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Non-adaptive experimental design strategies
11-12

Settings for experimental design in causal structure learning and preliminaries
9:30-10:30

Adaptive experimental design strategies
2-3

Agenda

Targeted experimental design and other open challenges
3:30-4:30
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Part I: Settings for experimental 
design in causal discovery and 

preliminaries
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Motivating Example: Genomics
Knockout experiments:

How do we pick experiments to learn the underlying causal graph?
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What are our experimental limitations?

Adaptive
Time

Non-adaptive
Time

Single-round
Passive
Parallel
Batch
Fixed

Multi-round
Active

Sequential

Simons Causality Bootcamp 01/21/22Chandler Squires



6

What are our experimental limitations?

Bounded Unbounded
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What are our experimental limitations?

Fixed budget

max 𝑖𝑛𝑓𝑜(𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠)
s.t. 𝑐𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 ≤ 𝑏𝑢𝑑𝑔𝑒𝑡

Minimum cost identification

min 𝑐𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠
s.t. 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝐺∗
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What are our experimental limitations?
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Observational dataNo observational data



What are our experimental limitations?
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Adaptive

Bounded Unbounded

Fixed budget Min-cost identification

max    𝑖𝑛𝑓𝑜(𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠)
s.t. 𝑐𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 ≤ 𝑏𝑢𝑑𝑔𝑒𝑡

min     𝑐𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠
s.t.       𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝐺∗

No observational data Observational data

Non-adaptive



Additional assumptions for parts I, II, and III

• Noiseless setting: we obtain an infinite amount of data from each 
intervention, so that the only uncertainty is due to unidentifiability 
and not statistical noise.
• i.e., if the distribution associated with an intervention 𝐼4 is 𝑓4, then we 

assume access to conditional invariance oracle that tells us whether 
𝑓4 𝑋5 𝑋6 = 𝑓4!(𝑋5 ∣ 𝑋6) for any node 𝑖 and set 𝐶
• In practice, we can imagine setting a threshold 𝜖 and obtaining enough 

interventional samples to distinguish any two distributions that are further 
than 𝜖 under some measure (e.g., total variation distance)

• Causally sufficient setting: there are no unobserved confounders.
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Types of Interventions
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Do-interventions

𝑋" ← 𝑓"(𝜀")
𝑋# ← 𝑓# 𝑋", 𝜀#

𝑋" ← 𝑓"(𝜀")
𝑋# ← 𝑥#

𝑋" 𝑋# 𝑋" 𝑋#

aka: mechanism changes

Perfect interventions

𝑋" ← 𝑓"(𝜀")
𝑋# ← 𝑓#$(𝜀#$ )

𝑋" 𝑋#

⊂ Soft interventions

𝑋" ← 𝑓"(𝜀")
𝑋# ← 𝑓#$(𝑋", 𝜀#$ )

⊂

𝑋" 𝑋#
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Interventional Augmented Graphs

12

𝑋" ← 𝑓"(𝜀")
𝑋# ← 𝑓#$(𝑋", 𝜀#$ )

𝑋" 𝑋#

𝑋" ← 𝑓"(𝜀")
𝑋# ← 𝑓# 𝑋", 𝜀#

𝑋" 𝑋#

𝑋" ← 𝑓"(𝜀")
𝑋# ← 1 − 𝜁" ⋅ 𝑓# 𝑋#, 𝜀# + 𝜁" ⋅ 𝑓#$(𝑋", 𝜀#$ )

𝑋" 𝑋#

𝜁"
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Interventional Augmented Graphs

13

𝑋" 𝑋#

𝑋% 𝑋&

𝐼" = {𝑋#}

𝐼# = {𝑋%, 𝑋&}

ℐ = {∅, 𝐼", 𝐼#}

𝜁"

𝑋" 𝑋#

𝑋% 𝑋&

𝜁#

ℐ-DAG

Given a DAG 𝐺 and a set of interventions ℐ = {I", … , 𝐼'}, the 
interventional DAG (ℐ-DAG), denoted 𝐺ℐ, is obtained by introducing 

intervention variables 𝜁", … , 𝜁' and edges 𝜁) → 𝑋* for 𝑋* ∈ 𝐼)

Simons Causality Bootcamp 01/21/22Chandler Squires
Characterizing and Learning Equivalence Classes of Causal DAGs under Interventions (Yang et al., 2018)

Joint Causal Inference from Multiple Contexts (Mooij et al., 2020)

https://arxiv.org/abs/1802.06310
https://arxiv.org/abs/1611.10351


Interventional Markov Equivalence
An indexed set of distribution 𝑓!

!"#
$

is 𝓘-Markov w.r.t. 𝐺 if:

• each 𝑓! is Markov w.r.t. 𝐺
• 𝑓! 𝑋% 𝑋&'(%)) = 𝑓!! 𝑋% 𝑋&'(%)) for all 𝑘, 𝑘* such that 𝑋% ∉ 𝐼! ∪ 𝐼!!.

We call two DAGs 𝐺# and 𝐺+ 𝓘-Markov equivalent if every 𝑓! !"#
$

which is ℐ-Markov w.r.t. 𝐺# is ℐ-Markov w.r.t. 𝐺+ and vice versa.

The ℐ-Markov equivalence class of 𝐺 is denoted 𝐺 ℐ. The observational 
Markov equivalence class (i.e., ℐ = {∅}) is denoted 𝐺 .
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Characterization of Interventional Markov 
Equivalence
Theorem (Hauser and Bühlmann, 2012, Yang et al., 2018)
Two DAGs 𝐺# and 𝐺+ are ℐ-Markov equivalent iff. their ℐ-DAGs 𝐺#ℐ and 
𝐺+ℐ have the same skeletons and v-structures.

15

Equivalently: Two DAGs are 𝐺# and 𝐺+ ℐ-Markov equivalent iff. they are 
Markov equivalent and when 𝑋% → 𝑋- in 𝐺# and | 𝑋% , 𝑋- ∩ 𝐼!| = 1 for 
some 𝐼! ∈ ℐ, then 𝑋% → 𝑋- in 𝐺+.

𝑋" 𝑋# 𝑋% 𝑋" 𝑋# 𝑋% 𝑋" 𝑋# 𝑋%𝜁" 𝜁" 𝜁"

Characterization and Greedy Learning of Interventional Markov Equivalence Classes of Directed Acyclic Graphs (Hauser and Bühlmann, 2012)
Characterizing and Learning Equivalence Classes of Causal DAGs under Interventions (Yang et al., 2018)

Simons Causality Bootcamp 01/21/22Chandler Squires

https://jmlr.org/papers/volume13/hauser12a/hauser12a.pdf
https://arxiv.org/abs/1802.06310


ℐ-essential graphs
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Define the ℐ-essential graphs graph of 𝐺∗, denoted ℰℐ 𝐺∗ , as the 
mixed graph (directed and undirected edges) with:
• The same adjacencies as 𝐺∗

• 𝑋% → 𝑋- in ℰℐ 𝐺∗ if 𝑋% → 𝑋- for all 𝐺 ∈ 𝐺∗ ℐ

• 𝑋% − 𝑋- otherwise

𝑋! 𝑋" 𝑋#

𝑋! 𝑋" 𝑋# 𝑋! 𝑋" 𝑋#



Part II: Non-adaptive 
experimental design strategies
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Non-adaptive Adaptive

Bounded Unbounded

Fixed budget Min-cost identification

max    𝑖𝑛𝑓𝑜(𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠)
s.t. 𝑐𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 ≤ 𝑏𝑢𝑑𝑔𝑒𝑡

min     𝑐𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠
s.t.       𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝐺∗

No observational data Observational data



Structural information from interventions

• If 𝑋% , 𝑋- ∩ 𝐼! = {𝑋%}, we call 𝐼! an 𝑋%-orientation test for (𝑋% , 𝑋-)
• If 𝑋% , 𝑋- ∩ 𝐼! = ∅, we call 𝐼! an adjacency test for (𝑋% , 𝑋-)

19

Lemma (Eberhardt, 2008)
To determine the presence/absence and orientation of an edge 
between 𝑋% and 𝑋-, either of the following are sufficient and in the 
worst case necessary:
1. A structural orientation test and a structural adjacency test.
2. An 𝑋%-orientation test and a 𝑋--orientation test.

Simons Causality Bootcamp 01/21/22Chandler Squires



Single-node interventions

Q: How many single-node interventions are sufficient and worst-case 
necessary for finding any 𝐺∗ on 𝑝 ≥ 3 nodes?
A1: p-1

20

min |ℐ|
s.t. ∀ 𝐺∗, ℐ 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑠 𝐺∗

∀ 𝐼 ∈ ℐ, I ≤ 1

Sufficiency
All pairs of variables are subject to 
adjacency tests.

All pairs have at least one member 
subject to an orientation test.

Worst-case necessity
If we only intervene on 𝑝 − 2 variables, and the two we 
don’t intervene on happen to be the most upstream. 

𝑋!

𝑋"

𝑋# 𝑋%

𝑋&

𝜁! 𝜁"

𝜁#

Simons Causality Bootcamp 01/21/22Chandler Squires

1Causation and Intervention (Eberhardt, 2008)

https://www.its.caltech.edu/~fehardt/papers/PhDthesis.pdf
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Non-adaptive Adaptive

Bounded Unbounded

Fixed budget Min-cost identification

max    𝑖𝑛𝑓𝑜(𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠)
s.t. 𝑐𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 ≤ 𝑏𝑢𝑑𝑔𝑒𝑡

min     𝑐𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠
s.t.       𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝐺∗

No observational data Observational data



Unbounded interventions

22

Q: How many (unrestricted) interventions are sufficient and worst-case 
necessary for finding any 𝐺∗ on 𝑝 nodes?
A1: ⌊log+ 𝑝⌋ + 1

min |ℐ|
s.t. ∀ 𝐺∗, ℐ 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑠 𝐺∗

Sufficiency

Simons Causality Bootcamp 01/21/22Chandler Squires

Let 𝑏(𝑘) denote the binary representation of an 
integer 𝑘, and 𝑏 𝑘 ' the 𝑗-th rightmost digit in this 
representation.

𝑏 6 = 110, 𝑏 6 ! = 0, 𝑏 6 " = 1, etc.

Label the vertices 0, … , 𝑝 − 1 and let 𝐼' =
𝑘 𝑏 𝑘 ' = 1}, for 𝑗 = 1, … , ⌊log" 𝑝⌋ + 1.

𝑋(
𝑋!

𝑋"

𝑋#
𝑋%

𝑋)

𝑋*

𝑋&

𝜁!
𝜁#

𝜁"

𝜁%

1Causation and Intervention (Eberhardt, 2008)
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Unbounded interventions

23

Q: How many (unrestricted) interventions are sufficient and worst-case 
necessary for finding any 𝐺∗ on 𝑝 nodes?
A: ⌊log+ 𝑝⌋ + 1

min |ℐ|
s.t. ∀ 𝐺∗, ℐ 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑠 𝐺∗

Sufficiency

Simons Causality Bootcamp 01/21/22Chandler Squires

Each pair is subjected to an orientation test, since any two 
numbers differ in at least one position in their binary expansions.

𝑋(
𝑋!

𝑋"

𝑋#
𝑋%

𝑋)

𝑋*

𝑋&

𝜁!
𝜁#

𝜁"

𝜁%

If 𝑝 is a power of 2, then there’s an empty intervention which 
gives an adjacency test for all pairs.

Otherwise, we can use the fact that every binary expansion has 
at least one zero to show that every pair is subjected to either 
the opposing orientation test, or an adjacency test.



Unbounded interventions

24

Q: How many (unrestricted) interventions are sufficient and worst-case 
necessary for finding any 𝐺∗ on 𝑝 nodes?
A: ⌊log+ 𝑝⌋ + 1

min |ℐ|
s.t. ∀ 𝐺∗, ℐ 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑠 𝐺∗

Worst-case necessity

Simons Causality Bootcamp 01/21/22Chandler Squires

(induction) Assume the result holds for all 𝑞 < 𝑝. Base cases on 2, 3, and 4 nodes can be done by hand.

Consider an intervention 𝐼! on any number K ≤ 𝑝 nodes.

In the worst case, all 𝑝 − 𝐾 non-intervened nodes are upstream of these 𝐾 nodes and form a complete graph, 
and there is a complete graph over the 𝐾 intervened nodes as well.

By the induction hypothesis, one of the remaining graphs requires at least ⌊log"
+
"
⌋ + 1 = ⌊log" 𝑝⌋ interventions.



25Simons Causality Bootcamp 01/21/22Chandler Squires

Non-adaptive Adaptive

Bounded Unbounded

Fixed budget Min-cost identification

max    𝑖𝑛𝑓𝑜(𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠)
s.t. 𝑐𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 ≤ 𝑏𝑢𝑑𝑔𝑒𝑡

min     𝑐𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠
s.t.       𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝐺∗

No observational data Observational data



Interventional Essential Graphs

The interventional essential graph is a chain 
graph with chordal chain components.

Furthermore, the orientations in each chain 
component are logically independent of one 
another.

26

Characterization and Greedy Learning of Interventional Markov Equivalence Classes of Directed Acyclic Graphs, 
Propositions 15 and 16 (Hauser and Bühlmann, 2012)

Simons Causality Bootcamp 01/21/22Chandler Squires

https://jmlr.org/papers/volume13/hauser12a/hauser12a.pdf


Chain graphs

A partially directed cycle in a mixed graph 
(i.e., a graph with both directed and 
undirected edges) is a sequence of distinct 
vertices 𝑣/, 𝑣#, … , 𝑣0 such that:
• for each 𝑣%, either 𝑣%1# − 𝑣% or 𝑣%1# → 𝑣%, 

where 𝑣1# = 𝑣0
• at least one edge in the path is directed

A chain graph is a mixed graph with no 
partially directed cycles.

27

𝑋! 𝑋" 𝑋# 𝑋%

𝑋& 𝑋* 𝑋)
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Chain graphs

A partially directed cycle in a mixed graph 
(i.e., a graph with both directed and 
undirected edges) is a sequence of distinct 
vertices 𝑣/, 𝑣#, … , 𝑣0 such that:
• for each 𝑣%, either 𝑣%1# − 𝑣% or 𝑣%1# → 𝑣%, 

where 𝑣1# = 𝑣0
• at least one edge in the path is directed

A chain graph is a mixed graph with no 
partially directed cycles.

28

𝑋! 𝑋" 𝑋# 𝑋%

𝑋& 𝑋* 𝑋)

The chain components of a chain 
graph are the connected components 
of the subgraph containing only the 

undirected edges.
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Chordal graphs

Given an undirected cycle, a chord is an edge 
that is not in the cycle but connects two nodes 
in the cycle.

A chordal graph is an undirected graph where 
all cycles of length ≥ 4 have a chord.

29

𝑋! 𝑋"

𝑋#𝑋%
Cycle

𝑋! 𝑋"

𝑋#𝑋%
Chord
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The clique number of a graph

A clique in a graph is a set of nodes which are 
all adjacent.

The clique number of a graph 𝐺 is the size of 
the largest clique, denoted 𝜔 𝐺 .

Note, this can be computed in linear time for a 
chordal graph 𝐺.

30Simons Causality Bootcamp 01/21/22Chandler Squires



Colorings of a graph

A coloring assigns a color to each node such 
that adjacent nodes do not have the same color.

The chromatic number of a graph is the smallest 
number of colors sufficient to form a coloring.

In a chordal graph 𝐺, the chromatic number is 
equal to the clique number 𝜔 𝐺 , and an 
optimal coloring can be found in linear time.

31Simons Causality Bootcamp 01/21/22Chandler Squires

𝑋! 𝑋"

𝑋#𝑋%

𝑋*𝑋&



Unbounded interventions for a fixed MEC

32

Q: How many (unrestricted) interventions are sufficient and worst-case 
necessary for finding any 𝐺∗ ∈ [𝐺∗] on 𝑝 nodes?
A: ⌈log+ 𝜔(ℰ(𝐺∗))⌉

min |ℐ|
s.t. ∀ 𝐺∗ ∈ 𝐺∗ , ℐ 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑠 𝐺∗

Sufficiency

Simons Causality Bootcamp 01/21/22Chandler Squires
Two Optimal Strategies for Active Learning of Causal Models From Interventional Data (Hauser and Bühlmann, 2012)

Assign an optimal coloring to each chordal component, with 
each color corresponding to a number 0, … , 𝜔(ℰ(𝐺∗)). Let 
𝑐(𝑗) denote the color (number) assigned to node 𝑗.

𝑋! 𝑋"

𝑋#𝑋%

𝑋*𝑋&

0

1

2

3
𝜁!

00

01

10

11

𝜁"

Then, let I, = {𝑗 ∣ 𝑏 𝑐 𝑗 - = 1}. The argument follows the 
same as in the case with no observational data.

https://arxiv.org/pdf/1205.4174.pdf
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Non-adaptive Adaptive

Bounded Unbounded

Fixed budget Min-cost identification

max    𝑖𝑛𝑓𝑜(𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠)
s.t. 𝑐𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 ≤ 𝑏𝑢𝑑𝑔𝑒𝑡

min     𝑐𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠
s.t.       𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝐺∗

No observational data Observational data

• Up to 𝐵 nodes per intervention: Learning Causal Graphs with Small Interventions (Shanmugam et al., 2015)
• With different costs per intervention: Cost-Optimal Learning of Causal Graphs (Kocaoglu et al., 2017)

https://arxiv.org/pdf/1511.00041.pdf
https://arxiv.org/pdf/1703.02645.pdf
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Non-adaptive Adaptive

Bounded Unbounded

Fixed budget Min-cost identification

max    𝑖𝑛𝑓𝑜(𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠)
s.t. 𝑐𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 ≤ 𝑏𝑢𝑑𝑔𝑒𝑡

min     𝑐𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠
s.t.       𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝐺∗

No observational data Observational data



Single-node interventions for a fixed MEC, 
with a fixed budget

35

Task: Pick 𝐾 single-node interventions to maximize the expected 
number of oriented edges.

max 𝔼.∼0123( .∗ )[𝑑𝑖𝑟 ℰℐ 𝐺 ]
s.t. ℐ ≤ 𝐾

∀ 𝐼 ∈ ℐ, I ≤ 1
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Submodularity

• A set function 𝑓: 22 → ℝ is submodular if for all 𝐴 ⊂ 𝐵 and 𝑏 ∈ Ω ∖
𝐵, we have 𝑓 𝐴 ∪ 𝑏 − 𝑓 𝐴 ≥ 𝑓 𝐵 ∪ 𝑏 − 𝑓(𝐵)
• A set function is monotonically increasing if for all 𝐴 ⊂ 𝐵, we have 
𝑓 𝐴 ≤ 𝑓(𝐵)
• Greedy optimization (up to size 𝐾): 
• Start from 𝐴e = ∅, then repeat 𝐾 times:
• Let 𝑎5fg = argmaxh∈i∖k" 𝑓 𝐴5 ∪ 𝑎 , and 𝐴5fg = 𝐴5 ∪ {𝑎5fg}

• For a monotonically increasing submodular function, greedy 
optimization finds a set 𝐴$ such that 𝑓 𝐴! ≥ 1 − #

3
max
4 5$

𝑓(𝐴)
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Submodularity of directed edges

Theorem (Ghassami et al., 2018)

Let Ω be the set of single-node interventions, let 𝐺 be any DAG, and let 
𝑓6 ℐ = 𝑑𝑖𝑟(ℰℐ 𝐺 ). Then 𝑓6 ℐ is monotonically increasing and 
submodular.
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Budgeted Experiment Design for Causal Structure Learning (Ghassami et al., 2018)

https://arxiv.org/pdf/1709.03625.pdf


Submodularity of directed edges

Theorem (Ghassami et al., 2018)

Let 𝐸ℐ" be the set of edges oriented by the set ℐ# of single-node 
interventions, and 𝐸ℐ# the set of edges oriented by the set ℐ+ of single-
node interventions. Then 𝐸 = 𝐸ℐ" ∪ 𝐸ℐ# is complete under Meek’s 
orientation rules.
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Why does this imply submodularity?

𝑓7 ℐ ∪ {𝑖} − 𝑓7 ℐ = |𝐸 2 ∖ 𝐸ℐ|

So, checking submodularity reduces to checking that ℐ ⊂ ℐ8 ⇒ 𝐸 2 ∖ 𝐸ℐ ≥ 𝐸 2 ∖ 𝐸ℐ"



Submodularity of directed edges

Theorem (Ghassami et al., 2018)

Let 𝐸ℐ" be the set of edges oriented by the set ℐ# of single-node 
interventions, and 𝐸ℐ# the set of edges oriented by the set ℐ+ of single-
node interventions. Then 𝐸 = 𝐸ℐ" ∪ 𝐸ℐ# is complete under Meek’s 
orientation rules.
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Proof sketch: 
• Check the pre-conditions for each Meek rule which involves 2 oriented edges 𝑋! → 𝑋" and 𝑋# → 𝑋%
• If 𝐸 is not complete, then 𝑋! → 𝑋" must be from 𝐸ℐ#and 𝑋# → 𝑋% must be from 𝐸ℐ$
• Show that 𝑋! → 𝑋" ∈ 𝐸ℐ# implies that 𝑋# → 𝑋% ∈ 𝐸ℐ$



Submodularity of directed edges
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Proof sketch: 
• Check the pre-conditions for each Meek rule which involves 2 oriented edges 𝑋! → 𝑋" and 𝑋# → 𝑋%
• If 𝐸 is not complete, then 𝑋! → 𝑋" must be from 𝐸ℐ#and 𝑋# → 𝑋% must be from 𝐸ℐ$
• Show that 𝑋! → 𝑋" ∈ 𝐸ℐ# implies that 𝑋# → 𝑋% ∈ 𝐸ℐ$
Example:

𝑋! 𝑋"

𝑋#

Say the “no cycles” rule 
is invoked

It can’t be directly from 
an intervention on 𝑋! or 
𝑋", otherwise 𝑋" → 𝑋#
or 𝑋! → 𝑋# would also 

be oriented 

Can we have 𝑋! → 𝑋" ∈
𝐸ℐ# without any of the 

other edges?

𝑋! 𝑋"

𝑋#

It can’t be from the “no 
new v-structures” rule, 

or else 𝑋! → 𝑋# or 𝑋# →
𝑋" would be oriented

𝑋! 𝑋"

𝑋#𝑎

𝑋! 𝑋"

𝑋#𝑎



Counting and sampling from a Markov 
equivalence class
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Polynomial-Time Algorithms for Counting and Sampling Markov Equivalent DAGs (Wienöbst et al., 2020)

Theorem 4, Wienöbst et al., 2020

Let 𝒞(𝐺) denote the set of maximal cliques in a chordal graph 𝐺. 
Then, we can sample uniformly from 𝐺 with 𝑝 nodes and 𝑒 edges in 
𝒪(𝑝 + 𝑒) with 𝒪( 𝒞 𝐺 + ⋅ 𝑝 ⋅ 𝑒) setup time.

Thus, we may efficiently approximate 𝔼.∼0123( .∗ )[𝑑𝑖𝑟 ℰℐ 𝐺 ] for	any	ℐ by	sampling	
and	Monte-Carlo	averaging.

Submodularity	and	monotonicity	are	preserved	under	positive	linear	combination,	so	
the	full	problem	is	submodular.

https://arxiv.org/pdf/2012.09679.pdf


Part III: Adaptive experimental 
design strategies
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Greedy strategies

43Simons Causality Bootcamp 01/21/22Chandler Squires

Min-max Bayes

Edge min
9

max
.∈ .∗ ℐ

𝑢𝑛𝑑(ℰℐ∪{9} 𝐺 ) min
9
𝔼.∼0123( .∗ ℐ)[𝑢𝑛𝑑(ℰℐ∪{9} 𝐺 )]

Entropy min
9

max
.∈ .∗ ℐ

| 𝐺 ℐ∪{9}| min
9
𝔼.∼0123( .∗ ℐ)[log 𝐺 ℐ∪ 9 ]

Clique 
number

min
9

max
.∈ .∗ ℐ

𝜔(ℰℐ∪ 9 𝐺 ) min
9
𝔼.∼0123( .∗ ℐ)[𝜔(ℰℐ∪ 9 𝐺 )

1Two Optimal Strategies for Active Learning of Causal Models From Interventional Data (Hauser and Bühlmann, 2012)
2Learning Causal Graphs with Small Interventions (Shanmugam et al., 2015)

3Active Learning of Causal Networks with Intervention Experiments and Optimal Designs (He and Geng, 2008)

1,2

3 3

https://arxiv.org/pdf/1205.4174.pdf
https://arxiv.org/pdf/1511.00041.pdf
https://www.jmlr.org/papers/volume9/he08a/he08a.pdf


Greedy strategies
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Min-max Bayes

Edge

Entropy

Clique 
number



Greedy strategies

45Simons Causality Bootcamp 01/21/22Chandler Squires

Min-max Bayes

Edge min
9

max
.∈ .∗ ℐ

𝑢𝑛𝑑(ℰℐ∪{9} 𝐺 )

Entropy

Clique 
number

1Two Optimal Strategies for Active Learning of Causal Models From Interventional Data (Hauser and Bühlmann, 2012)
2Learning Causal Graphs with Small Interventions (Shanmugam et al., 2015)

1,2

https://arxiv.org/pdf/1205.4174.pdf
https://arxiv.org/pdf/1511.00041.pdf


Greedy strategies
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Min-max Bayes

Edge min
9

max
.∈ .∗ ℐ

𝑢𝑛𝑑(ℰℐ∪{9} 𝐺 ) min
9
𝔼.∼0123( .∗ ℐ)[𝑢𝑛𝑑(ℰℐ∪{9} 𝐺 )]

Entropy

Clique 
number

1Two Optimal Strategies for Active Learning of Causal Models From Interventional Data (Hauser and Bühlmann, 2012)
2Learning Causal Graphs with Small Interventions (Shanmugam et al., 2015)

1,2

https://arxiv.org/pdf/1205.4174.pdf
https://arxiv.org/pdf/1511.00041.pdf


Greedy strategies
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Min-max Bayes

Edge min
9

max
.∈ .∗ ℐ

𝑢𝑛𝑑(ℰℐ∪{9} 𝐺 ) min
9
𝔼.∼0123( .∗ ℐ)[𝑢𝑛𝑑(ℰℐ∪{9} 𝐺 )]

Entropy min
9

max
.∈ .∗ ℐ

log| 𝐺 ℐ∪{9}| min
9
𝔼.∼0123( .∗ ℐ)[log 𝐺 ℐ∪ 9 ]

Clique 
number

1Two Optimal Strategies for Active Learning of Causal Models From Interventional Data (Hauser and Bühlmann, 2012)
2Learning Causal Graphs with Small Interventions (Shanmugam et al., 2015)

3Active Learning of Causal Networks with Intervention Experiments and Optimal Designs (He and Geng, 2008)

1,2

3 3

https://arxiv.org/pdf/1205.4174.pdf
https://arxiv.org/pdf/1511.00041.pdf
https://www.jmlr.org/papers/volume9/he08a/he08a.pdf


Greedy strategies
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Min-max Bayes

Edge min
9

max
.∈ .∗ ℐ

𝑢𝑛𝑑(ℰℐ∪{9} 𝐺 ) min
9
𝔼.∼0123( .∗ ℐ)[𝑢𝑛𝑑(ℰℐ∪{9} 𝐺 )]

Entropy min
9

max
.∈ .∗ ℐ

log| 𝐺 ℐ∪{9}| min
9
𝔼.∼0123( .∗ ℐ)[log 𝐺 ℐ∪ 9 ]

Clique 
number

min
9

max
.∈ .∗ ℐ

𝜔(ℰℐ∪ 9 𝐺 ) min
9
𝔼.∼0123( .∗ ℐ)[𝜔(ℰℐ∪ 9 𝐺 )

1Two Optimal Strategies for Active Learning of Causal Models From Interventional Data (Hauser and Bühlmann, 2012)
2Learning Causal Graphs with Small Interventions (Shanmugam et al., 2015)

3Active Learning of Causal Networks with Intervention Experiments and Optimal Designs (He and Geng, 2008)

1,2

3 3

https://arxiv.org/pdf/1205.4174.pdf
https://arxiv.org/pdf/1511.00041.pdf
https://www.jmlr.org/papers/volume9/he08a/he08a.pdf
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Non-adaptive Adaptive

Bounded Unbounded

Fixed budget Min-cost identification

max    𝑖𝑛𝑓𝑜(𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠)
s.t. 𝑐𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 ≤ 𝑏𝑢𝑑𝑔𝑒𝑡

min     𝑐𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠
s.t.       𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝐺∗

No observational data Observational data



Single-node experimental design on trees
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Essential graph



Single-node experimental design on trees
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Single-node experimental design on trees
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Single-node experimental design on trees
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The root node uniquely determines the DAG



Suboptimality of information-greedy 
strategies
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Sample Efficient Active Learning of Causal Trees (Greenewald et al., 2019)

𝑀 ≫ 3

… … … … … … … … …

𝐾 nodes in 
penultimate 

level

https://papers.nips.cc/paper/2019/file/5ee5605917626676f6a285fa4c10f7b0-Paper.pdf


Suboptimality of information-greedy 
strategies
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Expected information gain ≤ !
"
log# 𝑝 +

"$!
"
log# 4 ≈ 2

𝑝 total nodes



Suboptimality of information-greedy 
strategies
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Expected information gain ≥ !
%
log# 𝑝 ≥

!
%
log#𝑀

𝑀 can be picked so that the nodes in the penultimate layer are always preferable (e.g., 𝑀 = 𝑂 2%4 )



Suboptimality of information-greedy 
strategies

57Simons Causality Bootcamp 01/21/22Chandler Squires

The expected number of interventions required by this strategy is at least 𝐾/2



Central node algorithm
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Central node algorithm1 can find the root in at most (log&𝐾) + 1 interventions

1Sample Efficient Active Learning of Causal Trees (Greenewald et al., 2019)

https://papers.nips.cc/paper/2019/file/5ee5605917626676f6a285fa4c10f7b0-Paper.pdf
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Central node algorithm: Intervene on a node such that, after removing it, the largest remaining 
connected component is as small as possible. Equivalent to min-max entropy choice.

Central node algorithm
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Central node algorithm
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Central node algorithm
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Central node algorithm



Central node algorithm
• In a tree on 𝑝 nodes, there is at least one node such that its removal 

splits the tree into components each having at most &
+

nodes.1

• So, we can always get at least one bit of information per intervention 
⇒ a tree on 𝑝 nodes takes at most ⌈log+ 𝑝⌉ interventions to orient
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1Sur les assemblages de lignes (Jordan, 1869)

Theorem (Greenewald et al., 2019)

The expected number of interventions required by the central node 
algorithm is at most twice the expected number of interventions 
required by the optimal algorithm. 



Part IV: Targeted experimental 
design and other open 

challenges
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Targeted experimental design
• So far, we’ve treated all structural causal information about our graph 

as equally important
• Rarely true!
• We may only care about a subset of structural information (e.g., existence of 

certain paths)
• ABCD-Strategy: Budgeted Experimental Design for Targeted Causal Structure Discovery

(Agrawal et al., 2019)
• We may only care about finding an “optimal” information for some goal, e.g. 

so that the interventional distribution is close to some target distribution
• Matching a Desired Causal State via Shift Interventions

• For different learning goals, how does interventional and sample 
complexity change?
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https://arxiv.org/pdf/1902.10347.pdf
https://arxiv.org/abs/2107.01850


Batched experimental design
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Time

ABCD-Strategy: Budgeted Experimental Design for Targeted Causal Structure Discovery (Agrawal et al., 2019)

Batched bandit problems (Perchet et al., 2016)

How do we optimally 
divide interventions 

across batches?

https://arxiv.org/pdf/1902.10347.pdf
https://arxiv.org/abs/1505.00369


Noisy interventional data

• How much better can we do than the “repeat until desired 
confidence” strategy for dealing with noise?
• Sample Efficient Active Learning of Causal Trees (Greenewald et al., 2019) use 

a multiplicative weights algorithm in the binary setting
• Learning and Testing Causal Models with Interventions (Acharya et al., 2018) 

study “goodness-of-fit” testing and other problems in the discrete setting
• Given a true distribution 𝑓∗ and a hypothesized distribution H𝑓 both Markov to 𝐺, are all 

associated interventional distributions (𝑓∗( and H𝑓( for 𝐼( any do-intervention) with 𝜖
total variation distance?
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https://papers.nips.cc/paper/2019/file/5ee5605917626676f6a285fa4c10f7b0-Paper.pdf
https://arxiv.org/abs/1805.09697


Causally insufficient systems
We can’t always identify causal graphs in insufficient systems from just 
single node interventions
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𝑋! 𝑋"

𝑋# 𝐿"𝐿!

𝑋! 𝑋"

𝑋# 𝐿"𝐿!

1Causation and Intervention (Eberhardt, 2008)

https://www.its.caltech.edu/~fehardt/papers/PhDthesis.pdf


Causally insufficient systems
But we can identify them when the number of intervened nodes is 
unbounded
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𝑋! 𝑋"

𝑋# 𝐿"𝐿!

𝑋! 𝑋"

𝑋# 𝐿"𝐿!

1Causation and Intervention (Eberhardt, 2008)

https://www.its.caltech.edu/~fehardt/papers/PhDthesis.pdf


Causally insufficient systems
But we can identify them when the number of intervened nodes is 
unbounded
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𝑋! 𝑋"

𝑋# 𝐿"𝐿!

𝑋! 𝑋"

𝑋# 𝐿"𝐿!

1Causation and Intervention (Eberhardt, 2008)

𝐼 = {𝑋!, 𝑋"}

https://www.its.caltech.edu/~fehardt/papers/PhDthesis.pdf


Causally insufficient systems
What graphs can we identify when the number of intervention 
targets is bounded by 𝑲?
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Lower bounds on interventional complexity

• Suppose a friend tells you the true graph 𝐺∗, but you’re skeptical and 
want to check it, while using the minimal number of single-node 
interventions
• If 𝐺∗ is a tree: only 1 intervention is required (at the root)
• If 𝐺∗ is a clique on 𝑝 nodes: ⌊&

+
⌋ interventions are required

• Active Structure Learning of Causal DAGs via Directed Clique Trees
(Squires et al., 2020) give a polynomial-time algorithm for finding the 
“minimal verifying intervention set” (MVIS) for any DAG 𝐺∗, the size 
of which is denoted 𝑚(𝐺∗)
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https://arxiv.org/abs/2011.00641


Lower bounds on interventional complexity

• 𝑚(𝐺∗) is not necessarily the same across a Markov equivalence class
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𝑋! 𝑋"

𝑋#

𝑋%

𝑋! 𝑋"

𝑋#

𝑋%



Lower bounds on interventional complexity

• Squires et al. (2020) give a “universal” lower bound on 𝑚(𝐺∗) that 
holds across the equivalence class, improved in Almost Optimal 
Universal Lower Bound for Learning Causal DAGs with Atomic 
Interventions (Porwal et al., 2021)
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𝑋! 𝑋"

𝑋#

𝑋%

𝑋! 𝑋"

𝑋#

𝑋%

• 𝑚(𝐺∗) is not necessarily the same across a Markov equivalence class

https://arxiv.org/pdf/2111.05070.pdf

