Learning as a Solution Concept (in repeated games)

Éva Tardos Cornell, Computer Science

Talk outline

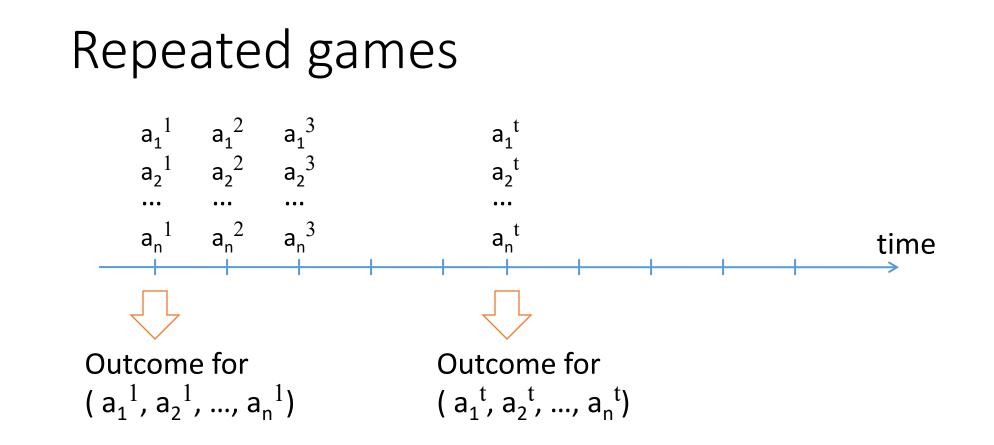
- 1. Example games, and questions we want to ask:
 - What do we mean by learning?
 - What can we say about outcome of learning?
- 2. No-regret learning as a behavioral assumption: pros and cons
- 3. Quality of learning outcomes: price of anarchy
- 4. Limitation of no-regret as a solution concept
 - Can be hard to achieve small regret: what may be possible?
 - No-regret may lead us in the wrong direction
- 5. Extension on price of anarchy results via improved learning

Example 1: traffic routing

- Traffic subject to congestion delays
- cars and packets follow shortest path
- Congestion game =cost (delay) depends only on congestion on edges

Example 2: advertising auctions

advertising auctions



- Player's value/cost additive over periods, while playing
- We assume: Players try to learn what is best from past data What can we say about the outcome?
 What do we mean by "learning from data"?

High Social Welfare: Price of Anarchy in Routing

Theorem (Roughgarden-T'02):

In any network with continuous, non-decreasing cost functions and very small users

cost of Nash with rates r_i for all i

 \leq

cost of opt with rates <mark>2r_i for all i</mark>

Nash equilibrium: stable solution where no player had incentive to deviate.

Price of Anarchy=

cost of worst Nash equilibrium

"socially optimum" cost

Games and Solution Quality

Tragedy of the Commons

Rational selfish action can lead to outcome bad for everyone

Model:

- Value for each cow decreasing function of # of cows
- Too many cows: no value left

More examples of price of anarchy bounds

Monotone increasing congestion costs

Nash cost ≤ opt of double traffic rate (Roughgarden-T'02)

- affine congestion cost (Roughgarden-T'02) 4/3 price of anarchy
- Atomic game (players with >0 traffic) with linear delay (Awerbuch-Azar-Epstein & Christodoulou-Koutsoupias'05) 2.5 price of anarchy
- Bandwidth sharing (Johari-Tsitsiklis'04) 4/3 price of anarchy

Price of anarchy in auctions

• First price is auction Hassidim, Kaplan, Mansour, Nisan EC'11)

Price of anarchy 1.58...

• All pay auction

- price of anarchy 2
- First position auction (GFP) is price of anarchy 2
- Variants with second price (see also Christodoulou, Kovacs, Schapira ICALP'08) price of anarchy 2

Other applications include:

- public goods
- Fair sharing (Kelly, Johari-Tsitsiklis) price of anarchy 1.33
- Walrasian Mechanism (Babaioff, Lucier, Nisan, and Paes Leme EC'13)

Learning in Repeated Game

- What is learning?
- Does learning lead to finding Nash equilibrium?

Brown'51, Robinson'51:

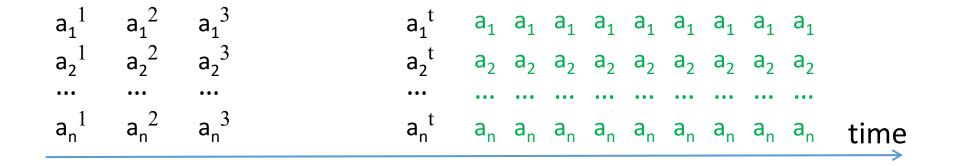
fictitious play = best respond to past history of other players
 Goal: "pre-play" as a way to learn to play Nash.

Outcome of Fictitious Play in Repeated Game

• Does learning lead to finding Nash equilibrium? mostly not

Theorem: Marginal distribution of each player actions converges to Nash in Robinson'51: In two player 0-sum games Miyasawa'61: In generic payoff 2 by 2 games

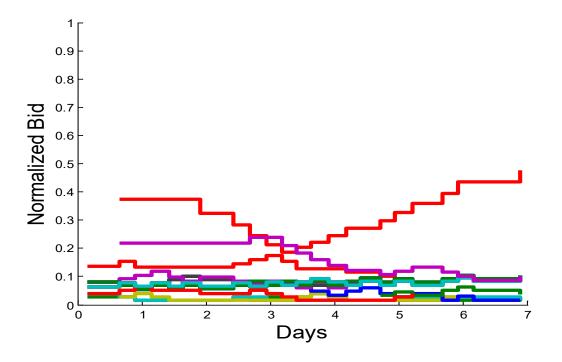
Finding Nash of the one-shot game?



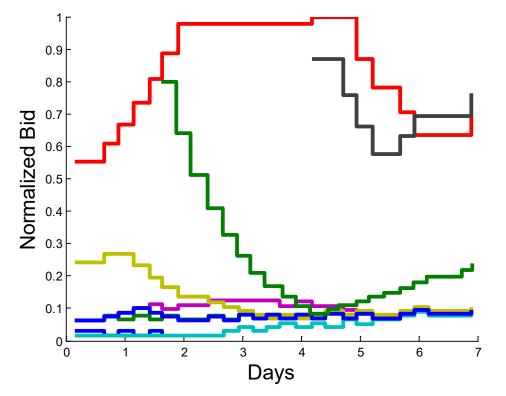
Nash equilibrium of the "one-shot" game:

- Stable actions a
- with no regret for any alternate strategy *x*:

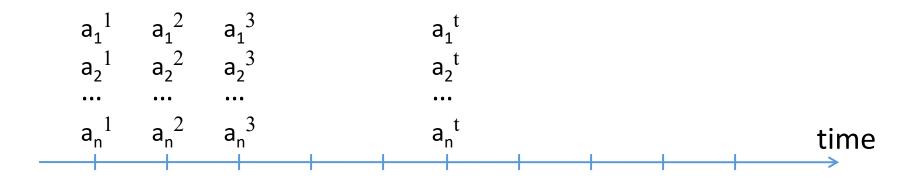
Behavior is far from stable data from Nekipelov, Syrgkanis, T.'15



Bing search advertisement bid Bidders use sophisticated bidding tools

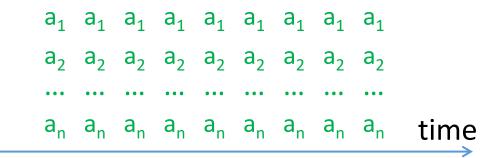


Change of focus: Outcome of learning while playing

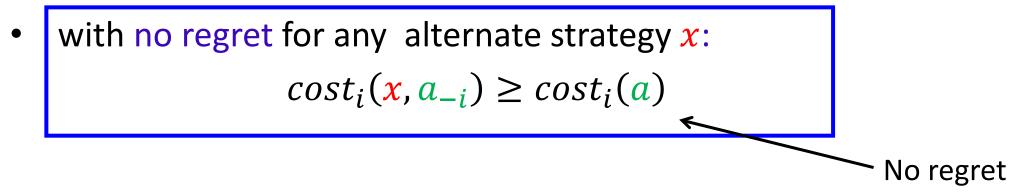


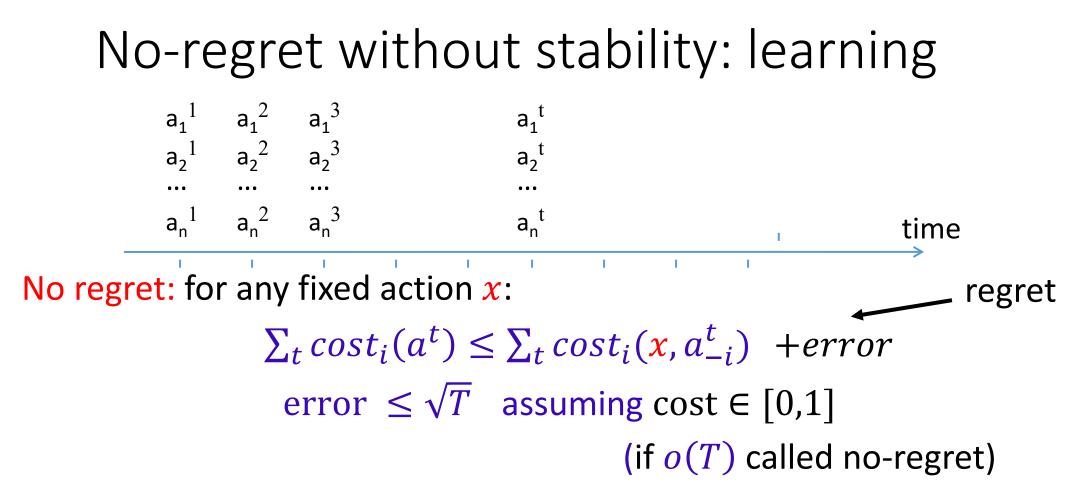
Maybe here they don't know how to play, who are the other players, ... By here they have a better idea...

Recall: No regret at Nash:



• Stable actions a





Many classical online learning algorithms

Hannan consistency [Hannan'57] Multiplicative weights (Hedge) [Freund-Schapire'97] Follow the perturbed leader [Kalai-Vempala'03]

Alternate: approximate no-regret

For any fixed action \boldsymbol{x} (with d options) :

$$\sum_{t} cost_{i}(a^{t}) \leq \sum_{t} cost_{i}(x, a_{-i}^{t}) + \sqrt{Tlog d}$$

T=time, d=# strategies

In fact, much better bound applies:

$$\sum_{t} cost_{i}(a^{t}) \leq (1+\epsilon) \sum_{t} cost_{i}(\mathbf{x}, a_{-i}^{t}) + \frac{\log d}{\epsilon}$$

Same algorithms!

Multiplicative weights (Hedge) [Freund-Schapire'97]

Follow the perturbed leader [Kalai-Vempala'03]

Outcome of no-regret learning = (Coarse) correlated equilibrium

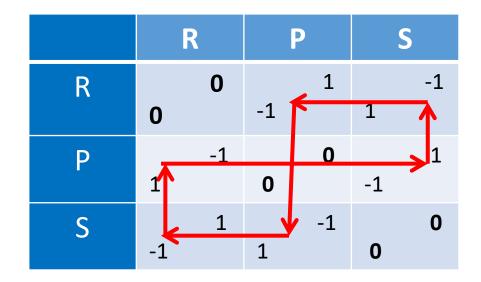
Coarse correlated equilibrium: probability distribution of outcomes such that for all players

expected payoff \geq exp. payoff of any fixed strategy

Coarse correlated eq. & players independent = Nash

Theorem [Freund and Schapire'99, Robinson'51] In two-person 0-sum games play converges to Nash value, and Nash strategy for all players

but play is correlated



Outcome of no-regret learning in a fixed game

Limit distribution σ of play (action vectors $a=(a_1, a_2, ..., a_n)$)

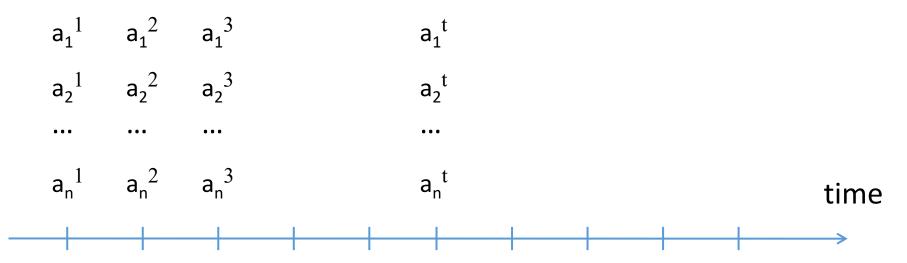
• all players i have no regret for all strategies x

$$E_{a\sim\sigma}(cost_{i}(a)) \leq E_{a\sim\sigma}(cost_{i}(x, a_{-i}))$$

Hart & Mas-Colell: Long term average play is (coarse) correlated equilibrium

Players update independently, but correlate on shared history

No-regret as a model of learning?



For any fixed action \boldsymbol{x} (with d options) :

 $\sum_{t} cost_{i}(a^{t}) \leq (1 + \epsilon) \sum_{t} cost_{i}(\mathbf{x}, a_{-i}^{t}) + \epsilon T$ T=time horizon

Behavioral model, first suggested Blum, Hajiaghayi, Ligett, Roth'08 in the context of traffic routing and Christodoulou, Kovacs, Schapira '08 in context of auctions (as opposed to analyzing outcomes of algorithms).

Behavioral assumption: if there is a consistently good strategy: please notice!

No-regret as a model of learning?

Behavioral assumption: if there is a consistently good strategy: please notice! For any fixed action x (with d options) :

 $\sum_{t} cost_{i}(a^{t}) \leq (1 + \epsilon) \sum_{t} cost_{i}(\mathbf{x}, a_{-i}^{t}) + \epsilon T \qquad \text{T=time horizon}$

Pros: Behavioral model that can be used in theory!

- Algorithms: Many simple rules ensure small regret
- No need for common prior or rationality assumption on opponents

Cons:

- Can we too hard to do in multi-parameter problems: Yang-Papadimitriou'14, Daskalakis-Syrgkanis'16
- It may not be best response if others use no-regret learning:
- We can except players do to better than no regret: changing environment, policy regret

No-regret learning as a behavioral model?

- Er'ev and Roth'96
 - lab experiments with 2 person coordination game
- Fudenberg-Peysakhovich EC'14

lab experiments with seller-buyer game recency biased learning

• Nekipelov-Syrgkanis-T. EC'15

Bidding data on Bing-Ad-Auctions

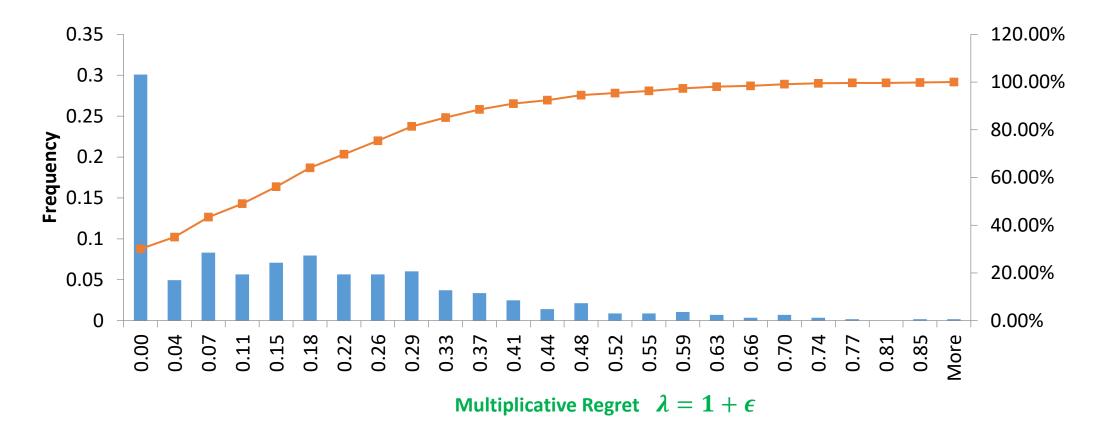
• Nisan-Noti WWW'17

Lab experiment with ad-auction games

• Nekipelov-Jalaly-Tardos '18

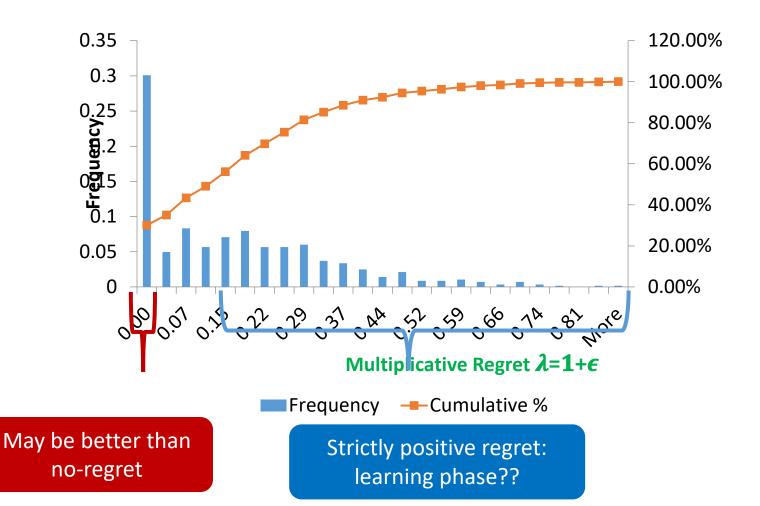
Zillow ad-data

Distribution of smallest rationalizable multiplicative regret data from Nekipelov, Syrgkanis, T.'15



Frequency — Cumulative %

Distribution of smallest rationalizable multiplicative regret data from Nekipelov, Syrgkanis, T.'15



Nekipelov, Syrgkanis, T'15:

Economerics for learners: using learning (instead of Nash) as an assumption to infer values

Change of focus: Quality of Learning Outcome

Price of Anarchy [Koutsoupias-Papadimitriou'99]

$$PoA = \max_{a Nash} \frac{cost(a)}{Opt}$$

Assuming **no-regret learners** in fixed game: [Blum, Hajiaghayi, Ligett, Roth'08, Roughgarden'09]

$$PoA = \lim_{T \to \infty} \frac{\sum_{t=1}^{T} cost(a^{t})}{T \ Opt}$$

[Lykouris, Syrgkanis, T. 2016] dynamic population

$$PoA = \lim_{T \to \infty} \frac{\sum_{t=1}^{T} cost(a^{t}, v^{t})}{\sum_{t=1}^{T} Opt(v^{t})}$$

where v^{t} is the vector of player types at time t

Proof Technique: Smoothness (Roughgarden'09)

Consider optimal solution: player i does action a_i^* in optimum Nash: $\operatorname{cost}_i(a) \leq \operatorname{cost}_i(a_i^*, a_{-i})$ (doesn't need to know a_i^*)

A game is (λ,μ) -smooth $(\lambda > 0; \mu < 1)$: if for all strategy vectors a

$$\sum_{i} \operatorname{cost}_{i}(a) \leq \sum_{i} \operatorname{cost}_{i}(a_{i}^{*}, a_{-i}) \leq \lambda \operatorname{OPT} + \mu \operatorname{cost}(a)$$

Then: A Nash equilibrium a has $\operatorname{cost}(a) \leq \frac{\lambda}{1-\mu} \operatorname{Opt}$

If Opt <<cost(a), some player will want to deviate to a_i^* as $\lambda OPT + \mu cost(a) < cost(a)$

Learning and price of anarchy

Use approx no-regret learning:

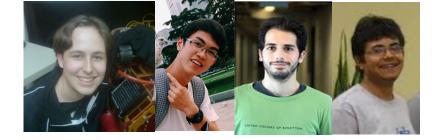
 $\sum_{t} cost_{i}(a^{t}) \leq (1+\epsilon) \sum_{t} cost_{i}(a_{i}^{*}, a_{-i}^{t}) + AR$

A cost minimization game is (λ,μ) -smooth $(\lambda > 0; \mu < 1)$: $\sum_{t} \sum_{i} cost_{i}(a_{i}^{*}, a_{-i}^{t}) \leq \lambda \sum_{t} Opt + \mu \sum_{t} cost(a^{t})$

A approx. no-regret sequence a^t has

$$\frac{1}{T}\sum_{t} cost(a^{t}) \leq \frac{(1+\epsilon)\lambda}{1-(1+\epsilon)\mu} \operatorname{Opt} + \frac{n}{T(1-(1+\epsilon)\mu)} \operatorname{AR}$$

Speed of Convergence



Special method (e.g., optimistic graduate decent):

2-person 0 sum games: Popov'80

Daskalakis, Deckelbaum, Kim'11, Rakhlin, Sridharan'13

General game:

Syrgkanis, Agarwal, Luo, Schapire'15

General game and **no-regret as a behavioral model**:

Foster, Li, Lykouris, Sridharan, T, NIPS'16

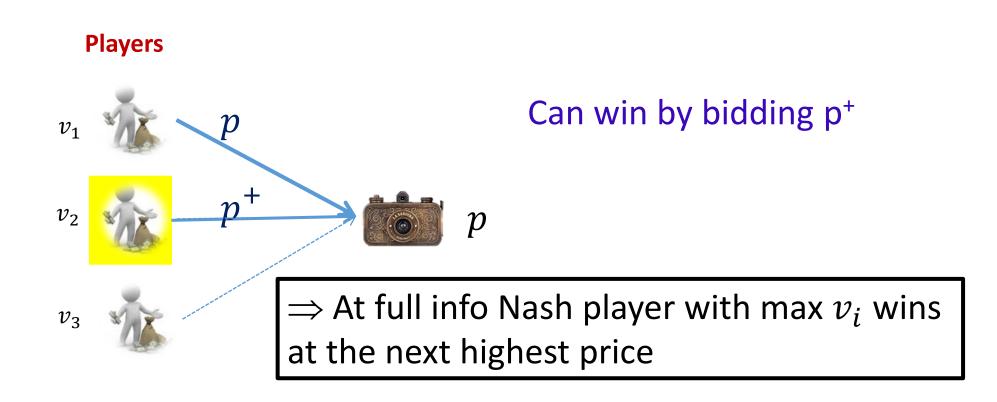
$$\frac{1}{T}\sum_{t} cost(a^{t}) \leq \frac{(1+\epsilon)\lambda}{1-(1+\epsilon)\mu} \operatorname{Opt} + \frac{n}{T(1-(1+\epsilon)\mu)} \operatorname{AR}$$

Note the convergence speed! $AR = \frac{\log d}{\epsilon}$, so error $\left(\frac{\frac{n}{T} \cdot \frac{\log d}{\epsilon(1-(1+\epsilon)\mu)}}{\frac{1}{T} \cdot \frac{\log d}{\epsilon(1-(1+\epsilon)\mu)}}\right)$

Illustrative example: A utility game: Auction

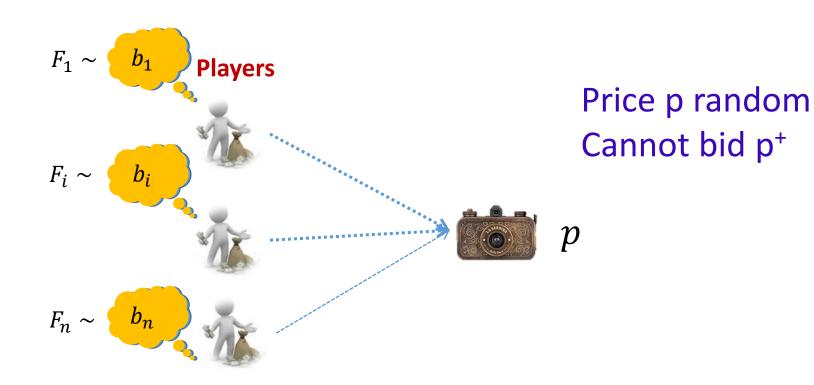
First Example: Single item first price

• Auction sets a price p (full info, pure Nash).



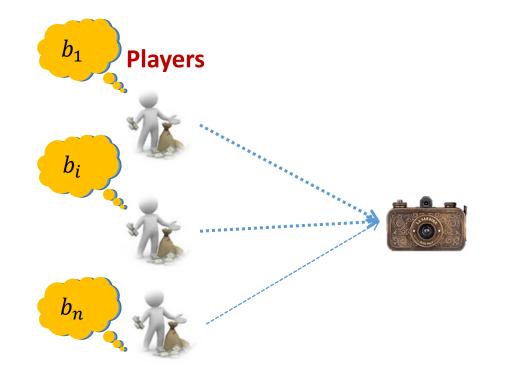
First price auction with uncertainty?

- Bayesian game
- Randomized bid



Bayes Nash analysis

Strategy: bid as a function of value $b_i(v)$ Nash: $E_{v_{-i}b} [u_i(b(v))|v_i] \ge E_{v_{-i}b_{-i}} [u_i(b'_i, b_{-i}(v_{-i}))|v_i]$ for all b'_i



Auction games:

- Finite set of players 1,...,n
- strategy sets S_i for player i: bid on some items (not a finite set)
- Resulting in strategy vector: $s=(s_1, ..., s_n)$ for each $s_i \in S_i$
- Utility player i: $u_i(s)$ or $u_i(s_i, s_{-i})$
 - We assume quasi-linear utility, and no externalities:
 - If player wins set if items A_i and pays p_i her value is $u_i(A_i, p_i) = v_i(A_i) p_i$
- Social welfare? (include auctioneer): $\sum_i v_i(A_i) = \sum_i u_i(A_i) + \sum_i p_i$

Revenue

Smoothness variant for auctions

Smoothness in games: there exists strategies s_i^* :

$$\sum_{i} cost_{i}(s_{i}^{*}, s_{-i}) \leq \lambda \ OPT + \mu \ cost(s)$$

For utility games: $\sum_{i} u_{i}(s_{i}^{*}, s_{-i}) \geq \lambda \ OPT - \mu \ SW(s)$

Variant [Syrgkanis-T'13]: Auction game is λ -smooth if for some λ >0 and some strategy s* and all s we have

$$\sum_{i} u_{i}(s) \leq \sum_{i} u_{i}(s_{i}^{*}, s_{-i}) \geq \lambda opt - Rev(s)$$

Nash i

Theorem: λ -smooth auction game \Rightarrow Price of anarchy for any $\leq \frac{1}{\lambda}$

Social welfare: SW(s) = $\sum_{i} u_i(s) + Rev(s)$

revenue

Robust Analysis: first price auction

 $b_i = \frac{1}{2}v_i$

 v_n

 $F_n \sim$

No regret:
$$u_i(b) \ge u_i\left(\frac{1}{2}v_i, b_{-i}\right) \ge \frac{1}{2}v_i - p$$
,0
either i wins or price above $p \ge \frac{1}{2}v_i$

Apply this to the top value+ winner doesn't regret paying

$$\sum_{i} u_i \left(\frac{v_i}{2}, b_{-i}\right) \ge \left(\max\left(\frac{v_i}{2}\right) - p\right) + \sum_{i} 0$$

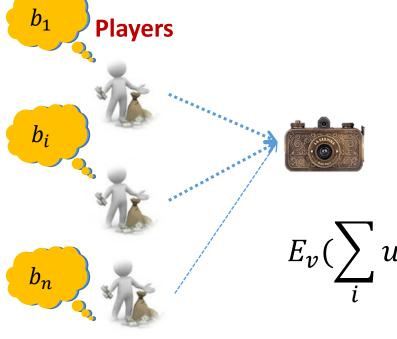
$$\Rightarrow \text{auction is 1/2- smooth}$$

$$\Rightarrow \text{a price of anarchy of 2}$$

(actually... $(e - 1)/e \approx 0.63$)

Bayes Nash analysis: Bayesian extension (I)

Strategy: bid as a function of value $b_i(v)$ Nash: $E_{v_{-i}b} [u_i(b(v))|v_i] \ge E_{v_{-i}b_{-i}} [u_i(b'_i, b_{-i}(v_{-i}))|v_i]$ for all b'_i



Same bound on price of anarchy, same prof (take expectation) or noregret learning outcome

$$E_{\nu}(\sum_{i} u_{i}(b)) \geq \sum_{i} E_{\nu}(u_{i}\left(\frac{v_{i}}{2}, b_{i}\right)) \geq \lambda E_{\nu}(Opt(v)) - \mu E_{\nu}(Re\nu(b))$$

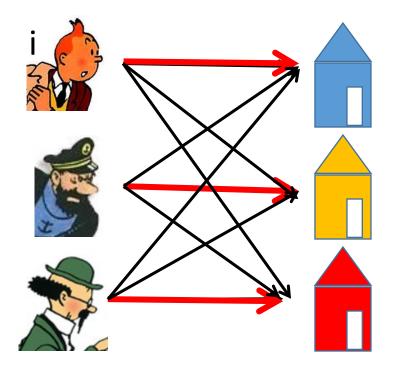
No need to bid $\frac{v_i}{2}$ just don't regret it!

Smoothness and Bayesian games

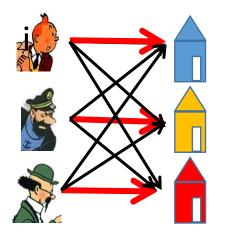
We had $b_i^*(v) = \frac{v_i}{2}$, 0.5-smooth: Bid depends only on the players own value!

Theorem: Auction is λ -smooth and b_i^* is a function of v_i only, then price of anarchy bounded by $1/\lambda$ for arbitrary (private value) type distributions. True for Bayesian Nash equilibria as well as all no-regret learning outcomes.

Multiple items (e.g. unit demand bidders)



Value if *i* gets subset *S* is $v_i(S)$ for example: $v_i(S) = \max_{j \in S} v_{ij}$ Optimum is max value matching! $\max_{M^*} \sum_{ij \in M^*} v_{ij}$ Multi-item first prize auction with unit demand bidders



- Optimal solution $\max_{M^*} \sum_{ij \in M^*} v_{ij}$
- A bid vector b^* inducing optimal solution i bids $v_{ij}/2$ on item j_i^* assigned in i in opt $((i, j_i^*) \in M^*)$
- Smoothness?
- $\sum_{i} u_{i}(b_{i}^{*}, b_{-i}) \ge 1/2 \sum_{i} v_{ij_{i}^{*}} \sum_{j} \max_{i} b_{ij} = \frac{1}{2}OPT Rev$
- True item by item!

Bayesian extension theorem

Theorem [Roughgarden'12, Syrgkanis'12, Syrgkanis-T'13] Auction game is λ -auction smooth, and values are drawn from independent distributions, then the Price of anarchy in the Bayesian game is at most $1 / \lambda$.

In addition [Hartline, Syrgkanis-T'15] also extends to learning out come in Bayesian games.

Extension theorem: OK to only think about the full information game!

Proof idea: bid b*(v)....

Trouble: depends on other players and hence we don't know..... Instead: sample opponents \bar{v}_j and bid $b^*(v_i, \bar{v}_{-i})$.

Trouble: bidding is very hard!

So many bids to consider $(b_1, b_2, ..., b_n)$ all possible bids on all items Simplifications:

- Do not bid $b_j > v_j$, still bid space is $\prod_j [0, v_j]$
- Discretize, only bid multiples of ϵ , being off my an ϵ can only cause ϵ regret! Only $\prod_i v_i / \epsilon$ options
 - Assume (k-1) $\epsilon < b < k\epsilon$
 - If b wins: so does k ϵ and pays too much by ϵ
 - If $k\epsilon$ wins and b looses $k\epsilon$ is better off.

Daskalakis-Syrgkanis'16: optimal bid is NP-hard to find or even approximate. Reduction from set-cover

Extensions beyond coarse correlated equilibria

- 1. What is possible when no-regret is too hard to reach
- 2. What can we say when there is churn: games/participants change/evolve
- 3. What is possible to say when there is carryover effects between iterations
- 4. What may be a good way to learn when cooperation may be constructive? Mostly open

Bidding options that are possible to not regret[Daskalakis-Syrgkanis'16]

- Idea: strategy space names set S of items to buy, regardless of price
- Alternate notion of no regret:

$$\frac{1}{T}\sum_{\tau} u_i(b^{\tau}) \ge (1-\epsilon) \max_{S_i} (v_i(S_i) - \frac{1}{T}\sum_{\tau} p^{\tau}(S_i)) - Regret$$

Items in $j \in S_i$ are evaluated against their average price! $v_j - \frac{1}{\tau} \sum_{\tau} p^{\tau}(j)$

No-regret for sets versus bids

• This is achievable using a variant of follow the perturbed leader.

Need subroutine: select the set you would prefer on the average prices so far

• Is this form of no regret good enough for social welfare? Let S_i^* be set awarded to i in optimum. We get $\sum_{\tau} u_i(S^{\tau}) \ge T v_i(S_i^*) - \sum_{\tau} Rev^{\tau}(S_i^*)$ - regret Sum over all players $\sum_{\tau} \sum_i u_i(s^{\tau}) \ge T \sum_i v_i(S_i^*) - \sum_{\tau} \sum_i Rev^{\tau}(S_i^*) = T \ OPT - \sum_{\tau} Rev^{\tau}$ Learning in Dynamic Game: [Lykouris, Syrgkanis, T. '16]



Dynamic population model:

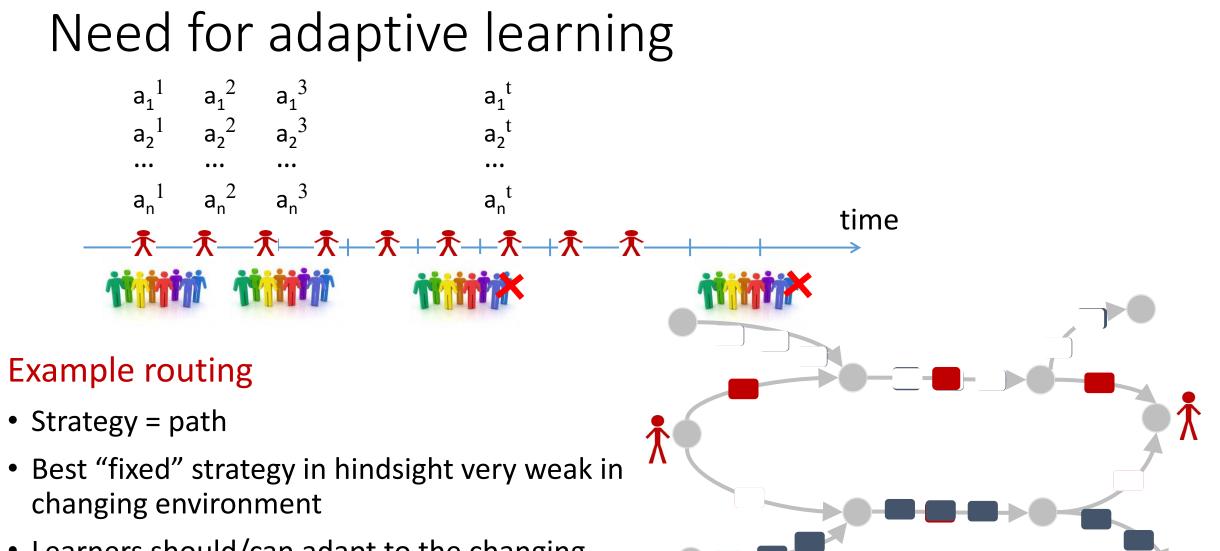
At each step t each player i

is replaced with an arbitrary new player with probability p

What should they learn from data?

No regret good enough?

$$\sum_{t} cost_{i}(a^{t}) \leq (1+\epsilon) \sum_{t} cost_{i}(a^{*}_{i}, a^{t}_{-i}) + AR$$



 Learners should/can adapt to the changing environment

Adapting result to dynamic populations

Inequality we "wish to have" $\sum_{t} cost_{i}(a^{t}; v^{t}) \leq \sum_{t} cost_{i}(a^{*t}_{i}, a^{t}_{-i}; v^{t})$ where a^{*t}_{i} is the optimum strategy for the players at time t.

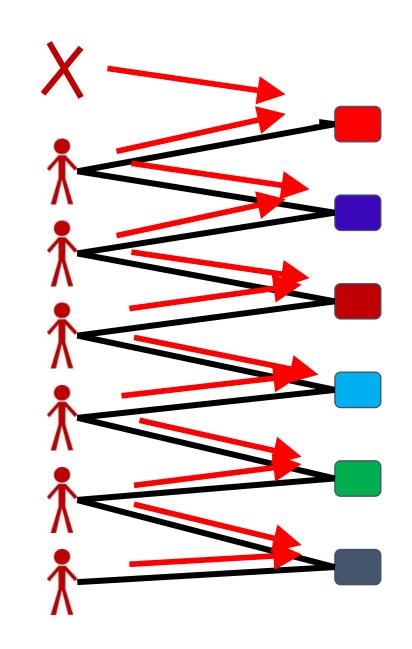
with stable population = no regret for a_i^* Too much to hope for in dynamic case:

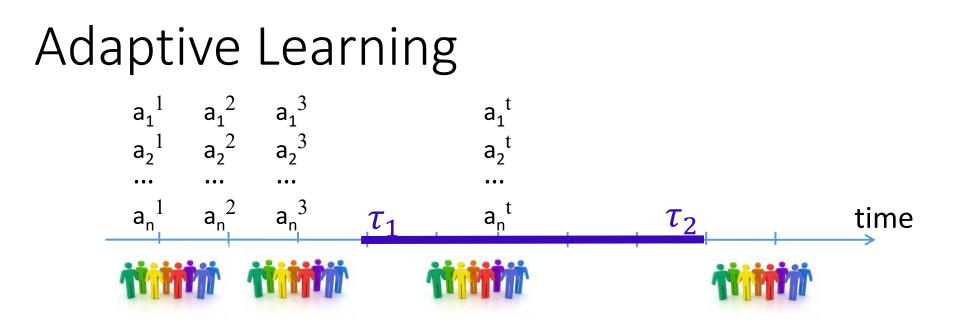
- sequence a^{*t} of optimal solutions changes too much.
- No hope of learners not to learn this well!

Change in Optimum Solution

True optimum is too sensitive

- Example using matching
- The optimum solution
- One person leaving
- Can change the solution for everyone
- Np changes each step → No time to learn!! (we have p>>1/N)





Theorem Approximate Regret [e.g., Foster,Li,Lykouris,Sridharan,T. NIPS'16] for all player i, strategy x^{τ} sequence that changes k times

$$\sum_{\tau} u_i(s^{\tau}, v^{\tau}) \ge \sum_{\tau} (1 + \epsilon) u_i(x^{\tau}, s_{-i}^{\tau}; v^{\tau}) + O(\frac{k}{\epsilon} \log m)$$

Using any classical learning mixed with a bit of **recency bias**

Theorem (high level)

If a game satisfies a "smoothness property"

The welfare optimization problem admits an approximation algorithm whose outcome \tilde{a}^{\star} is stable to changes in one player's type

Then any adaptive learning outcome is approximately efficient

$$\mathsf{PoA} = \lim_{T \to \infty} \frac{\sum_{t=1}^{T} cost(a^{t}, v^{t})}{\sum_{t=1}^{T} Opt(v^{t})} \text{ close to PoA}$$

Proof idea: use this approximate solution as \tilde{a}^* in Price of Anarchy proof With \tilde{a}^* not changing much, learners have time to learn not to regret following \tilde{a}^*

Result (Lykouris, Syrgkanis, T'16) :

In many smooth games welfare close to Price of Anarchy even when the rate of change is high, $p \approx \frac{1}{\log n}$ with n players, assuming adaptive no-regret learners

- Worst case change of player type \Rightarrow need for learning players
- Bound $\alpha \cdot \beta \cdot \gamma$ depends on
 - *α* price of anarchy bound
 - loss due to regret error
 - *B* loss in opt for stable solutions

as game gets large, goes to 1 in auctions, goes to 4/3 in linear congestion games goes to 1 as $p \rightarrow 0$ goes to 1 as $p \rightarrow 0$ & game is large

Social Welfare of Learning Outcomes

Critical Assumption: new copy of the same game is repeated (no carryover effect between rounds other than through learning)

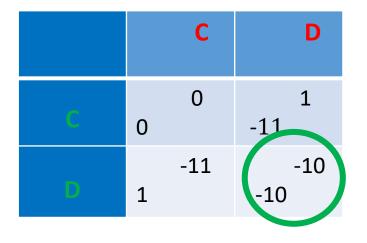
Is this reasonable?

Cooperative Games: when no-regret is the wrong thing to do

• Simple example: repeated prisoner's dilemma: the only no-regret strategy is to defect, as defect is dominant strategy!

But defecting induces the opponent to defect: Has effect on next round beyond the learning!

Suggested learning: de Farias, Megiddo'06 Arora, Dekel, Tewari'12 policy regret



Large population games: traffic routing

Morning rush-hour traffic

No carryover effect (except through the learning of the agents)

Second-by-second packet traffic

Packets take time to clear,
dropped packets need to be
resent in the next round

Price of Anarchy in Stateful Systems

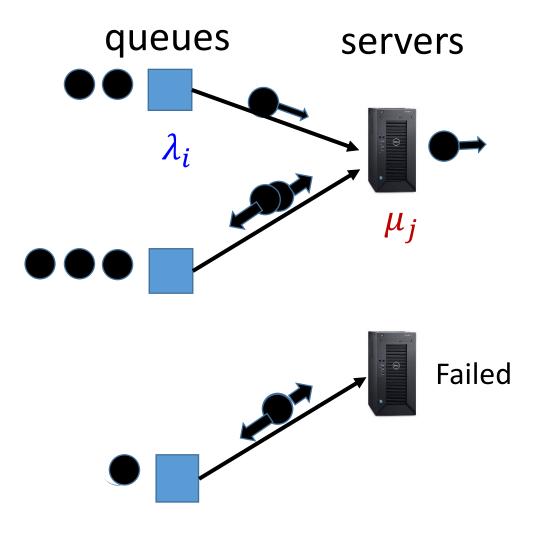
• Not as well understood: do PoA-style bounds still hold with dependence between games in each round?

Questions:

- How much extra capacity ensures good system performance despite selfish users
- Is no-regret learning the right way to learn in presence of dependence between rounds

Simple Model of Queuing

- Queue *i* gets new packets with a Bernoulli process with rate λ_i
- Server *j* succeeds at serving a packet with probability μ_j
- Each time step: each queue can send one packet to one of the servers to try to get serviced
- Server can process at most one packet and unserved packets get returned to queue
- Servers attempt to serve oldest packet



Our Main Question

How large should the server capacity be to ensure competitive, no-regret queues remain bounded in expectation over time?

• Example: one queue, one server (no learning, no competition)

$$\lambda \quad \bullet \bullet \bullet \quad \blacksquare \quad \bullet \bullet \quad \bullet \quad \blacksquare \quad \mu$$

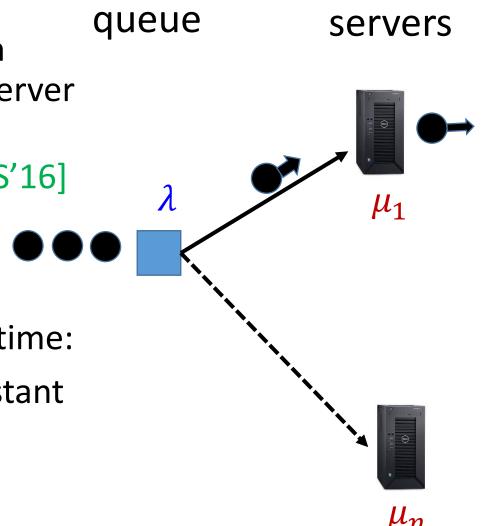
- $\lambda < \mu$: expected queue size bounded (biased r.w. on the half-line)
- $\lambda = \mu$: expected queue size grows like $\Theta(\sqrt{t})$ (unbiased r.w.)
- $\lambda > \mu$: expected queue size grows linearly in $t \rightarrow$ sharp threshold

One queue many servers

• The one queue faces a Bayesian multi-arm bandit learning problem to find the best server

[Krishnasamy, Sen, Johari, & Shakkottai NIPS'16]

- Queue is searching for the best server: needs $\lambda < \mu_i$
- Study the evolution of queue length over time: goes up to $O(\log t)$ and then back to a constant once the best server is identified

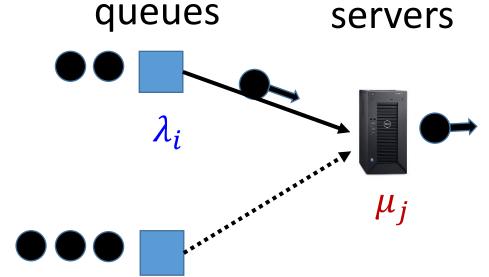


Baseline Measure: Coordinated Queues

Assume queues and servers are sorted:

$$1>\lambda_1\geq\lambda_2\geq\cdots\geq\lambda_n$$

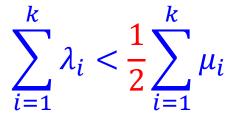
$$1 \ge \mu_1 \ge \mu_2 \ge \dots \ge \mu_m > 0$$



Claim: necessary/sufficient condition for centralized stability: for all *k*,

Selfish Queuing with Priorities

- Main Theorem [informal, Gaitonde-T '20]: suppose that:
 - Servers attempt to serve oldest packet received in each round,
 - Queues use no-regret learning algorithms,
 - and for all k,



Then, all queue sizes remain bounded in expectation uniformly over time. Moreover, factor 1/2 is tight.

Proof Ideas

• Use potential function

$$\Phi \approx \sum_{\tau} \Phi_{\tau}$$

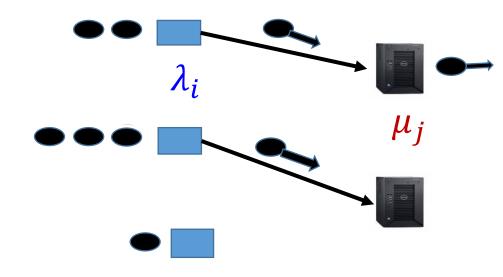
with $\Phi_{\tau} = \#$ packets aged τ or older in the system

- [Pemantle, Rosenthal '04]: random process satisfying
 - i. Sufficiently regular
 - ii. Negative drift when large
 - remains bounded in expectation for all times
- No-regret + factor 2 slack implies negative drift when queues have large backup

Why Φ and How No-Regret Helps

- Look at queues with packets at least τ -old; they have priority
- Fix long window and look at best/fastest servers
- Either: i) many τ -old queues send there throughout window \clubsuit Φ_{τ} decreases by a lot

ii) they do not \rightarrow had priority there so no-regret kicks in:



Why Φ and How No-Regret Helps

- Look at queues with packets at least τ -old; they have priority
- Fix long window and look at best/fastest servers
- Either: i) many τ-old queues send there throughout window → decrease in queue size, OR
 - ii) they do not \rightarrow had priority there so no-regret kicks in:

 μ_i

 Λ_i

Any queue with τ -old packets would have regret, unless it managed to get service for at least this much!

Apply at all thresholds τ simultaneously to get no-regret at all scales \rightarrow implies negative drift

Extra Technical Details

 Need no-regret to hold on specific windows of long enough size with high-probability

unlikely bad situations will happen, need to be able to recover

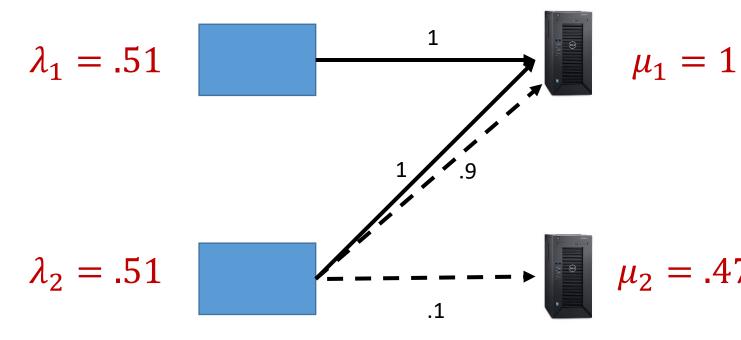
 Other technical issues for applying Pemantle/Rosenthal result: use model with deferred decisions, study ages instead of sizes

age of oldest packet T_i^t in queue *i*

 $\Phi_{\tau} = \sum_{i:T_i^t > \tau} \lambda_i (T_i^t - \tau) \approx \#$ packets age τ or older in the system

- apply concentration bounds,
- "sufficiently regular" = bounded moments

Myopia in No-Regret: Example



- Both sending to top server has no-regret
- Deviating gives regret
- Age/split top server
 equally → linear growth
 - Moving to inferior server selfishly helps
- = .47 Helps top queue clear, indirectly helping both queues clear!

But the 0.47 rate causes regret!

Selfish Queuing: Price of Anarchy

Theorem 1 [Gaitonde-T '20]: if queues use no-regret algorithms to select servers and for all k,

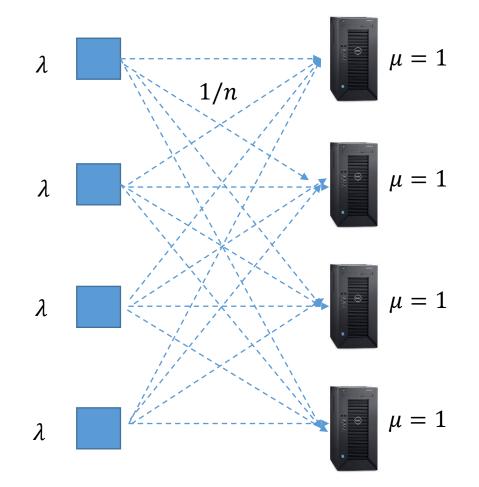
 $\sum_{i=1}^{n} \lambda_i < 0.5 \sum_{i=1}^{n} \mu_i$

Then queue lengths/ages grow sublinearly.

Theorem 2 [Gaitonde-T'21]: If queues choose servers patiently, and for all k $\sum_{i=1}^{k} \lambda_i < 0.63 \sum_{i=1}^{k} \mu_i$ then in every equilibrium, queue lengths/ages grow sublinearly. 0.63 = (e - 1)/e

Price of Anarchy

- Worst-case (intuitively): n equal queues, n servers with rate 1, uniform mixing \rightarrow worst case needs at least $\frac{e}{e-1}$ slack
- In general: fastest-aging queue cannot benefit from deviation at equilibrium, but not clear why



What's Going On?

- Too myopic: not patient enough to see asymptotic benefit of "bad" servers:
- What we do: evaluate alternate outcome without considering long-term effect of the change

$$\sum_{t} cost_{i}(a^{1:t}) \leq \sum_{t} cost_{i}\left(\left(a^{1:t-1}_{i}, x\right), a^{1:t}_{-i}\right) + o(T)$$

• What we may want (?):

$$\sum_{t} cost_{i}(a^{1:t}) \leq \sum_{t} cost_{i}(x^{1:t}, a^{1:t}_{-i}) + o(T)$$

• We study the patient queuing game with stationary strategies

Conclusions

Learning in games:

- Good way to adapt to opponents
 - Takes advantage of opponent playing badly.
- No need for common prior

Learning players do well even in dynamic environments

Stable approx. solution + good PoA bound ⇒ good efficiency with dynamic population
 Do OK in some games with carryover effect.

Question: can other forms of learning do better?

e.g., policy regret? [Arora, Dekel, Tewari'12]

Unfortunately, doesn't help in queueing Sentenac, Boursier, Perchet'21