an	algorithm	with	𝑝𝑜𝑙𝑦(𝑋 , 𝑌).	

Need	to	compute
argmaxI∈� � 𝑈' 𝑃, 𝐵𝑅(𝑃) , where BR(𝑃) = argmaxF 𝑈# 𝑃, 𝑦

For	each	column	𝑦,	mixed	strategies	the	lead	to	best-response	of	𝑦 forms	a	convex	polytope.

𝑃: = 𝑃 ∈ Δ 𝑋 | 𝐵𝑅 𝑃 = 𝑦

Multiple	Linear	Program	Approach

Compute 𝑃:∗ = argmax
X∈X,

𝑈#(𝑃, 𝑦) for each polytope. Take the ones in 𝑦∗ = argmax: 𝑈# 𝑃:∗, 𝑦 .

For all 𝑦Y, 𝑈% 𝑃, 𝑦′ ≤ 𝑈% 𝑃, 𝑦

von	Stengel	and	Zamir’	09,	Korzhyk Conitzer and	Parr’10	

Example	of	the	Multiple	LP	approach

Strategy	2:	Protect	gorillas

St
ra
te
gy
	1
:	P
ro
te
ct
	e
le
ph
an
ts 𝔼) 𝑢-(𝑥, 𝑠𝑠𝑠)

Objective	function:

𝔼) 𝑢.(𝑥, 𝑠𝑠𝑠) ≤ 𝔼) 𝑢.(𝑥, 𝑠𝑠𝑠)
Constraints:

Known	payoffs

Solve	multiple	LPs.	Convex	polytope
𝑃F = 𝑃 ∈ Δ 𝑋 | 𝐵𝑅 𝑃 = 𝑦

Compute	max
�

max
I∈I!

𝑈'(𝑃, 𝑦)

0

-4

0

0
0

-2

2

4

Le
ft

Ri
gh
t

�𝟏 𝟑 + 𝝐 �𝟐 𝟑 − 𝝐
De
fe
nd
er

Attacking

Commitment	in	general-sum	games	
also	makes	computation	easier.

Important	Message

General-Sum	Games
Ad
ve
rs
ar
ia
l	I
nt
er
ac
tio
ns

Computing	Stackelberg	
equilibria

Learning	Stackelberg	
equilibria

Commitment	and	non-
myopic	agents

Learning	a	Stackelberg	Optimal	Strategy

argmaxI∈I* 𝑈' 𝑃, 𝑦 ,where 𝑃F = 𝑃 ∈ Δ 𝑋 | For all 𝑦�, 𝑈# 𝑃, 𝑦′ ≤ 𝑈# 𝑃, 𝑦

Need	to	compute

What	do	we	typically	know?	And	what	has	to be learned?
• For	general-sum	games,	we	know	𝑢' 𝑥, 𝑦 but	not	𝑢# 𝑥, 𝑦 .

àWe	are	able	to observe	𝐵𝑅(𝑃).

Objective	is	known	 Polytope	is	unknown

How	to	optimize	a	linear	program	without	knowing	the	polytope?

Actual	action

Optimization	with	Best-Response	oracle
We	can	use	access	to 𝐵𝑅 ⋅ to	learn	a	Stackelberg	optimal	strategy

St
ra
te
gy
	1
:	P
ro
te
ct
	e
le
ph
an
ts

Strategy	2:	Protect	gorillas

Unknown	payoffs
Followers	best-response	is	
a	membership	query	oracle
for	the	polytope.

Strategy	2:	Protect	gorillas

St
ra
te
gy
	1
:	P
ro
te
ct
	e
le
ph
an
ts 𝔼) 𝑢-(𝑥, 𝑠𝑠𝑠)

Objective	function:

𝔼) 𝑢.(𝑥, 𝑠𝑠𝑠) ≤ 𝔼) 𝑢.(𝑥, 𝑠𝑠𝑠)
Constraints:

There	are	algorithms	that	optimize	a	linear	program	in	𝑅V with	accuracy	𝜖,	using
𝑂(𝑛(ln(1/𝜖))membership	queries.

Solving	LPs	with	Membership	queries

Kalai and	Vempala ’05,	Lee	Sidford Vempala ‘18

Optimization	with	Best-Response	oracle
We	can	use	access	to 𝐵𝑅 ⋅ to	learn	a	Stackelberg	optimal	strategy

There	are	algorithms	that	optimize	a	linear	program	in	ℝV with	accuracy	𝜖,	using
𝑂(𝑛(ln(1/𝜖))membership	queries.

Solving	LPs	with	Membership	queries

Kalai and	Vempala ’05,	Lee	Sidford Vempala ‘18

Using	the	above	algorithm	for	each 𝑃F, y ∈ 𝑌,	gives	an	algorithm	for	learning	the	
mixed	optimal	Stackelberg	solution	in	poly(𝑋 , |𝑌|)membership	queries.

Solving	LPs	with	Membership	queries

H.	Blum,	Procaccia‘14

Different	approaches	in	Letchford Conitzer Muanagal ’09,	Peng,	Shen,	Tang,	Zuo ’19,	etc.

Stackelberg	Regret
Offline	versus	Online	Learning	a	Stackelberg	Optimal	strategy.

In	a	repeated	game:

Stackelberg Regret = max
!∗

1
𝑇 ?
"∈ $

𝑈% 𝑃∗, BR" 𝑃∗ −
1
𝑇 ?
"∈ $

𝑈% 𝑃" , BR" 𝑃"

Balcan,	Blum,	H.	,	Procaccia ’15

𝐵𝑅E 𝑃∗ allows	for	having	different	types	of	followers	each	round.

Stackelberg	Optimal	Strategy	
(single	or	a	distribution	of	followers)

Leader	Utility	per	round	

Offline	algorithms	that	learn	the	optimal	Stackelberg	strategy from	best-response	
queries also	lead	to	No-Stackelberg-Regret algorithms.

Dong,	Roth,	Schutzman,	Waggoner,	Wu	‘18

Stackelberg	Regret	vs	(External)	Regret

Stackelberg Regret = max
!∗

1
𝑇
?
"∈ $

𝑈% 𝑃∗, BR" 𝑃∗ −
1
𝑇
?
"∈ $

𝑈% 𝑃" , BR" 𝑃"

Stackelberg	Optimal	Strategy	
(single	or	a	distribution	of	followers)

(External) Regret = max
!∗

1
𝑇
?
"∈ $

𝑈% 𝑃∗, BR" 𝑃" −
1
𝑇
?
"∈ $

𝑈% 𝑃" , BR" 𝑃"

Utility	of	best	in	Hindsight,	
on	the	historical	observation	

Recall	the	notion	of	regret	from	yesterday	(aka	External	Regret)

Stackelberg	Regret	vs	(External)	Regret

Stackelberg	Optimal	Strategy	Utility	of	best	in	Hindsight,	
on	the	historical	observation	

Stackelberg	and	External	Regret	are	worst-case	Incompatible
• Any	no-regret	algorithm,	will	have	O(1)	Stackelberg	regret	in	some	cases.
• Any	no-Stackelberg-regret	algorithm,	will	have	O(1)	external	regret	in	some	cases.

Comparison	between	Regret	notions

Chen,	Liu,	Podimata’19

Why?
• The	advantage	of	Stackelberg	optimal	solution	is	that	it’s	not	a	best-response	to	the	
follower	(that’s	Nash’s	job)	
à Stackelberg	solution	must	appear	to	be	not	optimal	over	the	past.

• External	regret	does	not	account	for	the	fact	that	the	follower	will	adapt	to	best	respond.	

VS

We	can	not	have	best	of	both	world.	

Need	to	know	whether	the	
strategically	react	to	us	or	not

Important	Message

Bandits	and	Stackelberg	Regret

Stackelberg Regret = max
I∗

1
𝑇
l
E∈ L

𝑈' 𝑃∗, BRE 𝑃∗ −
1
𝑇
l
E∈ L

𝑈' 𝑃E, BRE 𝑃E

Generally	online	Stackelberg	games	are	partial-information	optimization	problems

Two	challenges	as	discussed	before:
• Optimization	problems	is	usually	non-convex,	non-Lipschitz.

à Structured,	piecewise	in	particular	for	finite	games.	
• Partial	information:	
• Observation	in	one	round	𝑓E 𝑃E does’t	reveal	𝑓E 𝑃� .
• More	than	bandit	information,	we	see	BRE 𝑃E .
• Exploration	more	tuned	to	the	information	and	structure.

𝑓E(𝑃∗) 𝑓E(𝑃E)

General-Sum	Games
Ad
ve
rs
ar
ia
l	I
nt
er
ac
tio
ns

Computing	Stackelberg	
equilibria

Learning	Stackelberg	
equilibria

Commitment	and	non-
myopic	agents

Learning	and	Commitment	Revisited	
Learning	is	antithetical	to	Stackelberg	games:
• Advantage	of	Stackelberg	(over	Nash)	is	the	power	to	commit.
• Learning	algorithms	don’t	commit.	

Non-myopic	agents:	Agents	optimize	over	or	infinitely	repeated	game.

𝟏 𝟐

Leader Follower

Cheap	talk
Actions	that	have	no	impact	on	long	term	utility

Inhibits	learning

Discussion	of	ongoing	work	H.,	Lykouris,	Nietert,	and	Wei	‘22.	Preprint	coming	soon.

Infinitely	Repeated	Games	Formality	
Typical	assumptions:

• One	or	both	agents	receive	discounted	utilities*.
• One	or	both	agents	come	from	a	larger	set	(large	market).

*	Common	in	Reinforcement	learning	and	various	various	Folk	theorems	in	Economics.

Just	the	follower

Follower:
• Doesn’t	best	respond	necessarily.
• Strategy	account	for	both	past	and	future
• Chooses	a	policy	to	select	𝑄E𝑠 that	(approx.)	optimize	expected	discounted	utility

𝔼 l
EK'

L

𝛾E 𝑈# 𝑃E, 𝑄E | Algorithm, follower policy

Leader’s	commitment	to	an	algorithm
Principled	approach	to	design

Controlling	the	flow	of	information
Cheap	talk	not	so	cheap	anymore
• Discounted	utility:	Lost	opportunity,	for	not	best-responding	instantaneously.
• We	can	control	the	rate	using	additional	barriers

𝟏 𝟐

Leader Follower

Encourages	approximate	best	responding

Can	a	learner	learn	despite	the	barrier?

“Barriers”	to	encourage	Incentive-Compatibility
Barriers:	
• Natural	to	delay	information,	by	𝐷 steps.
• For	large	enough	𝐷,	the	total	expected	gain	from	future	is	small.
• So	𝑄E is	an	approximate	best	response.

𝑈# 𝑃E, 𝑄E ≥ 𝑈# 𝑃E, 𝐵𝑅 𝑃E − 𝜖

Approximate	best	response:
• Guarantees	“some”	closeness	between
𝑈' 𝑃E, 𝑄E and	𝑈' 𝑃E, 𝐵𝑅 𝑃E

• In	finite	games,	only	problem	at	the	boundaries

Wish	we	could	see	𝑓!(𝑃!)

Strategy	2:	Protect	gorillas

St
ra
te
gy
	1
:	P
ro
te
ct
	e
le
ph
an
ts 𝑈- 𝑃% , 𝑄% = 𝑈- 𝑃% , 𝐵𝑅 𝑃%

1. Optimize	𝑓! 𝑃! = 𝑈# 𝑃! , 𝐵𝑅 𝑃! from	bandit	observations.

2. Be	robust	to	some	misspecification	of	𝑓! 𝑃! ,	say	 ¤𝑓! 𝑃! .
àDifferent	only	in	some	small	or	structured	sets.
àPointwise close	everywhere.

3. Be	able	to	handle	delays	

𝟏 𝟐

Leader Follower

(Common	robustness	guarantees)

(Even	for	myopic	agent)

(More	on	this)

Algorithmic	Desiderata

Designing	algorithms	for	delayed	feedback
A	better	studied	setting	of	“Batched	Bandits”.

Batched	Bandits:	
Algorithm	submits	queries	in	batches	of	𝐷 and	receives	responses	after	the	batch	is	done.
• Advantage:	More	common	in	optimization.

Delays	=	Batched	Bandits

HLNW’22

Algorithm	with	Regret=
for	delays	of	𝐷 steps.

Algorithm	with	
𝑅𝑒𝑔𝑟𝑒𝑡= and	batches	
of	size	𝐷.

Algorithm	with	𝑅𝑒𝑔𝑟𝑒𝑡= and	
batches	of	size	𝐷 each	batch	
delayed	by	1 batch.	

O 1 ×

Algorithmic	Desiderata

1. Optimize	𝑓! 𝑃! = 𝑈# 𝑃! , 𝐵𝑅 𝑃! from	bandit	observations.

2. Be	robust	to	some	misspecification	of	𝑓! 𝑃! ,	say	 ¤𝑓! 𝑃! .
àDifferent	only	in	some	small	or	structured	sets.
àPointwise close	everywhere.

3. Be	able	to	handle	delays	

𝟏 𝟐

Leader Follower

Robust	Batched	
Bandit	algorithm

Algorithmic	Desiderata

1. Optimize	𝑓! 𝑃! = 𝑈# 𝑃! , 𝐵𝑅 𝑃! from	bandit	observations.

2. Be	robust	to	some	misspecification	of	𝑓! 𝑃! ,	say	 ¤𝑓! 𝑃! .
àDifferent	only	in	some	small	or	structured	sets.
àPointwise close	everywhere.

3. Be	able	to	handle	delays	

Robust	Batched	
Bandit	algorithm

HLNW’22

Any	robust	batched	bandit	algorithm	for	𝑈# 𝑃! , 𝐵𝑅 𝑃! can	turn	into	an	algorithm	that	
in	presence	of	non-myopic	agents,	achieves	vanishing	Stackelberg	regret		

Reduction	for	Non-Myopic	Agents

Robust	Batched	Bandit	Algorithm
In	the	most	common	three	frameworks	of	bandit	optimization,	we	can	design	robust	
batched	bandit	algorithms.

• Multiple	LP	approach	with	Membership	Queries:	Lee	Sidford Vempala comes	with	
robustness	built	in.	Adjust	the	approach	of	Blum	Procaccia H. to	use	this	robustness.
à Useful	for	all	finite	games.	Especially	nice	with	security	games.

• Bandit	Convex	Lipschitz	Optimization	(without	gradients):	Some	algorithms	come	with	
robustness	built	in.
à Useful	for	many	strategic	classification	settings.	

• Multi-armed	bandits:	We	introduce	an	algorithm	that’s	both	robust	and	is	especially	
effective	when	batched.
à Useful	for	all	discretized	algorithms,	auctions,	demand	learning,	etc.

Handle	non-myopic	agents,	by	
controlling	the	flow	of	information.	

Leverage	(adversarial	robustness)	
in	bandit	algorithms.

Important	Message

Beyond	this	tutorial
Non-myopic	agents:
• Online	auctions:	Amin	Rostamizadeh Syed’13	and	‘14,	Mohri Munoz’14,	Huang	Liu	
Wang’18,	Abernethy	Cummings	Kumar	Morgenstern	Taggart’19,	Golrezaei
Javanmard Mirrokni’19,	Golrezaei,	Jaillet,	Liang’19.
• Strategic	classification	and	commitment	through	the	algorithmic	framework:	Zrnic
Mazumdar	Sastry	Jordan	‘21.

Other	tools	for	learning	and	incentive-compatibility:
• Differential	privacy	as	a	tool:	McSherry	Talwar’07,	Nissim	Smorodinsky,	
Tennenholz’12,	Kearns	Pai	Roth	Ullman’14,	Huang	Liu	Wang’18,	Abernethy	
Cummings	Kumar	Morgenstern	Taggart’19.

Tutorial	Overview
1. Adversarial	Interaction

• Offline,	Online	adversarial	learning,	and	Zero-sum	Games
• Beyond	the	worst-case	adversaries
• Computational	Challenges

2. General	Strategic	Interactions
• General-sum	games	and	Stackelberg	concept

• Learning	and	Stackelberg	equilibria
• Learning	in	presence	of	non-myopic	agents

3. Collaborative	Interactions
• Models	of	data	sharing	for	learning
• Average	vs.	Per-Agent	learning	guarantees
• Individual	Rationality	and	Equilibria

Wednesday	

Thursday	

Models	for	collaborative	
learning

Average	vs	Per-agent	
guarantees

Rationality	and	
Equilibria

Co
lla
bo
ra
tio
n	
in
	L
ea
rn
in
g

Models	for	collaborative	
learning

Average	vs	Per-agent	
guarantees

Rationality	and	
Equilibria

Co
lla
bo
ra
tio
n	
in
	L
ea
rn
in
g

Collaboration

Decisions	to	Act Information	
Collection

More	Data	…	More	Stakeholders

1.	Data	is	spread	across	several	sources

2.	Individualized	and	heterogenous	learning	objectives

3.	Individual	data	sources	have	external	objectives	as	a	whole

Enabling	large	numbers	of	learning	agents

to	collaboratively	accomplish	their	goals

using	collectively	fewer	resources.

Starting	to	be	used	across	network	of	devices,	hospitals,	etc.

Behind	major	scientific	breakthroughs:	Mapping	the	biological	
mechanisms	underlying	schizophrenia	in	a	large	scale collaboration	of	
data	from	than	100	institutions.

Data	Sharing	and	Federated	Learning

Large	Scale	Impact	from
Mass	Participation

Recruit	and	Retain

Meeting	Individual	Learning	Guarantees
Federated	algorithms	work	well	on	average	over	the	data	sources
• Good	for	learning	across	data	centers.
• Good	for	when	the	data	is	homogenous	across	sources.

Human	and	organization	data:
• For	non-homogenous	tasks,	a	model	that	has	5%	error	on	average
can	have	50%	error	for	 ⁄𝟏 𝟏𝟎 of	the	agents.

Meeting	Individual	Learning	Guarantees
Federated	algorithms	work	well	on	average	over	the	data	sources
• Good	for	learning	across	data	centers.
• Good	for	when	the	data	is	homogenous	across	sources.

Human	and	organization	data:
• For	non-homogenous	tasks,	a	model	that	has	5%	error	on	average
can	have	50%	error	for	 ⁄𝟏 𝟏𝟎 of	the	agents.

Every	agent	uses	40	
iterations.

Every	agent	has	to
use	75	iterations.

Iteration	=	#samples/64

Va
lid
at
io
n	
ac
cu
ra
cy

Avg	accuracy	>0.7 min	accuracy	>0.7

Blum,	H,	Phillips,	Shao	‘21

Can	we	ensure	that	every	learning	agent	
has	high	accuracy	…

…	from	reasonably	small	amount	of	data?

Models	for	collaborative	
learning

Average	vs	Per-agent	
guarantees

Rationality	and	
Equilibria

Co
lla
bo
ra
tio
n	
in
	L
ea
rn
in
g

Collaborative	Learning
There	are	𝑘 populations/distributions	𝒟�, 𝒟�, … , 𝒟� .	

max
 ∈[�]

err𝒟: 𝑓 ≤ 𝜖

How	much	data	suffices	for	every	
learner	to	have	high	accuracy?

𝒟#
𝒟(𝒟@

𝒟A

We	want	the	to	learn	a	model	𝑓 that	is	good	for	every	population.

Blum,	H,	Procaccia,	Qiao ’17

Collaboration	Needs	Interactions
The	trouble	with	standard	algorithms:

Lack	of	interactions	(except	to	perform	distributed	computation)
à #	of	samples,	learning	rates,	and	update	frequencies	for	an	agent	is	
decided	non-interactively.

Sample	complexity	of		existing	
algorithms,	for	𝑘 agents

Learning	for	1	agent	separately
1	agent	#	samples

= Θ 𝑘 ×

Without	an	“interactive”	protocol,	
collaboratively	learning	is	(almost)	as	
ineffective	as	not	collaborating	at	all.

Collaboration	Needs	Interactions
The	trouble	with	standard	algorithms:

Lack	of	interactions	(except	to	perform	distributed	computation)
à #	of	samples,	learning	rates,	and	update	frequencies	for	an	agent	is	
decided	non-interactively.

Sample	complexity	of		existing	
algorithms,	for	𝑘 agents

Learning	for	1	agent	separately
1	agent	#	samples

= Θ 𝑘 ×

There	is	an	algorithm
Overall	#	samples

Learning	for	1	agent	separately
1	agent	#	samples

= Θ(log 𝑘)×

Adjusting	sample	collection	based	on	past	performance
Interactivity

A	MinMax Optimization	
Between	the	algorithm	and	a	hypothetical	adversary	that	chooses	the	worst-off	agent

min
'∈(

max
)∈[+]

𝑒𝑟𝑟-b(𝐻)

Solve	with	a	no-regret	algorithm	against	a	best-responding	agent.
Player	2

Player	1

Player	2:	The	no-regret	learning	agent.	Maintains	a	distribution	over	[𝑘],	say	

weights	𝛼'E, … , 𝛼�E over	the	agents.		Proxy	of	how	poorly	they’ve	been	doing	so	far.

Player	1:	The	best-responding	agent.	For	any	distribution	over	[k],	𝛼'E, … , 𝛼�E ,	it	uses	

an	Empirical	Risk	Minimizer	to	learn	ℎE ∈ 𝐻 on	the	distribution	𝑃E = ∑𝛼�E𝐷�

𝜖� ≥
1
𝑇
l
E

𝑒𝑟𝑟I, ℎE ≥ max
�∈ �

1
𝑇
l𝑒𝑟𝑟l- ℎ

E − 𝑅𝑒𝑔𝑟𝑒𝑡

Online	learning	as	a	medium	for	
collaboration

Important	Message

Models	for	collaborative	
learning

Average	vs	Per-agent	
guarantees

Rationality	and	
Equilibria

Co
lla
bo
ra
tio
n	
in
	L
ea
rn
in
g

Beyond	Accuracy	Guarantees

Agents	also	incur	cost	for	collecting	information:

• E.g.,	cost	for	data	set	curation,	privacy	cost,	etc.

• The	protocol	shouldn’t	ask	for	“unreasonable”	amount	of	data.

àCollaboration	should	be	beneficial	to	all	of	its	users.

Achieve	desirable
per-agent	tradeoff	between	

accuracy	and	sample	complexity

A	theory	for	multi-agent	sample	
complexity!	

[Blum,	H,	Phillips,	Shao	’21]

Reasonable	Share	of	Data
What	we	ask	of	agent 𝑖 is	unreasonable	if:
• Ask	𝑖 for	more	data	than	necessary,	if	he	were	to	learn	by	himself.
• Part	of	𝑖’s	contribution	is	exclusively	used	to	meet	the	accuracy	
constraint	of	other	agents	and	did	not	affect	agent 𝑖.

(𝑚�, 𝑚�, …𝑚 …𝑚�)

1.	Every	agent’s	accuracy	constraint	is	met,	and
2.	No	agent	collects	more	data	than	he	needs,	by	himself.

(0,0, … ,𝑚¢
 , … 0)

Individually	Rational

If													‘s	accuracy	constraint	is	
met	𝑚� ≤ 𝑚′�

#	of	collected	samples

Reasonable	Share	of	Data

1.	Every	agent’s	accuracy	constraint	is	met,	and
2.	No	agent	can	reduce	her	contribution	and	still	meet	her	accuracy	
constraint.		

(𝑚�, 𝑚�, …𝑚′ …𝑚�)

Stable	Equilibrium

𝑚′4 < 𝑚4

‘s	accuracy	constraint	won’t	
be	met

(𝑚�, 𝑚�, …𝑚 …𝑚�)

What	we	ask	of	agent 𝑖 is	unreasonable	if:
• Ask	𝑖 for	more	data	than	necessary,	if	he	were	to	learn	by	himself.
• Part	of	𝑖’s	contribution	is	exclusively	used	to	meet	the	accuracy	
constraint	of	other	agents	and	did	not	affect	agent 𝑖.

[Blum,	H,	Phillips,	Shao	’21]

Rationality	and	Equilibria	Matter

𝑖

Welfare	of	the	agents:
• Receiving	a	reasonable	return	in	what	resources	you	put	in.

Usability	and	stability	of	systems	over	time:
• Even	a	small	reduction	in	contribution	across	the	agents	impacts	
algorithmic	performance.

60%	of	agents	can	unilaterally	
reduce	their	contributions	to	5%	
of	current	levels.

Fr
ac
.	d
ef
ec
to
rs
	sa
tis
fie
d

Frac.	contribution	for	defectors

State	of	the	art	learning	algorithms	are	VERY	far	from	equilibrium

Do	Equilibria	exist?

Unfortunately,	some	learning	
problems	have	no	stable	equilibrium!

But	they	do	generally	exist	
under	mild	assumptions

that	are	met	in	most	applications.

Existence	of	Equilibria

Each	agent	is	much	much	better	at	completing	the	next	agents	task,	then	their	own.

Let	the	labels	an	instance	in													‘s	distribution,	encode	the	target	function	for	the	

next	agent,	as	well	as	revealing	the	target	on	their	data. Samples

Not	
SamplesSamples

Not	Samples

Cycling	behavior:
• Non-continuous	functions	and	actions
• More	of	a	pure	strategy	equilibrium.

Are	Equilibria	Efficient?
They	may	require	more	collective	resources	
than	the	optimal	collaboration!

Judiciously	introduce	small	inefficiencies,	so	
everyone	can	continue	benefitting	from	the	system.		

In	some	cases,

Best	equilibrium	=
Some	agents	don’t	
contribute,	others	
optimally	collaborate.

Difficulty	of	Rationality	and	Stability
Individually	rational	or	stable	equilibria,	require	more	collective	resources	than	the	
optimal	collaboration.

Optimal:											does	all	the	work,	
others	do	nothing.

Equilibrium:											does	no	work.	
Other	agents	have	to	do	the	work.

Overall	#	samples	in	
the	best	equilibrium = Ω # agents × Overall	#	samples	in	the	

optimal	collaboration

Equilibrium/Individual	Rationality:	Total	work	required	to	be	done	by	other	agents	is	large.

Optimality,	Equilibria,	and	Free	Riding
In	some	cases,	equilibria	are	highly	structured.

If	the	utility/loss	of	agents	are	linear	functions	of	the	contribution:

Difference	between	optimal:
• Any	equilibrium is	an	optimal	collaboration	among	a	subset	of	agents.
• Free	riding	is	part	of	equilibria.	
à But	it	doesn’t	impact	optimality of	the	contributions	of	participating	
agents.

Important	Message

New	mathematical	foundation	needed	to	

design	learning	algorithms	that	act	globally,	

and	consider	per-agent	incentives	and	objectives.	

Tutorial	Overview
1. Adversarial	Interaction

• Offline,	Online	adversarial	learning,	and	Zero-sum	Games
• Beyond	the	worst-case	adversaries
• Computational	Challenges

2. General	Strategic	Interactions
• General-sum	games	and	Stackelberg	concept

• Learning	and	Stackelberg	equilibria
• Learning	in	presence	of	non-myopic	agents

3. Collaborative	Interactions
• Models	of	data	sharing	for	learning
• Average	vs.	Per-Agent	learning	guarantees
• Individual	Rationality	and	Equilibria

Wednesday

Thursday

Learnability	for	Today’s	World

Environment
Learning	
Algorithms	

Learnability
Q1.	What	concepts	can	be	learned	in	presence	of	strategic	and	adversarial	behavior?
à Lessons	for	todays	world	from	decade	of	efforts	for	understanding.

Q2.	How	to	design	learning	for	strategic	and	adversarial	environment?
àComputational	overheads
àPrincipals	on	how	to	use/not	use	data	in	strategic	environments.

Q3.	How	can	we	design	collaborative	environment	that	encourage	learner	participation?
à Incentives	of	learning	algorithms	and	data	providers
àDeliver	the	optimal	learning	algorithms	for	agents	and	the	society.

Q4.	Generally,	how	do	these	learning	paradigms	relate	to	one	another?

