Vanishing multiplicities

Two unsuccessful contributions to GCT

Nicolas Ressayre

Université Lyon 1
Institut Universitaire de France
September, 16th 2014

Table of Contents

(1) Introduction to GCT
(2) Vanishing of Kronecker coefficients
(3) Vanishing of symmetric Kronecker coefficients
(4) A question

Orbit closure problem and obstructions

- We work over \mathbb{C}. Let G (e.g. a linear group) be a complex connected reductive group acting on a vector space V. Given two orbits \mathcal{O}^{\prime} and \mathcal{O} we want to get methods to prove that

$$
\begin{equation*}
\mathcal{O}^{\prime} \not \ddagger \overline{\mathcal{O}} \tag{1}
\end{equation*}
$$

- Basic idea: if, by contradiction, $\mathcal{O}^{\prime} \subset \overline{\mathcal{O}}$ then for any irrep. $V_{G}(\lambda)$

$$
\operatorname{mult}\left(V_{G}(\lambda), \mathbb{C}\left[\overline{\mathcal{O}^{\prime}}\right]\right) \leq \operatorname{mult}\left(V_{G}(\lambda), \mathbb{C}[\overline{\mathcal{O}}]\right) \leq \operatorname{mult}\left(V_{G}(\lambda), \mathbb{C}[\mathcal{O}]\right)
$$

$$
\text { is mult }\left(V_{G}(\lambda), \mathbb{C}[\mathcal{O}]\right)=0 \text { ? }
$$

Let H be the isotropy of a point of \mathcal{O}. Then

$$
\operatorname{mult}\left(V_{G}(\lambda), \mathbb{C}[\mathcal{O}]\right)=\operatorname{dim}\left(\left(V_{G}(\lambda)^{*}\right)^{H}\right) .
$$

Main example

- Let $E=\mathbb{C}^{n}, W=\operatorname{End}(E)=E^{*} \otimes E, V=S^{n} W^{*}$,

$$
G=\mathrm{GL}(W)=\mathrm{GL}_{n^{2}}(\mathbb{C}) \text { and }
$$

$$
\mathcal{O}=G . \operatorname{det} \subset V .
$$

Here $\operatorname{dim} G=n^{4}$ and

$$
\operatorname{dim} V=\binom{n^{2}+n-1}{n}=10,165,3876,118755 \ldots
$$

- The isotropy if given by

$$
\begin{gathered}
\operatorname{det}(A M B)=\operatorname{det}(M) \quad \text { if } \quad \operatorname{det}(A) \cdot \operatorname{det}(B)=1 \\
\operatorname{det}\left(M^{t}\right)=\operatorname{det}(M) .
\end{gathered}
$$

Hence $H^{0}=S(G L(E) \times G L(E))$ and $H / H^{0}=\mathbb{Z} / 2 \mathbb{Z}$.

- But

$$
k_{\delta^{n} \delta^{n} \lambda}=\operatorname{dim}\left(\left(S_{\lambda} V^{*}\right)^{H^{0}}\right) \geq \operatorname{dim}\left(\left(S_{\lambda} V^{*}\right)^{H}\right)=: s k_{\delta^{n} \delta^{n} \lambda},
$$

where $|\lambda|=\delta n$.

A Murnaghan's result

Let α, β, and γ be three partitions of the same integer n. The Kronecker coefficient $k_{\alpha \beta \gamma}$ is defined by

$$
\begin{equation*}
[\alpha] \otimes[\beta]=\sum_{\gamma} k_{\alpha \beta \gamma}[\gamma], \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
S_{\gamma}(E \otimes F)=\sum_{\alpha \beta} k_{\alpha \beta \gamma} S_{\alpha} E \otimes S_{\beta} F \tag{3}
\end{equation*}
$$

Similarly the Littlewood-Richardson coefficients are defined by

$$
\begin{equation*}
S_{\alpha} V \otimes S_{\beta} V=\sum_{\gamma} c_{\alpha \beta}^{\gamma} S_{\gamma} V \tag{4}
\end{equation*}
$$

A Murnaghan's result

Proposition

(1) If $k_{\alpha \beta \gamma} \neq 0$ then

$$
\begin{equation*}
\left(n-\alpha_{1}\right)+\left(n-\beta_{1}\right) \geq n-\gamma_{1} . \tag{5}
\end{equation*}
$$

(2) If $\left(n-\alpha_{1}\right)+\left(n-\beta_{1}\right)=n-\gamma_{1}$ then

$$
\begin{equation*}
k_{\alpha \beta \gamma}=c_{\bar{\alpha} \bar{\beta}}^{\bar{\gamma}} . \tag{6}
\end{equation*}
$$

In particular, Kronecker coefficients extend Littlewood-Richardson's one.

Weyl's inequalities

If $c_{\bar{\alpha} \bar{\beta}}^{\bar{\gamma}} \neq 0$ then

$$
\begin{equation*}
\bar{\gamma}_{e+j-1} \leq \bar{\beta}_{j-1} \tag{7}
\end{equation*}
$$

whenever $I(\bar{\alpha}) \leq e$ and $j \geq 2$.

Theorem

Let e and f be two postive integers. Let α, β, and γ be three partitions of the same integer n such that

$$
\begin{equation*}
I(\alpha) \leq e+1, \quad I(\beta) \leq f+1, \quad \text { and } \quad I(\gamma) \leq e+f+1 . \tag{8}
\end{equation*}
$$

Let $j \in\{2, \ldots, f+1\}$.
If $k_{\alpha \beta \gamma} \neq 0$ then

$$
\begin{equation*}
n+\gamma_{1}+\gamma_{e+j} \geq \alpha_{1}+\beta_{1}+\beta_{j} \tag{9}
\end{equation*}
$$

Horn's inequalities

To $I \in \mathcal{S}(r, n)$, associate the partition

$$
\tau^{\prime}=\left(d-r+1-i_{1} \geq d-r+2-i_{2} \geq \cdots \geq d-i_{r}\right) .
$$

Set $\left|\alpha_{l}\right|:=\sum_{i \in l} \alpha_{i}$.

Theorem

Let α, β, and γ be three partitions of the same integer n satisfying conditions (8).
If $k_{\alpha \beta \gamma} \neq 0$ then

$$
\begin{equation*}
n+\left|\bar{\alpha}_{l}\right|-\alpha_{1}+\left|\bar{\beta}_{J}\right|-\beta_{1} \geq\left|\bar{\gamma}_{\kappa}\right|-\gamma_{1}, \tag{10}
\end{equation*}
$$

for any $0<r<e, 0<s<f, I \in \mathcal{S}(r, e), J \in \mathcal{S}(s, f)$ and $K \in \mathcal{S}(r+s, e+f)$ such that

$$
\begin{equation*}
c_{\tau^{\prime} \tau^{J}}^{\tau^{k}}=1 . \tag{11}
\end{equation*}
$$

The statements

Theorem

The $\mathrm{GL}(W)$-module $S_{\lambda} W$ is not a submodule of $\mathbb{C}[\mathcal{O}]$ for
(1) $\lambda=a b^{n^{2}-1}$ where $a \geq b$ and

$$
\left\{\begin{array}{l}
n \equiv 2 \quad[4] ; \\
n \text { devides } a-b ; \\
b \text { is odd. }
\end{array}\right.
$$

(2) $\lambda=a^{2} b^{7}$ where $a \geq b, n=3$, and

$$
\left\{\begin{array}{l}
3 \text { devides } a-b ; \\
a \text { is odd. }
\end{array}\right.
$$

(0) $\lambda=a^{3} b^{6}$ where $a \geq b, n=3$, and

$$
\{\mathrm{a} \text { is odd. }
$$

Examples

Let $\delta \in \mathbb{Z}_{\geq 0}$ be such that $|\lambda|=n \delta$. Such an example is interesting if
(1) $S^{\delta}\left(S^{n} W\right)$ contains $S_{\lambda} W$;
(2) $k_{\delta^{n} \delta^{n} \lambda} \neq 0$.

Such an example is the case $\lambda=7^{3} 3^{6}$. Then $\delta=13$ and

$$
\begin{array}{r}
\operatorname{mult}\left(S_{\lambda} W, \mathbb{C}[\mathcal{O}]\right)=0, \\
\operatorname{mult}\left(S_{\lambda} W, S^{\delta}\left(S^{3} W\right)\right)=1, \\
\operatorname{mult}\left(S_{\lambda} W, \mathbb{C}\left[G / H^{\circ}\right]\right)=k_{13^{3} 13^{3} 7^{3} 3^{6}=k_{4^{3} 4^{3} 4^{3}}=2 .} . \tag{14}
\end{array}
$$

There exists a degree 13 equation for $\overline{\mathrm{GL}_{9} \cdot \operatorname{det}_{3}}$.

A question

- Consider

$$
z^{3}+x t^{2}+x^{2} y=\left|\begin{array}{ccccc}
1 & 0 & y & 0 & 0 \\
x & t & 0 & z & 0 \\
0 & 1 & t & 0 & 0 \\
0 & 0 & z & 0 & -x \\
0 & 0 & 0 & 1 & z
\end{array}\right|
$$

It is the only cubic surface containing a unique line. It is also the unique nondeterminantal cubic surface.

- Hence $\mathrm{dc}\left(z^{3}+x t^{2}+x^{2} y\right) \leq 5$.

One can prove that $\mathrm{dc}\left(z^{3}+x t^{2}+x^{2} y\right) \geq 4$.
The open question:

$$
\mathrm{dc}\left(z^{3}+x t^{2}+x^{2} y\right)=4 \text { or } 5 ?
$$

