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Talk outline

1. Example games, and questions we want to ask:
• What do we mean by learning?
• What can we say about outcome of learning?

2. No-regret learning as a behavioral assumption: pros and cons
3. Quality of learning outcomes: price of anarchy
4. Limitation of no-regret as a solution concept

• Can be hard to achieve small regret: what may be possible?
• No-regret may lead us in the wrong direction

5. Extension on price of anarchy results via improved learning



Example 1: traffic routing

• Traffic subject to congestion delays
• cars and packets follow shortest path
• Congestion game =cost (delay) 

depends only on congestion on edges



Example 2: advertising auctions
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Repeated games
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• Player’s value/cost additive over periods, while playing
• We assume: Players try to learn what is best from past data
What can we say about the outcome? 
What do we mean by “learning from data”?



High Social Welfare: Price of Anarchy in Routing
Theorem  (Roughgarden-T’02):
In any network with continuous, non-decreasing cost 

functions and very small users

cost of Nash with 
rates ri for all i

cost of opt with 
rates 2ri for all i≤

Nash equilibrium: stable solution where no player had 
incentive to deviate.

cost of worst Nash equilibrium
“socially optimum” cost

Price of Anarchy=



Games and Solution Quality

• Rational selfish 
action can lead to 
outcome bad for 
everyone

Tragedy of the Commons

Model:
• Value for each cow decreasing 

function of  # of cows
• Too many cows: no value left



More examples of price of anarchy bounds

• Monotone increasing congestion costs
Nash cost ≤ opt of double traffic rate (Roughgarden-T’02)

• affine congestion cost (Roughgarden-T’02) 4/3 price of anarchy

• Atomic game (players with >0 traffic) with linear delay (Awerbuch-
Azar-Epstein & Christodoulou-Koutsoupias’05) 2.5 price of anarchy

• Bandwidth sharing (Johari-Tsitsiklis’04) 4/3 price of anarchy



Price of anarchy in auctions
• First price is auction Hassidim, Kaplan, Mansour, Nisan EC’11) 

Price of anarchy 1.58…
• All pay auction price of anarchy 2
• First position auction (GFP) is price of anarchy 2
• Variants with second price (see also Christodoulou, Kovacs, Schapira  

ICALP’08) price of anarchy 2
Other applications include: 
- public goods
- Fair sharing (Kelly, Johari-Tsitsiklis) price of anarchy 1.33
- Walrasian Mechanism (Babaioff, Lucier, Nisan, and Paes Leme EC’13)



Learning in Repeated Game

• What is learning?
• Does learning lead to finding Nash equilibrium?

Brown’51, Robinson’51:
• fictitious play = best respond to past history of other players
Goal: “pre-play” as a way to learn to play Nash. 



Outcome of Fictitious Play in Repeated Game

• Does learning lead to finding Nash equilibrium?
mostly not

Theorem: Marginal distribution of each player actions 
converges to Nash in
Robinson’51: In two player 0-sum games 
Miyasawa’61: In generic payoff 2 by 2 games



Finding Nash of the one-shot game?

time

Nash equilibrium of the “one-shot” game: 
• Stable actions a
• with no regret for any  alternate strategy 𝑥𝑥:

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑥𝑥,𝑎𝑎−𝑖𝑖 ≥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑎𝑎

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

No regret

a1
1

a2
1

an
1

…

a1
2

a2
2

an
2

…

a1
3

a2
3

an
3

…

a1
t

a2
t

an
t

…



Behavior is far from stable
data from Nekipelov, Syrgkanis, T.’15 
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Change of focus: Outcome of learning while playing
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Maybe here they don’t 
know how to play, who are 
the other players, …

By here they have a 
better idea…



Recall: No regret at Nash:

time

• Stable actions a
• with no regret for any  alternate strategy 𝑥𝑥:

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑥𝑥,𝑎𝑎−𝑖𝑖 ≥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑎𝑎
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No-regret without stability: learning 

time

No regret: for any fixed action 𝑥𝑥:
∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑎𝑎𝑡𝑡 ≤ ∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑎𝑎−𝑖𝑖𝑡𝑡 )

error ≤ 𝑇𝑇 assuming cost ∈ [0,1]
(if 𝑐𝑐 𝑇𝑇 called no-regret)

Many classical online learning algorithms
Hannan consistency [Hannan’57]
Multiplicative weights (Hedge) [Freund-Schapire’97]
Follow the perturbed leader [Kalai-Vempala’03]

a1
t

a2
t

an
t

…

+𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒

a1
1

a2
1

an
1

…

a1
2

a2
2

an
2

…

a1
3

a2
3

an
3

…

regret



Alternate: approximate no-regret
For any fixed action 𝑥𝑥 (with d options) : 

∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑎𝑎𝑡𝑡 ≤ ∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑎𝑎−𝑖𝑖𝑡𝑡 ) + 𝑇𝑇𝑙𝑙𝑐𝑐𝑙𝑙 𝑑𝑑
T=time, d=# strategies

In fact, much better bound applies: 

�
𝑡𝑡

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑎𝑎𝑡𝑡 ≤ (1 + 𝜖𝜖)�
𝑡𝑡

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑎𝑎−𝑖𝑖𝑡𝑡 ) +
log d
𝜖𝜖

Same algorithms! 
Multiplicative weights (Hedge) [Freund-Schapire’97]
Follow the perturbed leader [Kalai-Vempala’03]



Outcome of no-regret learning = 
(Coarse) correlated equilibrium

Coarse correlated equilibrium: probability distribution of outcomes such 
that for all players

expected payoff ≥ exp. payoff of any fixed strategy  
Coarse correlated eq. & players independent = Nash
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Theorem [Freund and Schapire’99, 
Robinson’51] In two-person 0-sum 
games play converges to Nash value, and 
Nash strategy for all players

but play is correlated



Outcome of no-regret learning in a fixed game

Limit distribution 𝜎𝜎 of play (action vectors a=(𝑎𝑎1, 𝑎𝑎2, … ,𝑎𝑎𝑛𝑛))
• all players  i have no regret for all strategies x

𝐸𝐸𝑎𝑎∼𝜎𝜎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑎𝑎 ≤ 𝐸𝐸𝑎𝑎∼𝜎𝜎(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑎𝑎−𝑖𝑖))

Hart & Mas-Colell:  Long term average play is (coarse) correlated 
equilibrium

Players update independently, but correlate on shared history



No-regret as a model of learning?

For any fixed action 𝑥𝑥 (with d options) : 
∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑎𝑎𝑡𝑡 ≤ (1 + 𝜖𝜖)∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑎𝑎−𝑖𝑖𝑡𝑡 ) + 𝜖𝜖𝑇𝑇 T=time horizon

Behavioral model, first suggested Blum, Hajiaghayi, Ligett, Roth’08 in the 
context of traffic routing and Christodoulou, Kovacs, Schapira ’08 in context 
of auctions (as opposed to analyzing outcomes of algorithms). 

Behavioral assumption: if there is a consistently good strategy: please notice!
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No-regret as a model of learning?
Behavioral assumption: if there is a consistently good strategy: please notice!

For any fixed action 𝑥𝑥 (with d options) : 
∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑎𝑎𝑡𝑡 ≤ 1 + 𝜖𝜖 ∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑎𝑎−𝑖𝑖𝑡𝑡 ) + 𝜖𝜖𝑇𝑇 T=time horizon

Pros:  Behavioral model that can be used in theory!
• Algorithms: Many simple rules ensure small regret
• No need for common prior or rationality assumption on opponents

Cons: 
• Can we too hard to do in multi-parameter problems: Yang-Papadimitriou’14, 

Daskalakis-Syrgkanis’16
• It may not be best response if others use no-regret learning:
• We can except players do to better than no regret: changing environment, policy regret



No-regret learning as a behavioral model?

• Er’ev and Roth’96 
lab experiments  with 2 person coordination game

• Fudenberg-Peysakhovich EC’14
lab experiments with seller-buyer game 
recency biased learning

• Nekipelov-Syrgkanis-T. EC’15
Bidding data on Bing-Ad-Auctions

• Nisan-Noti WWW’17
Lab experiment with ad-auction games

• Nekipelov-Jalaly-Tardos ’18
Zillow ad-data



Distribution of smallest rationalizable 
multiplicative regret
data from Nekipelov, Syrgkanis, T.’15
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May be better than 
no-regret

Strictly positive regret: 
learning phase??

Nekipelov, Syrgkanis, T’15: 

Economerics for learners: 
using learning (instead of 
Nash) as an assumption to 
infer values

Distribution of smallest rationalizable 
multiplicative regret
data from Nekipelov, Syrgkanis, T.’15



Change of focus: Quality of Learning Outcome
Price of Anarchy [Koutsoupias-
Papadimitriou’99]

𝑃𝑃𝑐𝑐𝑃𝑃 = max
𝑎𝑎 𝑁𝑁𝑎𝑎𝑁𝑁𝑁

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎)
𝑂𝑂𝑂𝑂𝑐𝑐

Assuming no-regret learners in fixed 
game: [Blum, Hajiaghayi, Ligett, Roth’08, 
Roughgarden’09]

𝑃𝑃𝑐𝑐𝑃𝑃 = lim
𝑇𝑇→∞

∑𝑡𝑡=1𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎𝑡𝑡)
𝑇𝑇 𝑂𝑂𝑂𝑂𝑐𝑐



Proof Technique: Smoothness (Roughgarden’09)
Consider optimal solution: player i does action 𝑎𝑎𝑖𝑖∗ in optimum
Nash: costi a ≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 (𝒂𝒂𝒊𝒊∗,𝑎𝑎−𝑖𝑖) (doesn’t need to know 𝑎𝑎𝑖𝑖∗)

A game is (λ,μ)-smooth (λ > 0; μ< 1): if for all strategy vectors a 

�
𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖(𝑎𝑎𝑖𝑖∗,𝑎𝑎−𝑖𝑖) ≤ 𝜆𝜆 𝑂𝑂𝑃𝑃𝑇𝑇 + 𝜇𝜇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎)

Then:  A Nash equilibrium a has

If Opt <<cost(a), some player will want to deviate to 𝑎𝑎𝑖𝑖∗

as 𝜆𝜆 𝑂𝑂𝑃𝑃𝑇𝑇 + 𝜇𝜇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎 < 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎)

�
𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑎𝑎 ≤

cost(a) ≤ 𝜆𝜆
1−𝜇𝜇

Opt

Nash



Learning and price of anarchy
Use approx no-regret learning: 
∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑎𝑎𝑡𝑡 ≤ (1 + 𝜖𝜖)∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑎𝑎𝑖𝑖∗,𝑎𝑎−𝑖𝑖𝑡𝑡 + 𝑃𝑃𝐴𝐴

A cost minimization game is (λ,μ)-smooth (λ > 0; μ< 1): 
∑𝑡𝑡 ∑𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑎𝑎𝑖𝑖∗,𝑎𝑎−𝑖𝑖𝑡𝑡 ≤ 𝜆𝜆∑𝑡𝑡 𝑂𝑂𝑂𝑂𝑐𝑐 + 𝜇𝜇 ∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎𝑡𝑡)

A approx. no-regret sequence 𝑎𝑎𝑡𝑡 has
1
𝑇𝑇
∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎𝑡𝑡) ≤ (1+𝜖𝜖)𝜆𝜆

1−(1+𝜖𝜖)𝜇𝜇
Opt + n

T 1− 1+𝜖𝜖 𝜇𝜇
AR



Speed of Convergence
Special method (e.g., optimistic graduate decent): 
2-person 0 sum games: Popov’80

Daskalakis, Deckelbaum, Kim’11, Rakhlin, Sridharan’13
General game:

Syrgkanis, Agarwal, Luo, Schapire’15
General game and no-regret as a behavioral model:
Foster, Li, Lykouris, Sridharan, T, NIPS’16

Note the convergence speed! 𝑃𝑃𝐴𝐴 = log 𝑑𝑑
𝜖𝜖

, so error n
T
⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑
𝜖𝜖(1− 1+𝜖𝜖 𝜇𝜇)

1
𝑇𝑇
∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎𝑡𝑡) ≤ (1+𝜖𝜖)𝜆𝜆

1−(1+𝜖𝜖)𝜇𝜇
Opt + n

T 1− 1+𝜖𝜖 𝜇𝜇
AR



Illustrative example: A utility game: Auction
First Example:  Single item first price
• Auction sets a price p (full info, pure Nash).

Players

𝑂𝑂𝑂𝑂+

Can win by bidding p+𝑂𝑂

⇒ At full info Nash player with max 𝑣𝑣𝑖𝑖 wins 
at the next highest price

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3



First price auction with uncertainty?
• Bayesian game
• Randomized bid

Players

𝑂𝑂

Price p random
Cannot bid p+

𝑣𝑣1

𝑣𝑣𝑖𝑖

𝑣𝑣𝑛𝑛

𝐹𝐹1 ∼

𝐹𝐹𝑖𝑖 ∼

𝐹𝐹𝑛𝑛 ∼

𝑏𝑏1

𝑏𝑏𝑖𝑖

𝑏𝑏𝑛𝑛



Bayes Nash analysis
Strategy: bid as a function of value 𝑏𝑏𝑖𝑖 𝑣𝑣
Nash:  𝐸𝐸𝑣𝑣−𝑖𝑖𝑏𝑏 𝑢𝑢𝑖𝑖 𝑏𝑏 𝑣𝑣 |𝑣𝑣𝑖𝑖 ≥ 𝐸𝐸𝑣𝑣−𝑖𝑖𝑏𝑏−𝑖𝑖 𝑢𝑢𝑖𝑖 𝑏𝑏𝑖𝑖

′,𝑏𝑏−𝑖𝑖 𝑣𝑣−𝑖𝑖 |𝑣𝑣𝑖𝑖
for all 𝑏𝑏𝑖𝑖′

Players𝑣𝑣1

𝑣𝑣𝑖𝑖

𝑣𝑣𝑛𝑛

𝑏𝑏1

𝑏𝑏𝑖𝑖

𝑏𝑏𝑛𝑛



Auction games:
• Finite set of players 1,…,n
• strategy sets 𝑆𝑆𝑖𝑖 for player i:  bid on some items (not a finite set)

• Resulting in strategy vector: s=(𝑐𝑐1, … , 𝑐𝑐𝑛𝑛) for each 𝑐𝑐𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖
• Utility player i: 𝑢𝑢𝑖𝑖 𝑐𝑐 or 𝑢𝑢𝑖𝑖 𝑐𝑐𝑖𝑖 , 𝑐𝑐−𝑖𝑖

• We assume quasi-linear utility, and no externalities:
• If player wins set if items 𝑃𝑃𝑖𝑖 and pays 𝑂𝑂𝑖𝑖 her value is 
𝑢𝑢𝑖𝑖 𝑃𝑃𝑖𝑖 ,𝑂𝑂𝑖𝑖 = 𝑣𝑣𝑖𝑖 𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖

• Social welfare? (include auctioneer): ∑𝑖𝑖 𝑣𝑣𝑖𝑖 𝑃𝑃𝑖𝑖 = ∑𝑖𝑖 𝑢𝑢𝑖𝑖 𝑃𝑃𝑖𝑖 + ∑𝑖𝑖 𝑂𝑂𝑖𝑖

Revenue



Smoothness variant for auctions
Smoothness in games: there exists strategies 𝑐𝑐𝑖𝑖∗ :  

�
𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖(𝑐𝑐𝑖𝑖∗, 𝑐𝑐−𝑖𝑖) ≤ 𝜆𝜆 𝑂𝑂𝑃𝑃𝑇𝑇 + 𝜇𝜇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐

For utility games: ∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑐𝑐𝑖𝑖∗, 𝑐𝑐−𝑖𝑖) ≥ 𝜆𝜆 𝑂𝑂𝑃𝑃𝑇𝑇 − 𝜇𝜇 𝑆𝑆𝑆𝑆 𝑐𝑐

Variant [Syrgkanis-T’13]: Auction game is λ-smooth if for some λ>0 and some 
strategy s* and all s we have

�
𝑖𝑖

𝑢𝑢𝑖𝑖 𝑐𝑐𝑖𝑖∗, 𝑐𝑐−𝑖𝑖 ≥ 𝜆𝜆𝑐𝑐𝑂𝑂𝑐𝑐 − 𝐴𝐴𝑒𝑒𝑣𝑣(𝑐𝑐)

Theorem: λ-smooth auction game ⇒ Price of anarchy for any  ≤ 1
𝜆𝜆

Social welfare: SW 𝑐𝑐 = ∑𝑖𝑖 𝑢𝑢𝑖𝑖 𝑐𝑐 + 𝐴𝐴𝑒𝑒𝑣𝑣(𝑐𝑐)
revenue

�
𝑖𝑖

𝑢𝑢𝑖𝑖 𝑐𝑐 ≤
Nash



Robust Analysis: first price auction

No regret: 𝑢𝑢𝑖𝑖 𝑏𝑏 ≥

either i wins or price above p ≥ 1
2
𝑣𝑣𝑖𝑖

Players

∑𝑖𝑖 𝑢𝑢𝑖𝑖
𝑣𝑣𝑖𝑖
2

, 𝑏𝑏−𝑖𝑖 ≥ (max 𝑣𝑣𝑖𝑖
2

− 𝑂𝑂) + ∑𝑖𝑖 0
⇒auction is 1/2- smooth

⇒a price of anarchy of 2

(actually… (𝑒𝑒 − 1)/𝑒𝑒 ≈ 0.63)

𝑣𝑣1

𝑣𝑣𝑖𝑖

𝑣𝑣𝑛𝑛

𝐹𝐹1 ∼

𝐹𝐹𝑖𝑖 ∼

𝐹𝐹𝑛𝑛 ∼

𝑏𝑏𝑖𝑖 =
1
2 𝑣𝑣𝑖𝑖

𝑢𝑢𝑖𝑖
1
2
𝑣𝑣𝑖𝑖 , 𝑏𝑏−𝑖𝑖 ≥

1
2
𝑣𝑣𝑖𝑖 − 𝑂𝑂

- Apply this to the top value
+ winner doesn’t regret paying

,0



Bayes Nash analysis: Bayesian extension (I)
Strategy: bid as a function of value 𝑏𝑏𝑖𝑖 𝑣𝑣
Nash:  𝐸𝐸𝑣𝑣−𝑖𝑖𝑏𝑏 𝑢𝑢𝑖𝑖 𝑏𝑏 𝑣𝑣 |𝑣𝑣𝑖𝑖 ≥ 𝐸𝐸𝑣𝑣−𝑖𝑖𝑏𝑏−𝑖𝑖 𝑢𝑢𝑖𝑖 𝑏𝑏𝑖𝑖

′,𝑏𝑏−𝑖𝑖 𝑣𝑣−𝑖𝑖 |𝑣𝑣𝑖𝑖
for all 𝑏𝑏𝑖𝑖′

Players𝑣𝑣1

𝑣𝑣𝑖𝑖

𝑣𝑣𝑛𝑛

𝑏𝑏1

𝑏𝑏𝑖𝑖

𝑏𝑏𝑛𝑛

Same bound on price of anarchy, 
same prof (take expectation) or no-
regret learning outcome

𝐸𝐸𝑣𝑣(�
𝑖𝑖

𝑢𝑢𝑖𝑖 𝑏𝑏 ) ≥�
𝑖𝑖

𝐸𝐸𝑣𝑣(𝑢𝑢𝑖𝑖
𝑣𝑣𝑖𝑖
2

, 𝑏𝑏𝑖𝑖 ) ≥ 𝜆𝜆𝐸𝐸𝑣𝑣 𝑂𝑂𝑂𝑂𝑐𝑐(𝑣𝑣) − 𝜇𝜇𝐸𝐸𝑣𝑣(𝐴𝐴𝑒𝑒𝑣𝑣(𝑏𝑏)

No need to bid 𝑣𝑣𝑖𝑖
2

just don’t regret it!



Smoothness and Bayesian games

We had 𝑏𝑏𝑖𝑖∗ 𝑣𝑣 = 𝑣𝑣𝑖𝑖
2

, 0.5-smooth: Bid depends only on the 
players own value!

Theorem: Auction is λ-smooth and 𝑏𝑏𝑖𝑖∗ is a function of 𝑣𝑣𝑖𝑖 only, 
then price of anarchy bounded by 1/𝜆𝜆 for arbitrary (private 
value) type distributions. True for Bayesian Nash equilibria as 
well as all no-regret learning outcomes.



Multiple items (e.g. unit demand bidders)

i
Value if 𝑖𝑖 gets subset 𝑆𝑆 is 𝑣𝑣𝑖𝑖 𝑆𝑆
for example: 𝑣𝑣𝑖𝑖 𝑆𝑆 = max

𝑗𝑗∈𝑆𝑆
𝑣𝑣𝑖𝑖𝑗𝑗

Optimum is max value matching! 
max
𝑀𝑀∗

∑𝑖𝑖𝑗𝑗∈𝑀𝑀∗ 𝑣𝑣𝑖𝑖𝑗𝑗



Multi-item first prize auction 
with unit demand bidders

• Smoothness?

• ∑𝑖𝑖 𝑢𝑢𝑖𝑖 𝑏𝑏𝑖𝑖∗, 𝑏𝑏−𝑖𝑖 ≥ 1/2∑𝑖𝑖 𝑣𝑣𝑖𝑖𝑗𝑗𝑖𝑖∗ −∑𝑗𝑗 max
𝑖𝑖
𝑏𝑏𝑖𝑖𝑗𝑗 = 1

2
𝑂𝑂𝑃𝑃𝑇𝑇 − 𝐴𝐴𝑒𝑒𝑣𝑣

• True item by item!

i • Optimal solution max
𝑀𝑀∗

∑𝑖𝑖𝑗𝑗∈𝑀𝑀∗ 𝑣𝑣𝑖𝑖𝑗𝑗
• A bid vector 𝑏𝑏∗ inducing optimal solution 𝑖𝑖 bids 
𝑣𝑣𝑖𝑖𝑗𝑗/2 on item 𝑗𝑗𝑖𝑖∗ assigned in 𝑖𝑖 in opt ( 𝑖𝑖, 𝑗𝑗𝑖𝑖∗ ∈ 𝑀𝑀∗)



Bayesian extension theorem
Theorem [Roughgarden’12, Syrgkanis’12, Syrgkanis-T’13] Auction game is λ-
auction smooth, and values are drawn from independent distributions, then 
the Price of anarchy in the Bayesian game is at most  1 /𝜆𝜆. 

In addition [Hartline, Syrgkanis-T’15] also extends to learning out come in 
Bayesian games.

Extension theorem: OK to only think about the full information game!

Proof idea: bid b*(v)….
Trouble:  depends on other players and hence we don’t know…… 
Instead: sample opponents �̅�𝑣𝑗𝑗 and bid 𝑏𝑏⋆ 𝑣𝑣𝑖𝑖 , �̅�𝑣−𝑖𝑖 .



Trouble: bidding is very hard!

So many bids to consider (𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛𝑛) all possible bids on all items
Simplifications:
• Do not bid 𝑏𝑏𝑗𝑗 > 𝑣𝑣𝑗𝑗, still bid space is ∏𝑗𝑗[0, 𝑣𝑣𝑗𝑗]
• Discretize, only bid multiples of 𝜖𝜖, being off my an 𝜖𝜖 can only cause 𝜖𝜖

regret! Only ∏𝑗𝑗 𝑣𝑣𝑗𝑗/𝜖𝜖 options
• Assume (k-1)𝜖𝜖 < 𝑏𝑏 < 𝑘𝑘𝜖𝜖
• If  b wins: so does k𝜖𝜖 and pays too much by 𝜖𝜖
• If k𝜖𝜖 wins and b looses k𝜖𝜖 is better off.

Daskalakis-Syrgkanis’16: optimal bid is NP-hard to find or even 
approximate. Reduction from set-cover 



Extensions beyond coarse correlated equilibria

1. What is possible when no-regret is too hard to reach
2. What can we say when there is churn: games/participants 

change/evolve
3. What is possible to say when there is carryover effects 

between iterations
4. What may be a good way to learn when cooperation may 

be constructive? Mostly open



Bidding options that are possible to 
not regret[Daskalakis-Syrgkanis’16]

• Idea:  strategy space names set S of items to buy, regardless of price

• Alternate notion of no regret:  
1
T
∑𝜏𝜏 𝑢𝑢𝑖𝑖(𝑏𝑏𝜏𝜏) ≥ 1 − 𝜖𝜖 max

𝑆𝑆𝑖𝑖
(𝑣𝑣𝑖𝑖 𝑆𝑆𝑖𝑖 − 1

𝑇𝑇
∑𝜏𝜏 𝑂𝑂𝜏𝜏 𝑆𝑆𝑖𝑖 ) − 𝐴𝐴𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑐𝑐

Items in j ∈ 𝑆𝑆𝑖𝑖 are evaluated against their average price! 𝑣𝑣𝑗𝑗 −
1
𝑇𝑇
∑𝜏𝜏 𝑂𝑂𝜏𝜏(𝑗𝑗)



No-regret for sets versus bids

• This is achievable using a variant of follow the perturbed 
leader. 

Need subroutine: select the set you would prefer on the average prices so far

• Is this form of no regret good enough for social welfare? 
Let 𝑆𝑆𝑖𝑖∗be set awarded to 𝑖𝑖 in optimum. We get

∑𝜏𝜏 𝑢𝑢𝑖𝑖 𝑆𝑆𝜏𝜏 ≥ 𝑇𝑇𝑣𝑣𝑖𝑖 𝑆𝑆𝑖𝑖∗ − ∑𝜏𝜏 𝐴𝐴𝑒𝑒𝑣𝑣𝜏𝜏(𝑆𝑆𝑖𝑖∗)- regret
Sum over all players
∑𝜏𝜏∑𝑖𝑖 𝑢𝑢𝑖𝑖 𝑐𝑐𝜏𝜏 ≥ 𝑇𝑇∑𝑖𝑖 𝑣𝑣𝑖𝑖(𝑆𝑆𝑖𝑖∗) − ∑𝜏𝜏∑𝑖𝑖 𝐴𝐴𝑒𝑒𝑣𝑣𝜏𝜏 𝑆𝑆𝑖𝑖∗ = 𝑇𝑇 𝑂𝑂𝑃𝑃𝑇𝑇 − ∑𝜏𝜏 𝐴𝐴𝑒𝑒𝑣𝑣𝜏𝜏



Learning in Dynamic Game: 
[Lykouris, Syrgkanis, T. ‘16]

Dynamic population model:
At each step t each player i

is replaced with an arbitrary new player with probability p

What should they learn from data?
No regret good enough?  

�
𝑡𝑡

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑎𝑎𝑡𝑡 ≤ (1 + 𝜖𝜖)�
𝑡𝑡

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑎𝑎𝑖𝑖∗,𝑎𝑎−𝑖𝑖𝑡𝑡 + 𝑃𝑃𝐴𝐴
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Need for adaptive learning

Example routing
• Strategy = path
• Best “fixed” strategy in hindsight very weak in 

changing environment
• Learners should/can adapt to the changing 

environment 

time
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Adapting result to dynamic populations

Inequality we “wish to have”

�
𝑡𝑡

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑎𝑎𝑡𝑡;𝑣𝑣𝑡𝑡 ≤�
𝑡𝑡

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖(𝑎𝑎𝑖𝑖∗𝑡𝑡 ,𝑎𝑎−𝑖𝑖𝑡𝑡 ;𝑣𝑣𝑡𝑡)

where 𝑎𝑎𝑖𝑖∗𝑡𝑡 is the optimum strategy for the players at time t.

with stable population = no regret for 𝑎𝑎𝑖𝑖∗

Too much to hope for in dynamic case: 
• sequence 𝑎𝑎∗𝑡𝑡 of optimal solutions changes too much. 
• No hope of learners not to learn this well! 



Change in Optimum Solution 

True optimum is too sensitive
• Example using matching
• The optimum solution
• One person leaving
• Can change the solution for everyone

• Np changes each step → No time to 
learn!! (we have p>>1/N)



Adaptive Learning

Theorem Approximate Regret [e.g., Foster,Li,Lykouris,Sridharan,T. NIPS’16] 
for all player i, strategy 𝑥𝑥𝜏𝜏 sequence that changes k times

∑𝜏𝜏 𝑢𝑢𝑖𝑖(𝑐𝑐𝜏𝜏, 𝑣𝑣𝜏𝜏) ≥ ∑𝜏𝜏 1 + 𝜖𝜖 𝑢𝑢𝑖𝑖 𝑥𝑥𝜏𝜏, 𝑐𝑐−𝑖𝑖𝜏𝜏 ; 𝑣𝑣𝜏𝜏 +𝑂𝑂(k
𝜖𝜖

log𝑚𝑚)

Using any classical learning mixed with a bit of recency bias
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Theorem (high level)
If a game satisfies a “smoothness property” 
The welfare optimization problem admits an approximation algorithm whose 
outcome �𝑎𝑎⋆ is stable to changes in one player’s type
Then any adaptive learning outcome is approximately efficient

Proof idea: use this approximate solution as �𝑎𝑎⋆ in Price of Anarchy proof
With �𝑎𝑎⋆ not changing much, learners have time to learn not to regret following �𝒂𝒂⋆

49

PoA = lim
𝑇𝑇→∞

∑𝑡𝑡=1𝑇𝑇 𝑐𝑐𝑙𝑙𝑁𝑁𝑡𝑡(𝑎𝑎𝑡𝑡,𝑣𝑣𝑡𝑡)
∑𝑡𝑡=1𝑇𝑇 𝑂𝑂𝑂𝑂𝑡𝑡(𝑣𝑣𝑡𝑡)

close to PoA



Result (Lykouris, Syrgkanis, T’16) :

In many smooth games welfare close to Price of Anarchy even when the rate 
of change is high, 𝒑𝒑 ≈ 𝟏𝟏

𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏
with n players, assuming adaptive no-regret 

learners
- Worst case change of player type  ⇒ need for learning players
- Bound 𝜶𝜶 ⋅ 𝜷𝜷 ⋅ 𝜸𝜸 depends on 

- 𝜶𝜶 price of anarchy bound as game gets large, goes to 1 in auctions,
goes to 4/3 in linear congestion games 

- 𝜸𝜸 loss due to regret error   goes to 1 as 𝑂𝑂 → 0
- 𝜷𝜷 loss in opt for stable solutions         goes to 1 as 𝑂𝑂 → 0 & game is large
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Social Welfare of Learning Outcomes

Critical Assumption: new copy of the same game is 
repeated (no carryover effect between rounds other 
than through learning)

Is this reasonable?



Cooperative Games: when no-regret is the 
wrong thing to do
• Simple example: repeated prisoner’s dilemma: the only no-regret 

strategy is to defect, as defect is dominant strategy!

But defecting induces the opponent to defect: 
Has effect on next round beyond the learning!

Suggested learning: 
de Farias, Megiddo’06
Arora, Dekel, Tewari’12 policy regret

C D

C
0  

0
1

-11

D
-11

1
-10

-10



Large population games: traffic routing

Morning rush-hour traffic
No carryover effect 
(except through the 
learning of the agents)

Second-by-second packet traffic
Packets take time to clear, 
dropped packets need to be 
resent in the next round



Price of Anarchy in Stateful Systems

• Not as well understood: do PoA-style bounds still hold with 
dependence between games in each round?

Questions:
• How much extra capacity ensures good system performance despite 

selfish users
• Is no-regret learning the right way to learn in presence of dependence 

between rounds



Simple Model of Queuing
• Queue 𝑖𝑖 gets new packets with a 

Bernoulli process with rate 𝜆𝜆𝑖𝑖
• Server 𝑗𝑗 succeeds at serving a packet 

with probability 𝜇𝜇𝑗𝑗
• Each time step: each queue can send 

one packet to one of the servers to try 
to get serviced

• Server can process at most one packet 
and unserved packets get returned to 
queue

• Servers attempt to serve oldest packet

queues servers

Failed

𝜆𝜆𝑖𝑖

𝜇𝜇𝑗𝑗



Our Main Question

• Example: one queue, one server (no learning, no competition)

• 𝜆𝜆 < 𝜇𝜇: expected queue size bounded (biased r.w. on the half-line)
• 𝜆𝜆 = 𝜇𝜇: expected queue size grows like Θ( 𝑐𝑐) (unbiased r.w.)
• 𝜆𝜆 > 𝜇𝜇: expected queue size grows linearly in 𝑐𝑐 sharp threshold

λ 𝜇𝜇

How large should the server capacity be to ensure 
competitive, no-regret queues remain bounded in 

expectation over time?



One queue many servers
• The one queue faces a Bayesian multi-arm 

bandit learning problem to find the best server

[Krishnasamy, Sen, Johari, & Shakkottai NIPS’16] 
• Queue is searching for the best server:          

needs 𝜆𝜆 < 𝜇𝜇𝑖𝑖
• Study the evolution of queue length over time: 
goes up to 𝑂𝑂(log 𝑐𝑐) and then back to a constant 
once the best server is identified

queue servers

𝜆𝜆 𝜇𝜇1

𝜇𝜇𝑛𝑛



Baseline Measure: Coordinated Queues

Assume queues and servers are sorted:
1 > 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑛𝑛

1 ≥ 𝜇𝜇1 ≥ 𝜇𝜇2 ≥ ⋯ ≥ 𝜇𝜇𝑚𝑚 > 0

Claim: necessary/sufficient condition for centralized 
stability:  for all k,

�
𝑖𝑖=1

𝑘𝑘

𝜆𝜆𝑖𝑖 < �
𝑖𝑖=1

𝑘𝑘

𝜇𝜇𝑖𝑖

(Recall can only send one packet each round)

queues servers

𝜆𝜆𝑖𝑖

𝜇𝜇𝑗𝑗



Selfish Queuing with Priorities

• Main Theorem [informal, Gaitonde-T ’20]: suppose that:
• Servers attempt to serve oldest packet received in each round,
• Queues use no-regret learning algorithms,
• and for all k,

�
𝑖𝑖=1

𝑘𝑘

𝜆𝜆𝑖𝑖 <
1
2
�
𝑖𝑖=1

𝑘𝑘

𝜇𝜇𝑖𝑖

Then, all queue sizes remain bounded in expectation uniformly over time. 
Moreover, factor 1/2 is tight.



Proof Ideas

• Use potential function 

Φ ≈ ∑𝜏𝜏Φ𝜏𝜏
with  Φ𝜏𝜏 = # packets aged 𝜏𝜏 or older in the system
• [Pemantle, Rosenthal ‘04]: random process satisfying

i. Sufficiently regular
ii. Negative drift when large

remains bounded in expectation for all times
• No-regret + factor 2 slack implies negative drift when queues have 

large backup



Why Φ and How No-Regret Helps

• Look at queues with packets at least 𝜏𝜏-old; they have priority
• Fix long window and look at best/fastest servers
• Either: i) many 𝜏𝜏-old queues send there throughout window 
Φ𝜏𝜏 decreases by a lot

ii) they do not  had priority there so no-regret kicks in: 

𝜆𝜆𝑖𝑖
𝜇𝜇𝑗𝑗



Why Φ and How No-Regret Helps

• Look at queues with packets at least 𝜏𝜏-old; they have priority 
• Fix long window and look at best/fastest servers
• Either: i) many 𝜏𝜏-old queues send there throughout window 

decrease in queue size, OR
ii) they do not  had priority there so no-regret kicks in: 
Any queue with 𝜏𝜏-old packets would have 
regret, unless it managed to get service for at 
least this much!

Apply at all thresholds 𝜏𝜏 simultaneously to get   
no-regret at all scales  implies negative drift

𝜆𝜆𝑖𝑖
𝜇𝜇𝑗𝑗



Extra Technical Details

• Need no-regret to hold on specific windows of long enough size with 
high-probability 

unlikely bad situations will happen, need to be able to recover
• Other technical issues for applying Pemantle/Rosenthal result: use 

model with deferred decisions, study ages instead of sizes
age of oldest packet  𝑇𝑇𝑖𝑖𝑡𝑡 in queue 𝑖𝑖
Φ𝜏𝜏 = ∑𝑖𝑖:𝑇𝑇𝑖𝑖𝑡𝑡>𝜏𝜏 𝜆𝜆𝑖𝑖(𝑇𝑇𝑖𝑖

𝑡𝑡 − 𝜏𝜏) ≈ # packets age 𝜏𝜏 or older in the system

• apply concentration bounds,
• “sufficiently regular” = bounded moments



• Both sending to top 
server has no-regret 

• Deviating gives regret
• Age/split top server 

equally  linear growth

• Moving to inferior server 
selfishly helps

• Helps top queue clear, 
indirectly helping both 
queues clear!

𝜇𝜇1 = 1

𝜇𝜇2 = .47

1

1 .9

.1

𝜆𝜆1 = .51

𝜆𝜆2 = .51

Myopia in No-Regret: Example

But the 0.47 rate causes regret!



Selfish Queuing: Price of Anarchy

Theorem 1 [Gaitonde-T ’20]: if queues use no-regret algorithms to select 
servers and for all 𝑘𝑘,

�
𝑖𝑖=1

𝑘𝑘

𝜆𝜆𝑖𝑖 < 0.5�
𝑖𝑖=1

𝑘𝑘

𝜇𝜇𝑖𝑖

Then queue lengths/ages grow sublinearly.

Theorem 2 [Gaitonde-T‘21]: If queues choose servers patiently, and for all 𝑘𝑘

then in every equilibrium, queue lengths/ages grow sublinearly. 0.63 = (𝑒𝑒 − 1)/𝑒𝑒

�
𝑖𝑖=1

𝑘𝑘

𝜆𝜆𝑖𝑖 < 0.63�
𝑖𝑖=1

𝑘𝑘

𝜇𝜇𝑖𝑖



Price of Anarchy

• Worst-case (intuitively): 𝑛𝑛 equal 
queues, 𝑛𝑛 servers with rate 1, 
uniform mixing  worst case 
needs at least 𝑒𝑒

𝑒𝑒−1
slack 

• In general: fastest-aging queue 
cannot benefit from deviation at 
equilibrium, but not clear why

1/𝑛𝑛
𝜇𝜇 = 1

𝜇𝜇 = 1

𝜇𝜇 = 1

𝜇𝜇 = 1

𝜆𝜆

𝜆𝜆

𝜆𝜆

𝜆𝜆



What’s Going On?

• Too myopic: not patient enough to see asymptotic benefit of “bad” servers:
• What we do: evaluate alternate outcome without considering long-term 

effect of the change

�
𝑡𝑡

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑎𝑎1:𝑡𝑡 ≤�
𝑡𝑡

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑎𝑎𝑖𝑖1:𝑡𝑡−1, 𝑥𝑥 ,𝑎𝑎−𝑖𝑖1:𝑡𝑡 + 𝑐𝑐(𝑇𝑇)

• What we may want (?):

�
𝑡𝑡

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑎𝑎1:𝑡𝑡 ≤�
𝑡𝑡

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑥𝑥1:𝑡𝑡 , 𝑎𝑎−𝑖𝑖1:𝑡𝑡 + 𝑐𝑐(𝑇𝑇)

• We study the patient queuing game with stationary strategies



Conclusions
Learning in games:
• Good way to adapt to opponents

• Takes advantage of opponent playing badly.
• No need for common prior

Learning players do well even in dynamic environments
• Stable approx. solution + good PoA bound ⇒ good efficiency with dynamic population
Do OK in some games with carryover effect.

Question: can other forms of learning do better? 
e.g., policy regret? [Arora, Dekel, Tewari’12]
Unfortunately, doesn’t help in queueing  Sentenac, Boursier, Perchet’21
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